中文版 | English
题名

First-Principles Study on Magnetism and its Manipulation in Two-Dimensional Magnetic Materials

其他题名
二维磁性材料磁性及其调控的第一性原理研究
姓名
姓名拼音
ZHU Haiyan
学号
11930944
学位类型
博士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
黄丽
导师单位
物理系
论文答辩日期
2023-11-19
论文提交日期
2023-12-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

Since the first experimental verification in 2017, two-dimensional (2D) van der Waals (vdW) magnetic materials have emerged as a research hotspot in the field of spintronics. These materials are promising for use in magnetic tunnel junctions, spin tunneling field-effect transistors, and spin valves, yet the diversity of 2D magnetic materials currently available is relatively limited. Challenges such as weak magnetic anisotropy and low Curie temperatures ( 𝑇c) impede their wider utility. Thus, effectively modulating their magnetic properties is essential for expanding their application fields. Based on the principle of magneto-electric coupling, applying electric field has been proven as an effective approach to control magnetism. Constructing 2D vdW ferromagnetic (FM)/ferroelectric heterostructures (HSs) offers a more diverse platform and addresses the issue of volatility in electric field control. However, the underlying physical mechanism governing the control of 2D magnetic materials by ferroelectric substrates is not fully understood. Meanwhile, the complex magnetic interactions and phase transitions in 2D magnetic materials require further in-depth study. In this dissertation, the magnetic modulation of monolayer (ML) CrX3 (X = I, Br, Cl) and 1T-CrTe2, as influenced by vdW substrate, strain, and electronic correlation, is investigated using first-principles methods based on density functional theory. Additionally, the significance of biquadratic exchange interactions (BQEI) and Kitaev interactions in ML 1T-CrTe2, as well as the dependency of magnetism on stacking orders in bilayer (BL) 1T-CrTe2 are explored. Specific findings include: A series of novel HSs by stacking the well-known 2D magnetic materials CrX3 with the polar vdW material AlN are created. These structures effectively enhance the 𝑇c of CrX3 (~10 K) and realize the tunability of their magnetocrystalline anisotropy (MCA) by flipping the polarization direction of AlN. Moreover, CrX3 undergoes a transition from semiconductor to semimetal. A general rule is proposed to guide the selection of suitable substrates to enhance perpendicular magnetic anisotropy in the CrX3 system, which has significant implications for the design principles of interface-based magnetic modulation. Despite various control methods that can enhance the transition temperature of magnetic materials, many 2D magnetic materials still exhibit 𝑇c far below room temperature, significantly limiting their applications. 1T-CrTe2, which displays FM behavior at nearly room temperature (~310 K), has attracted significant interests recently. To address the controversy surrounding the magnetic properties of 1T-CrTe2 at 2D limits, this study thoroughly investigates the intricate interplay among magnetic interactions, strain, and electronic correlation within this material. Through energy simulations based on spin Hamiltonians, it is found that BQEI plays a crucial role in stabilizing collinear magnetic configurations. Meanwhile, the interplay between Kitaev interaction and single ion anisotropy can help understand the experimentally observed canting spin orientation in ML 1T-CrTe2. Monte Carlo simulations reveal that ML 1T-CrTe2 undergoes a series of complex phase transitions as the magnetic frustration strength changes. The possible noncollinear phases due to magnetic frustration are suppressed by BQEI in ML 1T-CrTe2. However, nonzero Dzyaloshinskii-Moriya interaction is induced in BL 1T-CrTe2 due to the inversion symmetry breaking in each sublayer, leading to the topological nontrivial magnetic merons (and antimerons) in AA stacking BL 1T-CrTe2. Additionally, different interlayer stacking orders alter the magnetic exchange coupling in 1T-CrTe2, further impacting their magnetic ground state. These findings fill a research gap in the magnetic control of BL 1T-CrTe2 and provide a theoretical groundwork for further investigating its complex magnetic behavior. This research represented by 2D magnetic materials CrX3 and 1T-CrTe2 holds significant implications in exploring the microscopic mechanisms of magnetic control and opens new possibilities for the application of 2D magnetic materials in spintronic devices.

