[1] ZHOU T, XU R, RUAN B, et al. Study on new method and mechanism of microcutting-etching of microlens array on 6H-SiC mold by combining single point diamond turning with ion beam etching[J]. Journal of Materials Processing Technology, 2020, 278: 116510.
[2] GOEL S. The current understanding on the diamond machining of silicon carbide[J]. Journal of Physics D: Applied Physics, 2014, 47(24): 243001.
[3] VANKO G, HUDEK P, ZEHETNER J, et al. Bulk micromachining of SiC substrate for MEMS sensor applications[J]. Microelectronic Engineering, 2013, 110: 260-264.
[4] LI J, GENG D, ZHANG D, et al. Ultrasonic vibration mill-grinding of single-crystal silicon carbide for pressure sensor diaphragms[J]. Ceramics International, 2018, 44(3): 3107-3112.
[5] GODIGNON P, MARTIN I, GABRIEL G, et al. New generation of SiC based biodevices implemented on 4” wafers[J]. Materials Science Forum, 2010, 645-648: 1097-1100.
[6] 白基成, 郭永丰, 刘晋春. 特种加工技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2006.
[7] ZHAO Y, KUNIEDA M, ABE K. EDM mechanism of single crystal SiC with respect to thermal, mechanical and chemical aspects[J]. Journal of Materials Processing Technology, 2016, 236: 138-147.
[8] DUBEY A K, YADAVA V. Laser beam machining-A review[J]. International Journal of Machine Tools and Manufacture, 2008, 48(6): 609-628.
[9] SAXENA K K, QIAN J, REYNAERTS D. A review on process capabilities of electrochemical micromachining and its hybrid variants[J]. International Journal of Machine Tools and Manufacture, 2018, 127: 28-56.
[10] SPEIDEL A, BISTEROV I, SAXENA K K, et al. Electrochemical jet manufacturing technology: From fundamentals to application[J]. International Journal of Machine Tools and Manufacture, 2022, 180: 103931.
[11] HACKERT-OSCHäTZCHEN M, MEICHSNER G, ZINECKER M, et al. Micro machining with continuous electrolytic free jet[J]. Precision Engineering, 2012, 36(4): 612-619.
[12] CLARE A T, SPEIDEL A, BISTEROV I, et al. Precision enhanced electrochemical jet processing[J]. CIRP Annals, 2018, 67(1): 205-208.
[13] LEESE R J, IVANOV A. Electrochemical micromachining: An introduction[J]. Advances in Mechanical Engineering, 2016, 8(1): 1687814015626860.
[14] SUEPTITZ R, DUNNE P, TSCHULIK K, et al. Electrochemical micromachining of passive electrodes[J]. Electrochimica Acta, 2013, 109: 562-569.
[15] CLAWSON A R. Guide to references on III–V semiconductor chemical etching[J]. Materials Science and Engineering: R: Reports, 2001, 31(1): 1-438.
[16] ZHUANG D, EDGAR J H. Wet etching of GaN, AlN, and SiC: a review[J]. Materials Science and Engineering: R: Reports, 2005, 48(1): 1-46.
[17] SHE X, HUANG A Q, Ó L, et al. Review of silicon carbide power devices and their applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8193-8205.
[18] BOYER R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering: A, 1996, 213(1): 103-114.
[19] SARRAF M, REZVANI GHOMI E, ALIPOUR S, et al. A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications[J]. Bio-Design and Manufacturing, 2022, 5(2): 371-395.
[20] NIKISHINA E E, DROBOT D V, LEBEDEVA E N. Niobium and tantalum: State of the world market, fields of application, and raw sources. Part I[J]. Russian Journal of Non-Ferrous Metals, 2013, 54(6): 446-452.
[21] YAO C, MA Y. Superconducting materials: Challenges and opportunities for large-scale applications[J]. iScience, 2021, 24(6).
[22] VAN OSENBRUGGEN C. Electrochemical micromachining[J]. Philips Technical Review, 1985, 42: 22.
[23] YONEDA K, KUNIEDA M. Numerical analysis of cross section shape of microindents formed by the electrochemical jet machining[J], Journal of The Japan Society of Electrical Machining Engineers, 1995, 29(62): 1-8.
[24] SCHUBERT A, HACKERT-OSCHäTZCHEN M, MEICHSNER G, et al. Evaluation of the influence of the electric potential in jet electrochemical machining[C]. Proceedings of the 7th International Symposium on Electrochemical Machining Technology, 2011, 1: 47-54.
[25] IKEDA T, NATSU W, KUNIEDA M. Electrolyte jet machining using multiple nozzles[J]. International Journal of Electrical Machining, 2006, 11: 7.
[26] NATSU W, IKEDA T, KUNIEDA M. Generating complicated surface with electrolyte jet machining[J]. Precision Engineering, 2007, 31(1): 33-39.
[27] KAWANAKA T, KATO S, KUNIEDA M, et al. Selective surface texturing using electrolyte jet machining[J]. Procedia CIRP, 2014, 13: 345-349.
[28] KAWANAKA T, KUNIEDA M. Mirror-like finishing by electrolyte jet machining[J]. CIRP Annals, 2015, 64(1): 237-240.
[29] GUO P, WU L, LIN X, et al. Anodic dissolution behavior of the complex microstructure of laser directed energy deposited Alloy 718 during electrolyte jet machining in NaCl-ethylene glycol electrolyte[J]. Additive Manufacturing, 2023, 73: 103685.