其他摘要

2017年首次实验验证以来,二维范德华磁性材料已成为自旋电子学领域的研究热点。尽管在磁隧道结、自旋隧道场效应晶体管及自旋阀等器件中具备广泛的应用潜力,但当前可用的二维磁性材料种类仍相对有限,并存在磁各向异性弱以及居里温度低的特点。这些因素都制约了二维磁性材料在实际中的应用。因此,为了扩大这些材料的应用领域,迫切需要有效地调控其磁性性质。

基于磁电耦合的原理,通过电场诱导磁性有序已经被证明是一种有效的磁性调控途径。构建二维范德华铁磁/铁电异质结提供了更为多样化的平台,并且可以解决电场调控中易失性的问题。然而,铁电衬底对于二维磁性材料调控的物理机制尚不完全明确。与此同时,二维磁性材料内部复杂的磁性相互作用和相变过程仍需要深入研究。

本文采用基于密度泛函理论的第一性原理计算方法,研究了范德华异质结、应力以及电子关联作用对单层CrX3X = I, Br, Cl)和1T-CrTe2的磁性调控。此外,还探究了biquadratic交换相互作用和Kitaev相互作用在单层1T-CrTe2中的重要性,以及堆垛方式对双层1T-CrTe2的磁性调控。具体如下:

通过将备受瞩目的二维磁性材料CrX3与极性范德华材料AlN堆叠,构造出一种全新的异质结构。这一方案显著提高了CrX3的居里温度,同时通过翻转AlN的极化方向成功地实现了对CrX3磁晶各向异性的调控。此外,CrX3的电子结构也呈现出从半导体到半金属的转变。在此基础上,提出了一个可用于指导如何选择适当的衬底以增强CrX3体系中的垂直磁各向异性的通用规则。这一成果为解释界面相互作用对磁性的调制提供了坚实的理论支持。

然而,尽管存在多种调控手段可以提升磁性材料的转变温度,众多二维磁性材料的转变温度依然远低于室温,显著制约了其在器件上的应用。表现出近室温铁磁性的1T-CrTe2因而受到关注。针对1T-CrTe2在低维极限下磁性性质存在的争议,深入研究了该体系中磁性相互作用与应变和电子关联之间的复杂依赖关系,并从多个角度解释了其中的物理机制。通过基于自旋哈密顿量对能量的模拟,发现在该体系中,biquadratic交换相互作用在稳定共线磁构型方面起到至关重要的作用。通过分析Kitaev相互作用与单粒子各向异性的相互竞争,解释了实验上在单层1T-CrTe2中观测到的倾斜的易磁化轴方向。这一研究不仅解答了之前理论计算和实验中存在的诸多争议,为深入认识这一极具潜力的室温铁磁材料提供了参考,也为实验研究者提供了可靠的磁性调控途径。

通过蒙特卡洛模拟发现,单层1T-CrTe2在磁阻挫强度发生变化时,其磁性会经历一系列复杂的相转变。单层1T-CrTe2中由于磁阻挫可能导致的非共线磁构型被biquadratic交换相互作用抑制。而在双层1T-CrTe2中,由于空间反演对称性破缺导致了非零的Dzyaloshinskii-Moriya相互作用,最终在AA堆垛方式中稳定了拓扑非平庸的磁半子构型。同时,不同的层间堆垛方式改变了1T-CrTe2的磁交换耦合。这一发现填补了关于双层1T-CrTe2磁性调控的研究空白,为深入研究该体系中更为复杂的磁性行为提供了理论依据。

上述以新兴二维磁性材料CrX31T-CrTe2为代表的研究,对于探索磁性调控的微观物理机制具有重要的意义,为二维磁性材料在自旋电子学器件的应用开辟了新的可能性。

关键词
其他关键词
语种
英语
培养类别
独立培养
入学年份
2019
学位授予年份
2023-12
参考文献列表

[1] K. S. NOVOSELOV, A. K. GEIM, S. V. MOROZOV, et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004, 306: 666-669.
[2] S. V. MOROZOV, K. S. NOVOSELOV, M. I. KATSNELSON, et al. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer[J]. Phys. Rev. Lett., 2008, 100: 016602.
[3] M. J. ALLEN, V. C. TUNG and R. B. KANER. Honeycomb Carbon: A Review of Graphene[J]. Chem. Rev, 2010, 110: 132-145.
[4] X. YU, H. CHENG, M. ZHANG, et al. Graphene-based smart materials[J]. Nat. Rev. Mater, 2017, 2: 17046.
[5] B. AïSSA, N. K. MEMON, A. ALI, et al. Recent Progress in the Growth and Applications of Graphene as a Smart Material: A Review[J]. Front. Mater., 2015, 2.
[6] K. WATANABE, T. TANIGUCHI and H. KANDA. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal[J]. Nat. Mater., 2004, 3: 404-409.
[7] K. ZHANG, Y. FENG, F. WANG, et al. Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications[J]. J. Mater. Chem. C, 2017, 5: 11992-12022.
[8] B. LIU and K. ZHOU. Recent progress on graphene-analogous 2D nanomaterials: Properties, modeling and applications[J]. Prog. Mater. Sci, 2019, 100: 99-169.
[9] J. WANG, F. MA, W. LIANG, et al. Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures[J]. Mater. Today Phys, 2017, 2: 6-34.
[10] H. LIU, A. T. NEAL, Z. ZHU, et al. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility[J]. ACS Nano, 2014, 8: 4033-4041.
[11] G. LONG, D. MARYENKO, J. SHEN, et al. Achieving Ultrahigh Carrier Mobility in Two-Dimensional Hole Gas of Black Phosphorus[J]. Nano Lett, 2016, 16: 7768-7773.
[12] S. MANZELI, D. OVCHINNIKOV, D. PASQUIER, et al. 2D transition metal dichalcogenides[J]. Nat. Rev. Mater, 2017, 2: 17033.
[13] K. S. NOVOSELOV, A. MISHCHENKO, A. CARVALHO, et al. 2D materials and van der Waals heterostructures[J]. Science, 2016, 353: aac9439.