[30] YAHYAVI ZANJANI M, HACKERT-OSCHäTZCHEN M, MARTIN A, et al. Process control in jet electrochemical machining of stainless steel through inline metrology of current density[J]. Micromachines, 2019, 10(4): 261.
[31] ZHAN S, LYU Z, DONG B, et al. Cathodic discharge plasma in electrochemical jet machining: Phenomena, mechanism and characteristics[J]. International Journal of Machine Tools and Manufacture, 2023, 187: 104015.
[32] MARTIN A, ECKART C, LEHNERT N, et al. Generation of defined surface waviness on tungsten carbide by jet electrochemical machining with pulsed current[J]. Procedia CIRP, 2016, 45: 231-234.
[33] YU Y Q, ZHAO J S, LI B H, et al. Experimental study of pulsed electrolyte jet machining for small hole[J]. Key Engineering Materials, 2011, 458: 307-312.
[34] JAIN N K, POTPELWAR A, PATHAK S, et al. Investigations on geometry and productivity of micro-holes in Incoloy 800 by pulsed electrolytic jet drilling[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(9): 2083-2095.
[35] 王可, 周平, 闫英, 等. 铜表面脉冲电化学射流加工的定域性和粗糙度分析[J]. 机械工程学报, 2022, 58(7): 258-266.
[36] SEN M, SHAN H S. Analysis of hole quality characteristics in the electro jet drilling process[J]. International Journal of Machine Tools and Manufacture, 2005, 45(15): 1706-1716.
[37] LIU W, AO S, LI Y, et al. Jet electrochemical machining of TB6 titanium alloy[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(5): 2397-2409.
[38] HACKERT-OSCHäTZCHEN M, LEHNERT N, MARTIN A, et al. Jet electrochemical machining of particle reinforced aluminum matrix composites with different neutral electrolytes[J]. IOP Conference Series: Materials Science and Engineering, 2016, 118(1): 012036.
[39] MITCHELL-SMITH J, SPEIDEL A, CLARE A T. Transitory electrochemical masking for precision jet processing techniques[J]. Journal of Manufacturing Processes, 2018, 31: 273-285.
[40] MITCHELL-SMITH J, SPEIDEL A, BISTEROV I, et al. Electrolyte multiplexing in electrochemical jet processing[J]. Procedia CIRP, 2018, 68: 483-487.
[41] LIU W, KUNIEDA M, LUO Z. Three-dimensional simulation and experimental investigation of electrolyte jet machining with the inclined nozzle[J]. Journal of Materials Processing Technology, 2021, 297: 117244.
[42] MITCHELL-SMITH J, SPEIDEL A, CLARE A T. Advancing electrochemical jet methods through manipulation of the angle of address[J]. Journal of Materials Processing Technology, 2018, 255: 364-372.
[43] ZHANG X, SONG X, MING P, et al. The effect of electrolytic jet orientation on machining characteristics in jet electrochemical machining[J]. Micromachines, 2019, 10(6): 404.
[44] ZHAO Y, KUNIEDA M. Investigation on electrolyte jet machining of three-dimensional freeform surfaces[J]. Precision Engineering, 2019, 60: 42-53.
[45] MARTIN A, HACKERT-OSCHäTZCHEN M, LEHNERT N, et al. Analysis of the fundamental removal geometry in electrochemical profile turning with continuous electrolytic free jet[J]. Procedia CIRP, 2018, 68: 466-470.
[46] LIU Y, QU N. Obtaining high surface quality in electrolyte jet machining TB6 titanium alloy via enhanced product transport[J]. Journal of Materials Processing Technology, 2020, 276: 116381.
[47] MITCHELL-SMITH J, SPEIDEL A, GASKELL J, et al. Energy distribution modulation by mechanical design for electrochemical jet processing techniques[J]. International Journal of Machine Tools and Manufacture, 2017, 122: 32-46.
[48] LUTEY A H, JING H, ROMOLI L, et al. Electrolyte jet machining (EJM) of antibacterial surfaces[J]. Precision Engineering, 2021, 70: 145-154.
[49] YANG X, LIU X, LU Y, et al. Controlling the adhesion of superhydrophobic surfaces using electrolyte jet machining techniques[J]. Scientific reports, 2016, 6(1): 23985.
[50] WALKER J C, KAMPS T J, LAM J W, et al. Tribological behaviour of an electrochemical jet machined textured Al-Si automotive cylinder liner material[J]. Wear, 2017, 376-377: 1611-1621.
[51] SPEIDEL A, BISTEROV I, CLARE A T. Direct writing unclonable watermarks with an electrochemical jet[J]. Advanced Functional Materials, 2022, 32(51): 2208116.
[52] KUHN D, MARTIN A, ECKART C, et al. Localised anodic oxidation of aluminium material using a continuous electrolyte jet[J]. IOP Conference Series: Materials Science and Engineering, 2017, 181(1): 012042.
[53] MORGENSTERN R, MARTIN A, LEHNERT N, et al. Localized anodization of the aluminum alloy EN AW-7075 T6 by closed electrolytic free jet[J]. IOP Conference Series: Materials Science and Engineering, 2019, 480(1): 012015.
[54] CHEN Z, ZHAN S, ZHAO Y. Electrochemical jet-assisted precision grinding of single-crystal SiC using soft abrasive wheel[J]. International Journal of Mechanical Sciences, 2021, 195: 106239.
[55] LU J, LIU W, HU X, et al. Rapid surface preparation for three-dimensional characterization of defect and microstructure of metal additive manufacturing using electrochemical jet[J]. Materials & Design, 2021, 212: 110180.
[56] SPEIDEL A, XU D, BISTEROV I, et al. Unveiling surfaces for advanced materials characterisation with large-area electrochemical jet machining[J]. Materials & Design, 2021, 202: 109539.
[57] BISTEROV I, ABAYZEED S, SPEIDEL A, et al. On-machine measurement with an electrochemical jet machine tool[J]. International Journal of Machine Tools and Manufacture, 2022, 174: 103859.
[58] WANG X, QU N. Surface flattening of directed energy deposited parts through jet electrochemical machining[J]. Journal of The Electrochemical Society, 2021, 168(12): 123507.
[59] KUNIEDA M, MIZUGAI K, WATANABE S, et al. Electrochemical micromachining using flat electrolyte jet[J]. CIRP Annals, 2011, 60(1): 251-254.
[60] MIYOSHI K, KUNIEDA M. Fabrication of micro rods of cemented carbide by electrolyte jet turning[J]. Procedia CIRP, 2016, 42: 373-378.
[61] HE Y, XIAO H, GAN W, et al. The electrochemical dissolution behavior research of titanium alloy underdifferent electrolyte[J]. Procedia CIRP, 2018, 68: 751-756.
[62] SPEIDEL A, MITCHELL-SMITH J, WALSH D A, et al. Electrolyte jet machining of titanium alloys using novel electrolyte solutions[J]. Procedia CIRP, 2016, 42: 367-372.
[63] XUE J, DONG B, ZHAO Y. Significance of waveform design to achieve bipolar electrochemical jet machining of passivating material via regulation of electrode reaction kinetics[J]. International Journal of Machine Tools and Manufacture, 2022, 177: 103886.
[64] DONG B, ZHAN S, LU J, et al. Phenomena and mechanism of local oxidation microlithography of 4H–SiC via electrochemical jet anodisation[J]. Ceramics International, 2023, 49(6): 8781-8792.
[65] SPEIDEL A, MITCHELL-SMITH J, BISTEROV I, et al. Oscillatory behaviour in the electrochemical jet processing of titanium[J]. Journal of Materials Processing Technology, 2019, 273: 116264.
[66] KAKUDO S, KUNIEDA M. Electrolyte jet machining of difficult-to-machine materials[C]. Proceedings of JSPE Semestrial Meeting, 2016. 2016A: 185-186.
[67] MIZUGAI K, SHIBUYA N, KUNIEDA M. Study on electrolyte jet machining of cemented carbide[J]. International Journal of Electrical Machining, 2013, 18: 23-28.
[68] HACKERT-OSCHäTZCHEN M, MARTIN A, MEICHSNER G, et al. Microstructuring of carbide metals applying jet electrochemical machining[J]. Precision Engineering, 2013, 37(3): 621-634.
[69] LIU W, LUO Z, KUNIEDA M. Electrolyte jet machining of Ti1023 titanium alloy using NaCl ethylene glycol-based electrolyte[J]. Journal of Materials Processing Technology, 2020, 283: 116731.
[70] LAUWERS B, KLOCKE F, KLINK A, et al. Hybrid processes in manufacturing[J]. CIRP Annals, 2014, 63(2): 561-583.
[71] DESILVA A K M, PAJAK P T, HARRISON D K, et al. Modelling and experimental investigation of laser assisted jet electrochemical machining[J]. CIRP Annals, 2004, 53(1): 179-182.
[72] SAXENA K K, QIAN J, REYNAERTS D. A tool-based hybrid laser-electrochemical micromachining process: Experimental investigations and synergistic effects[J]. International Journal of Machine Tools and Manufacture, 2020, 155: 103569.
[73] DE SILVA A K M, PAJAK P T, MCGEOUGH J A, et al. Thermal effects in laser assisted jet electrochemical machining[J]. CIRP Annals, 2011, 60(1): 243-246.
[74] PAJAK P T, DESILVA A K M, HARRISON D K, et al. Precision and efficiency of laser assisted jet electrochemical machining[J]. Precision Engineering, 2006, 30(3): 288-298.
[75] PAJAK P T, DE SILVA A K M, HARRISON D K, et al. Process energy analysis for aluminium alloy and stainless steel in laser-assisted jet electrochemical machining[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2006, 220(3): 405-412.
[76] MALIK A, MANNA A. Multi-response optimization of laser-assisted jet electrochemical machining parameters based on gray relational analysis[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(3): 148.
[77] ZHU H, JIANG Z, HAN J, et al. Fabrication of oxide-free dimple structure on germanium via electrochemical jet machining enhanced by opposing laser irradiation[J]. Journal of Manufacturing Processes, 2023, 85: 623-635.
[78] SIVAKUMAR M, JERALD J, SHRIRAM S, et al. Hybrid laser-assisted jet electrochemical micromachining process[M]. Hybrid Micromachining and Microfabrication Technologies. 2023: 179-203.
[79] SKOCZYPIEC S. Research on ultrasonically assisted electrochemical machining process[J]. The International Journal of Advanced Manufacturing Technology, 2011, 52(5): 565-574.
[80] MITCHELL-SMITH J, CLARE A T. Electrochemical jet machining of titanium: overcoming passivation layers with ultrasonic assistance[J]. Procedia CIRP, 2016, 42: 379-383.