[14] M. NAGUIB, M. KURTOGLU, V. PRESSER, et al. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2[J]. Adv. Mater., 2011, 23: 4248-4253.
[15] J. ZHANG, N. KONG, S. UZUN, et al. Scalable Manufacturing of Free-Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity[J]. Adv. Mater., 2020, 32: 2001093.
[16] K. LI, M. LIANG, H. WANG, et al. 3D MXene Architectures for Efficient Energy Storage and Conversion[J]. Adv. Funct. Mater., 2020, 30: 2000842.
[17] Z. FAN, X. HUANG, C. TAN, et al. Thin metal nanostructures: synthesis, properties and applications[J]. Chem. Sci, 2015, 6: 95-111.
[18] X. HUANG, S. LI, Y. HUANG, et al. Synthesis of hexagonal close-packed gold nanostructures[J]. Nat Commun, 2011, 2: 292.
[19] C. LAN, Z. ZHOU, R. WEI, et al. Two-dimensional perovskite materials: From synthesis to energy-related applications[J]. Mater. Today Energy, 2019, 11: 61-82.
[20] E. SHI, Y. GAO, B. P. FINKENAUER, et al. Two-dimensional halide perovskite nanomaterials and heterostructures[J]. Chem. Soc. Rev., 2018, 47: 6046-6072.
[21] V. GOYAL, D. TEWELDEBRHAN and A. A. BALANDIN. Mechanically-exfoliated stacks of thin films of Bi­2Te3 topological insulators with enhanced thermoelectric performance[J]. Appl. Phys. Lett., 2010, 97: 133117.
[22] W. DANG, H. PENG, H. LI, et al. Epitaxial Heterostructures of Ultrathin Topological Insulator Nanoplate and Graphene[J]. Nano Lett, 2010, 10: 2870-2876.
[23] H. S. QUAH, L. T. NG, B. DONNADIEU, et al. Molecular Scissoring: Facile 3D to 2D Conversion of Lanthanide Metal Organic Frameworks Via Solvent Exfoliation[J]. Inorg. Chem, 2016, 55: 10851-10854.
[24] X. WANG, C. CHI, K. ZHANG, et al. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation[J]. Nat Commun, 2017, 8: 14460.
[25] H.-Y. YE, W.-Q. LIAO, C.-L. HU, et al. Bandgap Engineering of Lead-Halide Perovskite-Type Ferroelectrics[J]. Adv. Mater., 2016, 28: 2579-2586.
[26] Y. GAO. First-principles Investigations of Low Dimensional Materials as Condensed Matter Quantum Simulators[D]. 香港: 香港科技大学, 2021.
[27] N. D. MERMIN and H. WAGNER. Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models[J]. Phys. Rev. Lett., 1966, 17: 1307-1307.
[28] O. V. YAZYEV and L. HELM. Defect-induced magnetism in graphene[J]. Phys. Rev. B, 2007, 75: 125408.
[29] C. GONG and X. ZHANG. Two-dimensional magnetic crystals and emergent heterostructure devices[J]. Science, 2019, 363: eaav4450.
[30] J. JUNG, T. PEREG-BARNEA and A. H. MACDONALD. Theory of Interedge Superexchange in Zigzag Edge Magnetism[J]. Phys Rev Lett, 2009, 102: 227205.
[31] Y.-W. SON, M. L. COHEN and S. G. LOUIE. Half-metallic graphene nanoribbons[J]. Nature, 2006, 444: 347-349.
[32] A. J. M. GIESBERS, K. UHLíŘOVá, M. KONEČNý, et al. Interface-Induced Room-Temperature Ferromagnetism in Hydrogenated Epitaxial Graphene[J]. Phys. Rev. Lett., 2013, 111: 166101.
[33] W. HAN, R. K. KAWAKAMI, M. GMITRA, et al. Graphene spintronics[J]. Nature Nanotechnology, 2014, 9: 794-807.
[34] B. HUANG, G. CLARK, E. NAVARRO-MORATALLA, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit[J]. Nature, 2017, 546: 270-273.
[35] C. GONG, L. LI, Z. LI, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals[J]. Nature, 2017, 546: 265-269.
[36] L. CHEN, J.-H. CHUNG, T. CHEN, et al. Magnetic anisotropy in ferromagnetic CrI3[J]. Phys. Rev. B, 2020, 101: 134418.
[37] N. MOUNET, M. GIBERTINI, P. SCHWALLER, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds[J]. Nature Nanotech, 2018, 13: 246-252.
[38] Z. ZHANG, J. A.-O. X. SHANG, C. JIANG, et al. Direct Photoluminescence Probing of Ferromagnetism in Monolayer Two-Dimensional CrBr3[J]. Nano Lett, 2019, 19: 3138-3142.
[39] A. BEDOYA-PINTO, J.-R. JI, A. K. PANDEYA, et al. Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer[J]. Science, 2021, 374: 616-620.
[40] J. SUN, X. ZHONG, W. CUI, et al. The intrinsic magnetism, quantum anomalous Hall effect and Curie temperature in 2D transition metal trihalides[J]. Phys. Chem. Chem. Phys., 2020, 22: 2429-2436.