[81] DALABEHERA T, MULLICK S, BARTARYA G, et al. Experimental analysis of electro-jet machining of thin metal sheets under the application of ultrasonic vibration, continuous and pulsed direct current[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2022: 09544089221133969.
[82] GOEL H, PANDEY P M. Performance evaluation of different variants of jet electrochemical micro-drilling process[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018, 232(3): 451-464.
[83] LIU Z, NOURAEI H, SPELT J K, et al. Electrochemical slurry jet micro-machining of tungsten carbide with a sodium chloride solution[J]. Precision Engineering, 2015, 40: 189-198.
[84] LIU Z, GAO C, ZHAO K, et al. Machining of microchannel at SS316 surface using abrasive-assisted electrochemical jet machining[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(1): 1143-1152.
[85] ZHANG Y, WANG Q, HOU N, et al. Material removal mechanism of superalloy Inconel 718 based on electrochemical abrasive jet processing[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(11): 4663-4673.
[86] FAN Z W, HOURNG L W, CHEN T Y, et al. The investigation of electrochemical slurry jet micro machining on the SKD11 mold steel[J]. Key Engineering Materials, 2017, 749: 148-153.
[87] SENGUPTA S K, SRIVASTAVA A K, SINGH R. Contact glow discharge electrolysis: a study on its origin in the light of the theory of hydrodynamic instabilities in local solvent vaporisation by Joule heating during electrolysis[J]. Journal of Electroanalytical Chemistry, 1997, 427(1): 23-27.
[88] YEROKHIN A L, NIE X, LEYLAND A, et al. Plasma electrolysis for surface engineering[J]. Surface and Coatings Technology, 1999, 122(2): 73-93.
[89] GUPTA P, TENHUNDFELD G, DAIGLE E, et al. Electrolytic plasma technology: Science and engineering-An overview[J]. Surface and Coatings Technology, 2007, 201(21): 8746-8760.
[90] ZHAN S, DONG B, WANG H, et al. A novel approach for bulk micromachining of 4H-SiC by tool-based electrolytic plasma etching in HF-free aqueous solution[J]. Journal of the European Ceramic Society, 2021, 41(10): 5075-5087.
[91] LIU Y, FANG X, QU N, et al. Simultaneous gas electrical discharge and electrochemical jet micromachining of titanium alloy in high-conductivity salt solution[J]. Journal of Materials Processing Technology, 2023, 317: 118000.
[92] YUE X, MA Y, QU N, et al. Experimental investigation of rotary sinking electrochemical discharge milling with high-conductivity salt solution and non-pulsed direct current[J]. Chinese Journal of Aeronautics, 2023, 36(2): 388-401.
[93] ZHAN S, ZHAO Y. Plasma-assisted electrochemical machining of microtools and microstructures[J]. International Journal of Machine Tools and Manufacture, 2020, 156: 103596.
[94] NGUYEN M D, RAHMAN M, WONG Y S. Enhanced surface integrity and dimensional accuracy by simultaneous micro-ED/EC milling[J]. CIRP Annals, 2012, 61(1): 191-194.
[95] ZHANG Y, XU Z, ZHU D, et al. Tube electrode high-speed electrochemical discharge drilling using low-conductivity salt solution[J]. International Journal of Machine Tools and Manufacture, 2015, 92: 10-18.
[96] AHMED S, SPEIDEL A, MURRAY J W, et al. Electrolytic-dielectrics: A route to zero recast electrical discharge machining[J]. International Journal of Machine Tools and Manufacture, 2022, 181: 103941.
[97] HAN Z, FANG X, MIAO G, et al. Controllable electrochemical discharge machining with energy-electricity regulation in glycol-based electrolytes[J]. International Journal of Mechanical Sciences, 2023, 247: 108161.
[98] GENG T, XU Z. Electrochemical discharge machining for fabricating holes in conductive materials: A review[J]. Journal of Advanced Manufacturing Science and Technology, 2021, 1: 2021006.
[99] ISLAM M J, ZHANG Y, ZHAO L, et al. Material wear of the tool electrode and metal workpiece in electrochemical discharge machining[J]. Wear, 2022, 500-501: 204346.
[100] ZHANG C, XU Z, HANG Y, et al. Effect of solution conductivity on tool electrode wear in electrochemical discharge drilling of nickel-based alloy[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(1): 743-756.
[101] ZHANG Y, XU Z, XING J, et al. Effect of tube-electrode inner diameter on electrochemical discharge machining of nickel-based superalloy[J]. Chinese Journal of Aeronautics, 2016, 29(4): 1103-1110.
[102] ABOU ZIKI J D, WüTHRICH R. Forces exerted on the tool-electrode during constant-feed glass micro-drilling by spark assisted chemical engraving[J]. International Journal of Machine Tools and Manufacture, 2013, 73: 47-54.
[103] YADAV R N. Electro-chemical spark machining-based hybrid machining processes: Research trends and opportunities[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233: 1037 - 1061.
[104] HAN M-S, MIN B-K, LEE S J. Micro-electrochemical discharge cutting of glass using a surface-textured tool[J]. CIRP Journal of Manufacturing Science and Technology, 2011, 4(4): 362-369.
[105] LIU Y, ZHANG C, LI S, et al. Experimental study of micro electrochemical discharge machining of ultra-clear glass with a rotating helical tool[J] Processes, 2019, 7(4): 195
[106] CAO X D, KIM B H, CHU C N. Micro-structuring of glass with features less than 100 μm by electrochemical discharge machining[J]. Precision Engineering, 2009, 33(4): 459-465.