[41] M. AN, Y. ZHANG, J. CHEN, et al. Tuning Magnetism in Layered Magnet VI3: A Theoretical Study[J]. J. Phys. Chem. C, 2019, 123: 30545-30550.
[42] S. TIAN, J.-F. ZHANG, C. LI, et al. Ferromagnetic van der Waals Crystal VI3[J]. J. Am. Chem. Soc., 2019, 141: 5326-5333.
[43] P. DOLEŽAL, M. KRATOCHVíLOVá, V. HOLý, et al. Crystal structures and phase transitions of the van der Waals ferromagnet VI3[J]. Phys Rev Materials, 2019, 3: 121401.
[44] E. GATI, Y. INAGAKI, T. KONG, et al. Multiple ferromagnetic transitions and structural distortion in the van der Waals ferromagnet VI3 at ambient and finite pressures[J]. Phys Rev B, 2019, 100: 094408.
[45] Y.-P. WANG and M.-Q. LONG. Electronic and magnetic properties of van der Waals ferromagnetic semiconductor VI3[J]. Phys Rev B, 2020, 101: 024411.
[46] L. D. CASTO, A. J. CLUNE, M. O. YOKOSUK, et al. Strong spin-lattice coupling in CrSiTe3[J]. APL Mater, 2015, 3: 041515.
[47] H. L. ZHUANG, Y. XIE, P. R. C. KENT, et al. Computational discovery of ferromagnetic semiconducting single-layer CrSnTe3[J]. Phys. Rev. B, 2015, 92: 035407.
[48] Y. DENG, Y. YU, Y. SONG, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2[J]. Nature, 2018, 563: 94-99.
[49] M. BONILLA, S. KOLEKAR, Y. MA, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates[J]. Nature Nanotech, 2018, 13: 289-293.
[50] D. J. O’HARA, T. ZHU, A. H. TROUT, et al. Room Temperature Intrinsic Ferromagnetism in Epitaxial Manganese Selenide Films in the Monolayer Limit[J]. Nano Lett, 2018, 18: 3125-3131.
[51] J. YANG, W. WANG, Y. LIU, et al. Thickness dependence of the charge-density-wave transition temperature in VSe2[J]. Appl. Phys. Lett., 2014, 105: 063109.
[52] P. CHEN, W. W. PAI, Y. H. CHAN, et al. Unique Gap Structure and Symmetry of the Charge Density Wave in Single-Layer VSe2[J]. Phys. Rev. Lett., 2018, 121: 196402.
[53] A. O. FUMEGA, M. GOBBI, P. DREHER, et al. Absence of Ferromagnetism in VSe2 Caused by Its Charge Density Wave Phase[J]. J. Phys. Chem. C, 2019, 123: 27802-27810.
[54] J. LI, Y. LI, S. DU, et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials[J]. Sci. Adv., 5: eaaw5685.
[55] Y. YUAN, X. WANG, H. LI, et al. Electronic States and Magnetic Response of MnBi2Te4 by Scanning Tunneling Microscopy and Spectroscopy[J]. Nano Lett, 2020, 20: 3271-3277.
[56] M. M. OTROKOV, I. I. KLIMOVSKIKH, H. BENTMANN, et al. Prediction and observation of an antiferromagnetic topological insulator[J]. Nature, 2019, 576: 416-422.
[57] C. WANG, X. ZHOU, L. ZHOU, et al. A family of high-temperature ferromagnetic monolayers with locked spin-dichroism-mobility anisotropy: MnNX and CrCX (X = Cl, Br, I; C = S, Se, Te)[J]. Science Bulletin, 2019, 64: 293-300.
[58] N. MIAO, B. XU, L. ZHU, et al. 2D Intrinsic Ferromagnets from van der Waals Antiferromagnets[J]. J. Am. Chem. Soc., 2018, 140: 2417-2420.
[59] S. SAXENA and R. MEHRA. Low-power and high-speed 13T SRAM cell using FinFETs[J]. IET Circuits Devices Syst., 2017, 11: 250-255.
[60] M. N. BAIBICH, J. M. BROTO, A. FERT, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices[J]. Phys. Rev. Lett., 1988, 61: 2472-2475.
[61] G. BINASCH, P. GRüNBERG, F. SAURENBACH, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange[J]. Phys. Rev. B, 1989, 39: 4828-4830.
[62] A. HIROHATA, K. YAMADA, Y. NAKATANI, et al. Review on spintronics: Principles and device applications[J]. J. Magn. Magn. Mater, 2020, 509: 166711.
[63] S. DATTA and B. DAS. Electronic analog of the electro-optic modulator[J]. Appl. Phys. Lett., 1990, 56: 665-667.
[64] I. DZYALOSHINSKY. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics[J]. J Phys Chem Solids, 1958, 4: 241-255.
[65] T. MORIYA. Anisotropic Superexchange Interaction and Weak Ferromagnetism[J]. Physical Review, 1960, 120: 91-98.
[66] Y. CAO, Z. HUANG, Y. YIN, et al. Overview and advances in a layered chiral helimagnet Cr1/3NbS2[J]. Materials Today Advances, 2020, 7: 100080.
[67] P. W. ANDERSON. Antiferromagnetism. Theory of Superexchange Interaction[J]. Phys. Rev., 1950, 79: 350-356.
[68] J. B. GOODENOUGH. Theory of the Role of Covalence in the Perovskite-Type Manganites [La, M(II)]MnO3[J]. Phys. Rev., 1955, 100: 564-573.
[69] J. KANAMORI. Superexchange interaction and symmetry properties of electron orbitals[J]. J Phys Chem Solids, 1959, 10: 87-98.
[70] B. V. KARPENKO, L. D. FAL’KOVSKAYA and A. V. KUZNETSOV. Magnetic structure and double exchange in the La1-xCaxMnO3[J]. Phys. Metals Metallogr., 2008, 105: 443-452.
[71] K. YOSIDA. Magnetic Properties of Cu-Mn Alloys[J]. Phys. Rev., 1957, 106: 893-898.
[72] T. KASUYA. A Theory of Metallic Ferro- and Antiferromagnetism on Zener's Model[J]. Prog. theor. phys., 1956, 16: 45-57.
[73] C. ZENER. Interaction Between the d Shells in the Transition Metals[J]. Phys. Rev., 1951, 81: 440-444.
[74] M. FIEBIG. Revival of the magnetoelectric effect[J]. J. Phys. D: Appl. Phys., 2005, 38: R123.
[75] S. JIANG, J. SHAN and K. F. MAK. Electric-field switching of two-dimensional van der Waals magnets[J]. Nat Mater, 2018, 17: 406-410.
[76] Y. NIU, H. LV, X. WU, et al. Electric-Field Control of Spin Polarization above Room Temperature in Single-Layer A-Type Antiferromagnetic Semiconductor[J]. J. Phys. Chem. Lett., 2023, 14: 4042-4049.
[77] W. DANG, M. ZHU, Z. ZHU, et al. Electric-Field-Tunable Spin Polarization and Carrier-Transport Anisotropy in an A-Type Antiferromagnetic van der Waals Bilayer[J]. Phys. Rev. Appl., 2022, 18: 064086.
[78] H. LV, Y. NIU, X. WU, et al. Electric-Field Tunable Magnetism in van der Waals Bilayers with A-Type Antiferromagnetic Order: Unipolar versus Bipolar Magnetic Semiconductor[J]. Nano Lett, 2021, 21: 7050-7055.
[79] Q. CHEN, X. ZHENG, P. JIANG, et al. Electric field induced tunable half-metallicity in an A-type antiferromagnetic bilayer LaBr2[J]. Phys. Rev. B, 2022, 106: 245423.
[80] S. JIANG, L. LI, Z. WANG, et al. Controlling magnetism in 2D CrI3 by electrostatic doping[J]. Nat. Nanotechnol., 2018, 13: 549-553.
[81] B. HUANG, G. CLARK, D. R. KLEIN, et al. Electrical control of 2D magnetism in bilayer CrI3[J]. Nat. Nanotechnol., 2018, 13: 544.
[82] Z. WANG, T. ZHANG, M. DING, et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor[J]. Nature Nanotech, 2018, 13: 554-559.
[83] K. F. MAK, J. SHAN and D. C. RALPH. Probing and controlling magnetic states in 2D layered magnetic materials[J]. Nat Rev Phys, 2019, 1: 646-661.
[84] Y. LU, H. WANG, L. WANG, et al. Mechanism of carrier doping induced magnetic phase transitions in two-dimensional materials[J]. Phys. Rev. B, 2022, 106: 205403.
[85] Y. HAN, S. SUN, S. QI, et al. Interlayer ferromagnetism and high-temperature quantum anomalous Hall effect in p-doped MnBi2Te4 multilayers[J]. Phys. Rev. B, 2021, 103: 245403.
[86] Y. TIAN, W. GAO, E. A. HENRIKSEN, et al. Optically Driven Magnetic Phase Transition of Monolayer RuCl3[J]. Nano Lett, 2019, 19: 7673-7680.
[87] Y. ZHU, Y. GAO, X. JIANG, et al. Effects of vacancy defects on the magnetic properties of vanadium diselenide monolayers: a first principle investigation[J]. Phys. Chem. Chem. Phys., 2022, 24: 17615-17622.
[88] Y. ZHAO, L. LIN, Q. ZHOU, et al. Surface Vacancy-Induced Switchable Electric Polarization and Enhanced Ferromagnetism in Monolayer Metal Trihalides[J]. Nano Lett, 2018, 18: 2943-2949.
[89] C. HUANG, J. FENG, F. WU, et al. Toward Intrinsic Room-Temperature Ferromagnetism in Two-Dimensional Semiconductors[J]. J. Am. Chem. Soc., 2018, 140: 11519-11525.
[90] X. WANG, H. GUO, H. CHEN, et al. Intrinsic ferromagnetic half-metal: Non-equivalent alloying compounds CrMnI6 monolayer[J]. Appl. Surf. Sci., 2023, 623: 157084.
[91] J. GUAN, C. HUANG, K. DENG, et al. First-Principles Prediction of Room-Temperature Ferromagnetic Semiconductor MnS2 via Isovalent Alloying[J]. J. Phys. Chem. C, 2019, 123: 10114-10119.