[107] YANG C-K, CHENG C-P, MAI C-C, et al. Effect of surface roughness of tool electrode materials in ECDM performance[J]. International Journal of Machine Tools and Manufacture, 2010, 50(12): 1088-1096.
[108] BASAK I, GHOSH A. Mechanism of spark generation during electrochemical discharge machining: a theoretical model and experimental verification[J]. Journal of Materials Processing Technology, 1996, 62(1): 46-53.
[109] FASCIO V, LANGEN H H, BLEULER H, et al. Investigations of the spark assisted chemical engraving[J]. Electrochemistry Communications, 2003, 5(3): 203-207.
[110] WüTHRICH R, HOF L A. The gas film in spark assisted chemical engraving (SACE)-A key element for micro-machining applications[J]. International Journal of Machine Tools and Manufacture, 2006, 46(7): 828-835.
[111] JIANG B, LAN S, WILT K, et al. Modeling and experimental investigation of gas film in micro-electrochemical discharge machining process[J]. International Journal of Machine Tools and Manufacture, 2015, 90: 8-15.
[112] KOLHEKAR K R, SUNDARAM M. Study of gas film characterization and its effect in electrochemical discharge machining[J]. Precision Engineering, 2018, 53: 203-211.
[113] KOLHEKAR K R, SUNDARAM M. A study on the effect of electrolyte concentration on surface integrity in micro electrochemical discharge machining[J]. Procedia CIRP, 2016, 45: 355-358.
[114] SABAHI N, RAZFAR M R, HAJIAN M. Experimental investigation of surfactant-mixed electrolyte into electrochemical discharge machining (ECDM) process[J]. Journal of Materials Processing Technology, 2017, 250: 190-202.
[115] BHATTACHARYYA B, DOLOI B N, SORKHEL S K. Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials[J]. Journal of Materials Processing Technology, 1999, 95(1): 145-154.
[116] KIM D-J, AHN Y, LEE S-H, et al. Voltage pulse frequency and duty ratio effects in an electrochemical discharge microdrilling process of Pyrex glass[J]. International Journal of Machine Tools and Manufacture, 2006, 46(10): 1064-1067.
[117] JAIN V K, CHOUDHURY S K, RAMESH K M. On the machining of alumina and glass[J]. International Journal of Machine Tools and Manufacture, 2002, 42(11): 1269-1276.
[118] KUMAR N, MANDAL N, DAS A K. Micro-machining through electrochemical discharge processes: A review[J]. Materials and Manufacturing Processes, 2020, 35(4): 363-404.
[119] BEHROOZFAR A, RAZFAR M R. Experimental study of the tool wear during the electrochemical discharge machining[J]. Materials and Manufacturing Processes, 2016, 31(5): 574-580.
[120] CORNELSEN M, DEUTSCH C, SEITZ H. Electrolytic plasma polishing of pipe inner surfaces[J]. Metals, 2017, 8(1): 12.
[121] BELKIN P N, KUSMANOV S A, PARFENOV E V. Mechanism and technological opportunity of plasma electrolytic polishing of metals and alloys surfaces[J]. Applied Surface Science Advances, 2020, 1: 100016.
[122] KRANHOLD C, KRöNING O, SCHULZE H-P, et al. Investigation of stable boundary conditions for the jet-electrolytic plasma polishing (Jet-ePP)[J]. Procedia CIRP, 2020, 95: 987-992.
[123] QUITZKE S, KRöNING O, SAFRANCHIK D, et al. Design and setup of a jet-based technology for localized small scale plasma electrolytic polishing[J]. Journal of Manufacturing Processes, 2022, 75: 1123-1133.
[124] NAGULIN K Y, TERENT’EV A A, BELOV M D, et al. Electrolytic-plasma jet polishing of additively manufactured gas turbine engine components[J]. Russian Aeronautics, 2022, 65(4): 822-830.
[125] KüENZI A, GOETSCHI M, NELIS T, et al. Jet application of plasma electrolyte polishing[J]. Procedia CIRP, 2022, 113: 525-529.
[126] YEROKHIN A, PILKINGTON A, MATTHEWS A. Pulse current plasma assisted electrolytic cleaning of AISI 4340 steel[J]. Journal of Materials Processing Technology, 2010, 210(1): 54-63.
[127] GU W, SHEN D, WANG Y, et al. Deposition of duplex Al2O3/aluminum coatings on steel using a combined technique of arc spraying and plasma electrolytic oxidation[J]. Applied Surface Science, 2006, 252(8): 2927-2932.
[128] LU L, ZHANG J, SHEN D, et al. TEM analysis and wear resistance of the ceramic coatings on Q235 steel prepared by hybrid method of hot-dipping aluminum and plasma electrolytic oxidation[J]. Journal of Alloys and Compounds, 2012, 512(1): 57-62.
[129] NIE X, CAI R, ZHAO C, et al. Advancement of plasma electrolytic oxidation towards non-valve metals[J]. Surface and Coatings Technology, 2022, 442: 128403.
[130] GUPTA P, TENHUNDFELD G, DAIGLE E O, et al. Electrolytic plasma technology: Science and engineering-An overview[J]. Surface and Coatings Technology, 2007, 201(21): 8746-8760.
[131] CLYNE T W, TROUGHTON S C. A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals[J]. International Materials Reviews, 2019, 64(3): 127-162.