[92] S. I. VISHKAYI, Z. TORBATIAN, A. QAIUMZADEH, et al. Strain and electric-field control of spin-spin interactions in monolayer CrI3[J]. Phys. Rev. Mater., 2020, 4: 094004.
[93] A. M. LEóN, J. W. GONZáLEZ, J. MEJíA-LóPEZ, et al. Strain-induced phase transition in CrI3 bilayers[J]. 2D Mater., 2020, 7: 035008.
[94] J. CENKER, S. SIVAKUMAR, K. XIE, et al. Reversible strain-induced magnetic phase transition in a van der Waals magnet[J]. Nat. Nanotechnol., 2022, 17: 256-261.
[95] Y. MA, Y. DAI, M. GUO, et al. Evidence of the Existence of Magnetism in Pristine VX2 Monolayers (X = S, Se) and Their Strain-Induced Tunable Magnetic Properties[J]. ACS Nano, 2012, 6: 1695-1701.
[96] Y. ZHOU, Z. WANG, P. YANG, et al. Tensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2[J]. ACS Nano, 2012, 6: 9727-9736.
[97] I. KHAN and J. HONG. High Curie temperature and strain-induced semiconductor-metal transition with spin reorientation transition in 2D CrPbTe3 monolayer[J]. Nanotechnology, 2020, 31: 195704.
[98] X.-J. DONG, J.-Y. YOU, B. GU, et al. Strain-Induced Room-Temperature Ferromagnetic Semiconductors with Large Anomalous Hall Conductivity in Two-Dimensional Cr2Ge2Se6[J]. Phys. Rev. Applied, 2019, 12: 014020.
[99] S. YU, H. ZHU, K. ESHUN, et al. Strain-engineering the anisotropic electrical conductance in ReS2 monolayer[J]. Appl. Phys. Lett., 2016, 108: 191901.
[100] Y. WANG, C. LOU, B. ZHAO, et al. Doping- and strain-tuned high Curie temperature half-metallicity and quantum anomalous Hall effect in monolayer NiAl2S4 with non-Dirac and Dirac states[J]. Phys. Rev. B, 2023, 107: 085416.
[101] Y. TIAN, M. J. GRAY, H. JI, et al. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal[J]. 2D Mater., 2016, 3: 025035.
[102] X. LI and J. YANG. CrXTe3 (X = Si, Ge) nanosheets: two dimensional intrinsic ferromagnetic semiconductors[J]. J. Mater. Chem. C, 2014, 2: 7071-7076.
[103] J. LI, J. FENG, P. WANG, et al. Nature of spin-lattice coupling in two-dimensional CrI3 and CrGeTe3[J]. Sci. China Phys. Mech. Astron, 2021, 64: 286811.
[104] N. SIVADAS, S. OKAMOTO, X. D. XU, et al. Stacking-Dependent Magnetism in Bilayer CrI3[J]. Nano Lett, 2018, 18: 7658-7664.
[105] W. CHEN, Z. SUN, Z. WANG, et al. Direct observation of van der Waals stacking-dependent interlayer magnetism[J]. Science, 2019, 366: 983-987.
[106] D. WANG and B. SANYAL. Systematic Study of Monolayer to Trilayer CrI3: Stacking Sequence Dependence of Electronic Structure and Magnetism[J]. J. Phys. Chem. C, 2021, 125: 18467-18473.
[107] X. ZHANG, S. C. AMBHIRE, Q. LU, et al. Giant Topological Hall Effect in van der Waals Heterostructures of CrTe2/Bi2Te3[J]. ACS Nano, 2021, 15: 15710-15719.
[108] W. SUN, W. WANG, H. LI, et al. Controlling bimerons as skyrmion analogues by ferroelectric polarization in 2D van der Waals multiferroic heterostructures[J]. Nat Commun, 2020, 11: 5930.
[109] L. WANG, Y. GA, P. LI, et al. Electrical switchable room-temperature magnetic skyrmions in multiferroic MXene[J]. Phys. Rev. B, 2023, 108: 054440.
[110] B. H. ZHANG, Y. S. HOU, Z. WANG, et al. Tuning Dzyaloshinskii-Moriya interactions in magnetic bilayers with a ferroelectric substrate[J]. Phys. Rev. B, 2021, 103: 054417.
[111] C. LIU, Z. LI, J. HU, et al. Probing the Néel-Type Antiferromagnetic Order and Coherent Magnon-Exciton Coupling in Van Der Waals VPS3[J]. Adv Mater, 2023, 35: 2300247.
[112] Z. HE, K. DOU, W. DU, et al. Multiple Topological Magnetism in van der Waals Heterostructure of MnTe2/ZrS2[J]. Nano Lett, 2023, 23: 312-318.
[113] C. GONG, E. M. KIM, Y. WANG, et al. Multiferroicity in atomic van der Waals heterostructures[J]. Nat Commun, 2019, 10: 2657.
[114] S. YANG, T. ZHANG and C. JIANG. van der Waals Magnets: Material Family, Detection and Modulation of Magnetism, and Perspective in Spintronics[J]. Adv. Sci., 2021, 8: 2002488.
[115] D. C. FREITAS, R. WEHT, A. SULPICE, et al. Ferromagnetism in layered metastable 1T-CrTe2[J]. J Phys Condens Matter, 2015, 27: 176002.
[116] X. SUN, W. LI, X. WANG, et al. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2[J]. Nano Res., 2020, 13: 3358-3363.
[117] X. ZHANG, Q. LU, W. LIU, et al. Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films[J]. Nat Commun, 2021, 12: 2492.
[118] J.-J. XIAN, C. WANG, R. LI, et al. Spin mapping of intralayer antiferromagnetism and spin-flop transition in monolayer CrTe2[J]. Nat Commun, 2022, 13: 257.
[119] X. YANG, X. ZHOU, W. FENG, et al. Tunable magneto-optical effect, anomalous Hall effect, and anomalous Nernst effect in the two-dimensional room-temperature ferromagnet 1T-CrTe2[J]. Phys. Rev. B, 2021, 103: 024436.
[120] S. LI, S.-S. WANG, B. TAI, et al. Tunable anomalous Hall transport in bulk and two-dimensional 1T-CrTe2: A first-principles study[J]. Phys. Rev. B, 2021, 103: 045114.
[121] L. WU, L. ZHOU, X. ZHOU, et al. In-plane epitaxy-strain-tuning intralayer and interlayer magnetic coupling in CrSe2 and CrTe2 monolayers and bilayers[J]. Phys. Rev. B, 2022, 106: L081401.
[122] A. OTERO FUMEGA, J. PHILLIPS and V. PARDO. Controlled Two-Dimensional Ferromagnetism in 1T-CrTe2: The Role of Charge Density Wave and Strain[J]. J. Phys. Chem. C, 2020, 124: 21047-21053.
[123] N. ABUAWWAD, M. DOS SANTOS DIAS, H. ABUSARA, et al. Noncollinear magnetism in two-dimensional CrTe2[J]. J. Phys. Condens. Matter, 2022, 34: 454001.
[124] L. BALENTS. Spin liquids in frustrated magnets[J]. Nature, 2010, 464: 199-208.
[125] D. AMOROSO, P. BARONE and S. PICOZZI. Spontaneous skyrmionic lattice from anisotropic symmetric exchange in a Ni-halide monolayer[J]. Nat Commun, 2020, 11: 5784.
[126] P. A. M. J. P. O. T. R. S. A. M. DIRAC, PHYSICAL and E. SCIENCES. Quantum Mechanics of Many-Electron Systems[J]. Proc R Soc Lond Ser A, 1929, 123: 714-733.
[127] L. H. THOMAS. The calculation of atomic fields[J]. Math. Proc. Camb. Philos. Soc., 1927, 23: 542-548.
[128] F. E. Statistical method to determine some properties of atoms[J]. Rend. Accad. Naz. Lincei, 1927, 6: 5.
[129] M. BORN and R. OPPENHEIMER. Zur Quantentheorie der Molekeln[J]. Ann. Phys., 1927, 389: 457-484.
[130] D. R. HARTREE. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods[J]. Math. Proc. Camb. Philos. Soc., 1928, 24: 89-110.
[131] V. FOCK. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems[J]. Zeitschrift für Physik, 1930, 61: 126-148.
[132] P. HOHENBERG and W. KOHN. Inhomogeneous Electron Gas[J]. Phys. Rev., 1964, 136: B864-B871.
[133] KOHN W and S. L. J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev. A, 1965, 140: A1133-A1138.
[134] SLATER and J. CLARKE. The Theory of Complex Spectra[J]. Phys. Rev., 1929, 34: 1293-1322.
[135] E. K. U. GROSS and W. KOHN. Local Density-Functional Theory of Frequency-Dependent Linear Response[J]. Phys. Rev. Lett., 1986, 57: 923-923.
[136] J. P. PERDEW and K. SCHMIDT. Jacob’s ladder of density functional approximations for the exchange-correlation energy[J]. AIP Conference Proceedings, 2001, 577: 1-20.
[137] J. P. PERDEW and W. YUE. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation[J]. Phys. Rev. B, 1986, 33: 8800-8802.
[138] K. BURKE, J. P. PERDEW and Y. WANG. Derivation of a Generalized Gradient Approximation: The PW91 Density Functional[M]. Boston, MA: Springer US, 1998.
[139] J. P. PERDEW, K. BURKE and M. ERNZERHOF. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996, 77: 3865-3868.
[140] A. D. BECKE. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys. Rev. A, 1988, 38: 3098-3100.
[141] C. LEE, W. YANG and R. G. PARR. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B, 1988, 37: 785-789.
[142] A. D. BECKE. Density‐functional thermochemistry. III. The role of exact exchange[J]. J. Chem. Phys., 1993, 98: 5648-5652.
[143] P. J. STEPHENS, F. J. DEVLIN, C. F. CHABALOWSKI, et al. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields[J]. J. Phys. Chem., 1994, 98: 11623-11627.
[144] J. HEYD, J. E. PERALTA, G. E. SCUSERIA, et al. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional[J]. J. Chem. Phys., 2005, 123: 174101.