[132] CLARE A T, SPEIDEL A, MITCHELL-SMITH J, et al. Surface enhanced micro features using electrochemical jet processing[J]. CIRP Annals, 2019, 68(1): 177-180.
[133] WANG Y, SHEN J, WU G, et al. Growth characteristics of scanning micro-arc oxidation coating on Ti6Al4V alloy[J]. Surface Engineering, 2023: 1-11.
[134] 吕鹏翔, 韦东波, 郭成波, 等. 2024 铝合金表面扫描式微弧氧化工艺研究[J]. 无机材料学报, 2013, 28(4): 381-386.
[135] BAHRAMIAN N, KIANFAR S, STROH J, et al. An investigation of the microstructure and oil retention of electrolyte jet plasma oxidation (EJPO) coating[C]. TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings, Cham, 2022, 629-639.
[136] ENGELL H J. Stability and breakdown phenomena of passivating films[J]. Electrochimica Acta, 1977, 22(9): 987-993.
[137] SHOR J S, KURTZ A D. Photoelectrochemical etching of 6H-SiC[J]. Journal of The Electrochemical Society, 1994, 141(3): 778.
[138] YANG X, SUN R, KAWAI K, et al. Surface modification and microstructuring of 4H-SiC(0001) by anodic oxidation with sodium chloride aqueous solution[J]. ACS Applied Materials & Interfaces, 2019, 11(2): 2535-2542.
[139] MAYANK G, FUCHEN C, MASANORI K. Analysis of reactions determining current efficiency in electrochemical machining[J]. Procedia CIRP, 2018, 68: 511-516.
[140] SCHNEIDER M, ŠIMŮNKOVá L, JUNKER N, et al. Quantitative detection of anodic oxygen evolution on solid state sintered silicon carbide under near ECM conditions[J]. Journal of Solid State Electrochemistry, 2020, 24(1): 207-215.
[141] HACKERT-OSCHäTZCHEN M, PAUL R, MARTIN A, et al. Study on the dynamic generation of the jet shape in jet electrochemical machining[J]. Journal of Materials Processing Technology, 2015, 223: 240-251.
[142] OLSSON E, KREISS G. A conservative level set method for two phase flow[J]. Journal of Computational Physics, 2005, 210(1): 225-246.
[143] STOJADINOVIC S, VASILIC R, PETKOVIC M, et al. Luminescence properties of oxide films formed by anodization of aluminum in 12-tungstophosphoric acid[J]. Electrochimica Acta, 2010, 55(12): 3857-3863.
[144] KLAPKIV M D, NYKYFORCHYN H M, POSUVAILO V M. Spectral analysis of an electrolytic plasma in the process of synthesis of aluminum oxide[J]. Materials Science, 1995, 30(3): 333-343.
[145] Griem H R. Plasma spectroscopy[M]. New York: McGraw—Hill. 1964.
[146] MILáN M, LASERNA J J. Diagnostics of silicon plasmas produced by visible nanosecond laser ablation[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(3): 275-288.
[147] KULAWIK P, KUMAR TIWARI B. Recent advancements in the application of non-thermal plasma technology for the seafood industry[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(19): 3199-3210.
[148] SAMAL S. Thermal plasma technology: The prospective future in material processing[J]. Journal of Cleaner Production, 2017, 142: 3131-3150.
[149] LAIMER J, STöRI H. Glow discharges observed in capacitive radio-frequency atmospheric-pressure plasma jets[J]. Plasma Processes and Polymers, 2006, 3(8): 573-586.
[150] [德]Hamann C. H., [英]Hamnett A., [德]Vielstich W. 电化学[M]. 陈艳霞, 夏兴华, 蔡俊. 北京: 化学工业出版社. 2010.
[151] KLAPKIV M D. State of an electrolytic plasma in the process of synthesis of oxides based on aluminum[J]. Materials Science, 1996, 31(4): 494-499.
[152] DUNLEAVY C S, GOLOSNOY I O, CURRAN J A, et al. Characterisation of discharge events during plasma electrolytic oxidation[J]. Surface and Coatings Technology, 2009, 203(22): 3410-3419.
[153] WEI R, SONG S, YANG K, et al. Thermal conductivity of 4H-SiC single crystals[J]. Journal of Applied Physics, 2013, 113(5): 053503.
[154] KELLY J J, PHILIPSEN H G G. Anisotropy in the wet-etching of semiconductors[J]. Current Opinion in Solid State and Materials Science, 2005, 9(1): 84-90.
[155] PEARTON S J, DOUGLAS E A, SHUL R J, et al. Plasma etching of wide bandgap and ultrawide bandgap semiconductors[J]. Journal of Vacuum Science & Technology A, 2020, 38(2): 020802.
[156] LIU W, LI W, ZHAO Y, et al. Gap effect in electrochemical jet machining[J]. Journal of Manufacturing Processes, 2023, 99: 652-662.
[157] CHEN Z, ZHAO Y. Investigation into electrochemical oxidation behavior of 4H-SiC with varying anodizing conditions[J]. Electrochemistry Communications, 2019, 109: 106608.
[158] MARTIN A, PFAFFENDORF F, SIMUNKOVA L, et al. Jet-electrochemical machining of SSiC[C]. 17th international symposium on electrochemical machining technology, 2021, 147-153.
[159] MELETIS E I, NIE X, WANG F L, et al. Electrolytic plasma processing for cleaning and metal-coating of steel surfaces[J]. Surface and Coatings Technology, 2002, 150(2): 246-256.
[160] SCHNEIDER M, ŠIMŮNKOVá L, MICHAELIS A, et al. Study of anodic oxide films formed on solid-state sintered SiC-ceramic at high anodic potentials[J]. Ceramics International, 2021, 47(11): 15010-15016.
[161] MAEDA Y, KITADA A, MURASE K, et al. High-density and low-roughness anodic oxide formed on SiC in highly concentrated LiCl aqueous solution[J]. Electrochemistry Communications, 2021, 132: 107138.
[162] YANG X, SUN R, OHKUBO Y, et al. Investigation of anodic oxidation mechanism of 4H-SiC(0001) for electrochemical mechanical polishing[J]. Electrochimica Acta, 2018, 271: 666-676.
[163] DENG H, HOSOYA K, IMANISHI Y, et al. Electro-chemical mechanical polishing of single-crystal SiC using CeO2 slurry[J]. Electrochemistry Communications, 2015, 52: 5-8.
[164] ZHANG Y, CHEN H, LIU D, et al. High efficient polishing of sliced 4H-SiC (0001) by molten KOH etching[J]. Applied Surface Science, 2020, 525: 146532.
[165] GAUTIER G, BISCARRAT J, VALENTE D, et al. Systematic study of anodic etching of highly doped n-type 4H-SiC in various HF based electrolytes[J]. Journal of the Electrochemical Society, 2013, 160(9): D372-D379.
[166] DENG H, YAMAMURA K. Atomic-scale flattening mechanism of 4H-SiC (0001) in plasma assisted polishing[J]. CIRP Annals, 2013, 62(1): 575-578.
[167] ZANGOOIE S, WOOLLAM J A, ARWIN H. Self-organization in porous 6H-SiC[J]. Journal of Materials Research, 2011, 15(9): 1860-1863.
[168] SYDOW U, SEMPF K, HERRMANN M, et al. Electrochemical corrosion of liquid phase sintered silicon carbide ceramics[J]. Materials and Corrosion, 2013, 64(3): 218-224.
[169] VAN DORP D H, KELLY J J. Photoelectrochemistry of 4H-SiC in KOH solutions[J]. Journal of Electroanalytical Chemistry, 2007, 599(2): 260-266.
[170] SCHNEIDER M, SCHUBERT N, MICHAELIS A. Anodic dissolution of solid-state sintered silicon carbide at high current densities[J]. Materials and Corrosion, 2017, 68(6): 645-650.
[171] CUI Y, HU X, XIE X, et al. Threading dislocation classification for 4H-SiC substrates using the KOH etching method[J]. CrystEngComm, 2018, 20(7): 978-982.
[172] SABAHI N, RAZFAR M R. Investigating the effect of mixed alkaline electrolyte (NaOH+KOH) on the improvement of machining efficiency in 2D electrochemical discharge machining (ECDM)[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(1): 643-657.
[173] SINGH M, SINGH S, KUMAR S. Environmental aspects of various electrolytes used in electrochemical discharge machining process[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(8): 395.
[174] MARTINU L, ZABEIDA O, KLEMBERG-SAPIEHA J E. Chapter 9-Plasma-enhanced chemical vapor deposition of functional coatings[M]//MARTIN P M. Handbook of Deposition Technologies for Films and Coatings (Third Edition). Boston; William Andrew Publishing. 2010: 392-465.
[175] KUMAGAWA M, KUWABARA H, YAMADA S. Hydrogen etching of silicon carbide[J]. Japanese Journal of Applied Physics, 1969, 8(4): 421-428.
[176] LOHRENGEL M M. Thin anodic oxide layers on aluminium and other valve metals: high field regime[J]. Materials Science and Engineering: R: Reports, 1993, 11(6): 243-294.
[177] SANTOS I C M S, LOUREIRO L H, SILVA M F P, et al. Studies on the hydrothermal synthesis of niobium oxides[J]. Polyhedron, 2002, 21(20): 2009-2015.
[178] BLANCO M V, ABDALA P M, GENNARI F, et al. Dynamics of phase transitions in Na2TiO3 and its possible utilization as a CO2 sorbent: a critical analysis[J]. Reaction Chemistry & Engineering, 2021, 6(10): 1974-1982.
[179] TIMOSHENKO A, OPARA B, MAGUROVA J. Formation of protective wear resistant oxide coatings on aluminum alloys by the microplasma methods from aqueous electrolyte solutions[J]. Proc international corrosion congress, 1993, 1: 280-293.
[180] HUSSEIN R O, NIE X, NORTHWOOD D O, et al. Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process[J]. Journal of Physics D: Applied Physics, 2010, 43(10): 105203.
[181] TROUGHTON S C, NOMINé A, DEAN J, et al. Effect of individual discharge cascades on the microstructure of plasma electrolytic oxidation coatings[J]. Applied Surface Science, 2016, 389: 260-269.
[182] NOMINé A, TROUGHTON S C, NOMINé A V, et al. High speed video evidence for localised discharge cascades during plasma electrolytic oxidation[J]. Surface and Coatings Technology, 2015, 269: 125-130.
[183] ZHANG X, ALIASGHARI S, NĚMCOVá A, et al. X-ray computed tomographic investigation of the porosity and morphology of plasma electrolytic oxidation coatings[J]. ACS Applied Materials & Interfaces, 2016, 8(13): 8801-8810.
[184] WANG R-Q, WU Y-K, WU G-R, et al. An investigation about the evolution of microstructure and composition difference between two interfaces of plasma electrolytic oxidation coatings on Al[J]. Journal of Alloys and Compounds, 2018, 753: 272-281.
[185] ZHANG Y, XU Z, XING J, et al. Enhanced machining performance of micro holes using electrochemical discharge machining with super-high-pressure interior flushing[J]. International Journal of Electrochemical Science, 2015, 10(10): 8465-8483.
[186] SINGH T, DVIVEDI A. Developments in electrochemical discharge machining: A review on electrochemical discharge machining, process variants and their hybrid methods[J]. International Journal of Machine Tools and Manufacture, 2016, 105: 1-13.
[187] RAJPUT V, GOUD M, SURI N M. Review-Electrochemical discharge machining: Gas film electrochemical aspects, stability parameters, and research work[J]. Journal of The Electrochemical Society, 2021, 168(1): 013503.
[188] BIAN J, MA B, LIU X, et al. Experimental study of tool wear in electrochemical discharge machining[J]. Applied Sciences, 2020, 10: 5039.
[189] KASEEM M, FATIMAH S, NASHRAH N, et al. Recent progress in surface modification of metals coated by plasma electrolytic oxidation: Principle, structure, and performance[J]. Progress in Materials Science, 2021, 117: 100735.
[190] WU G, YIN Y, ZHANG S, et al. Effect of laser texturing on the antiwear properties of micro-arc oxidation coating formed on Ti-6Al-4V[J]. Surface and Coatings Technology, 2023, 453: 129114.
[191] HU T, ZHANG Y, HU L. Tribological investigation of MoS2 coatings deposited on the laser textured surface[J]. Wear, 2012, 278-279: 77-82.
[192] XIA L, HAN J, DOMBLESKY J P, et al. Study of scanning micro-arc oxidation and coating development[J]. Journal of Materials Engineering and Performance, 2017, 26(11): 5323-5332.
[193] JIANG B L, WANG Y M. 5 - Plasma electrolytic oxidation treatment of aluminium and titanium alloys[M]//DONG H. Surface Engineering of Light Alloys. Woodhead Publishing. 2010: 110-154.
[194] LV P X, CHI G X, WEI D B, et al. Design of scanning micro-arc oxidation forming ceramic coatings on 2024 aluminium alloy[J]. Advanced Materials Research, 2011, 189-193: 1296-1300.
[195] XIN S, SONG L, ZHAO R, et al. Influence of cathodic current on composition, structure and properties of Al2O3 coatings on aluminum alloy prepared by micro-arc oxidation process[J]. Thin Solid Films, 2006, 515(1): 326-332.
[196] LI Q, LIANG J, LIU B, et al. Effects of cathodic voltages on structure and wear resistance of plasma electrolytic oxidation coatings formed on aluminium alloy[J]. Applied Surface Science, 2014, 297: 176-181.
[197] WANG J-H, DU M-H, HAN F-Z, et al. Effects of the ratio of anodic and cathodic currents on the characteristics of micro-arc oxidation ceramic coatings on Al alloys[J]. Applied Surface Science, 2014, 292: 658-664.
[198] ALIOFKHAZRAEI M, MACDONALD D D, MATYKINA E, et al. Review of plasma electrolytic oxidation of titanium substrates: Mechanism, properties, applications and limitations[J]. Applied Surface Science Advances, 2021, 5: 100121.
[199] 王树棋, 王亚明, 邹永纯, 等. 微弧氧化涂层微纳米孔调控及功能化应用研究进展[J]. 表面技术, 2021, 50(6): 1-22.
[200] 董凯辉, 宋影伟, 韩恩厚. 钛合金耐磨微弧氧化制备技术的研究进展[J]. 表面技术, 2021, 50(7): 57-65.
[201] WALSH F C, LOW C T J, WOOD R J K, et al. Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys[J]. Transactions of the IMF, 2009, 87(3): 122-135.
[202] MORTAZAVI G, JIANG J, MELETIS E I. Investigation of the plasma electrolytic oxidation mechanism of titanium[J]. Applied Surface Science, 2019, 488: 370-382.
[203] TIMOSHENKO A V, MAGUROVA Y V. Application of oxide coatings to metals in electrolyte solutions by microplasma methods[J]. Revista de metalurgia, 2000, 36(5): 323-330.
[204] MARTIN J, NOMINé A, BROCHARD F, et al. Delay in micro-discharges appearance during PEO of Al: Evidence of a mechanism of charge accumulation at the electrolyte/oxide interface[J]. Applied Surface Science, 2017, 410: 29-41.
[205] QIU T, TAN L, ZHAI D, et al. Correlation between plasma electrolytic oxidation coating on Ti6Al4V alloy and cathode current[J]. Metallurgical and Materials Transactions A, 2023, 54(1): 333-345.
[206] ZHAO Y, ZHAO C, WANG S, et al. Selective and localized embrittlement of metal by cathodic hydrogenation utilizing electrochemical jet[J]. Precision Engineering, 2020, 65: 259-268.
[207] LV G, GU W, CHEN H, et al. Characteristic of ceramic coatings on aluminum by plasma electrolytic oxidation in silicate and phosphate electrolyte[J]. Applied Surface Science, 2006, 253(5): 2947-2952.
[208] XU G, SHEN X. Fabrication of SiO2 nanoparticles incorporated coating onto titanium substrates by the micro arc oxidation to improve the wear resistance[J]. Surface and Coatings Technology, 2019, 364: 180-186.
修改评论