[145] J. E. PERALTA, J. HEYD, G. E. SCUSERIA, et al. Spin-orbit splittings and energy band gaps calculated with the Heyd-Scuseria-Ernzerhof screened hybrid functional[J]. Phys. Rev. B, 2006, 74: 073101.
[146] H. J. XIANG, E. J. KAN, S.-H. WEI, et al. Predicting the spin-lattice order of frustrated systems from first principles[J]. Phys. Rev. B, 2011, 84: 224429.
[147] X. LI, H. YU, F. LOU, et al. Spin Hamiltonians in Magnets: Theories and Computations[J]. Molecules, 2021, 26: 803.
[148] H. XIANG, C. LEE, H.-J. KOO, et al. Magnetic properties and energy-mapping analysis[J]. Dalton Trans, 2013, 42: 823-853.
[149] J. LI, J. FENG, P. WANG, et al. Nature of spin-lattice coupling in two-dimensional CrI3 and CrGeTe3[J]. Science China Physics, Mechanics & Astronomy, 2021, 64: 286811.
[150] N. MARZARI and D. VANDERBILT. Maximally localized generalized Wannier functions for composite energy bands[J]. Phys. Rev. B, 1997, 56: 12847-12865.
[151] J. D. CLOIZEAUX. Energy Bands and Projection Operators in a Crystal: Analytic and Asymptotic Properties[J]. Phys. Rev., 1964, 135: A685-A697.
[152] A. A. MOSTOFI, J. R. YATES, Y.-S. LEE, et al. wannier90: A tool for obtaining maximally-localised Wannier functions[J]. Comput Phys Commun, 2008, 178: 685-699.
[153] N. METROPOLIS, A. W. ROSENBLUTH, M. N. ROSENBLUTH, et al. Equation of State Calculations by Fast Computing Machines[J]. J. Chem. Phys., 2004, 21: 1087-1092.
[154] U. WOLFF. Collective Monte Carlo Updating for Spin Systems[J]. Phys. Rev. Lett., 1989, 62: 361-364.
[155] A. M. FERRENBERG and R. H. SWENDSEN. Optimized Monte Carlo data analysis[J]. Phys. Rev. Lett., 1989, 63: 1195-1198.
[156] L. ONSAGER. Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition[J]. Phys. Rev., 1944, 65: 117-149.
[157] KURT BINDER and D. W. HEERMANN. Monte Carlo Simulation in Statistical Physics[M]. Switzerland: Springer Cham, 2019.
[158] X. CAI, T. SONG, N. P. WILSON, et al. Atomically Thin CrCl3: An In-Plane Layered Antiferromagnetic Insulator[J]. Nano Lett, 2019, 19: 3993-3998.
[159] H. H. KIM, B. YANG, S. LI, et al. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides[J]. Proc. Natl. Acad. Sci. U.S.A., 2019, 116: 11131-11136.
[160] M. A. MCGUIRE, G. CLARK, S. KC, et al. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals[J]. Phys. Rev. Mater., 2017, 1: 014001.
[161] L. WEBSTER and J.-A. YAN. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3[J]. Phys. Rev. B, 2018, 98: 144411.
[162] F. XUE, Y. S. HOU, Z. WANG, et al. Two-dimensional ferromagnetic van der Waals CrCl3 monolayer with enhanced anisotropy and Curie temperature[J]. Phys. Rev. B, 2019, 100: 224429.
[163] J. KIM, K. W. KIM, B. KIM, et al. Exploitable Magnetic Anisotropy of the Two-Dimensional Magnet CrI3[J]. Nano Lett, 2020, 20: 929-935.
[164] M. LUO and Y. H. SHEN. Exploitable Magnetic Anisotropy of Magnetic CrBr3 Monolayer[J]. JETP Lett., 2020, 112: 58-63.
[165] F. MATSUKURA, Y. TOKURA and H. OHNO. Control of magnetism by electric fields[J]. Nat. Nanotechnol., 2015, 10: 209-220.
[166] L. CIORCIARO, M. KRONER, K. WATANABE, et al. Observation of Magnetic Proximity Effect Using Resonant Optical Spectroscopy of an Electrically Tunable MoSe2/CrBr3 Heterostructure[J]. Phys. Rev. Lett., 2020, 124: 197401.
[167] A. S. AHMAD, Y. LIANG, M. DONG, et al. Pressure-driven switching of magnetism in layered CrCl3[J]. Nanoscale, 2020, 12: 22935-22944.
[168] F. XUE, Z. WANG, Y. HOU, et al. Control of magnetic properties of MnBi2Te4 using a van der Waals ferroelectric III2−VI3 film and biaxial strain[J]. Phys. Rev. B, 2020, 101: 184426.
[169] A. LI, W. ZHOU, S. PENG, et al. Half-metallicity and enhanced magnetism in monolayer T-CrTe2 by lithium adsorption[J]. Phys. Lett. A, 2021, 394.
[170] Y. ZHAO, J.-J. ZHANG, S. YUAN, et al. Nonvolatile Electrical Control and Heterointerface-Induced Half-Metallicity of 2D Ferromagnets[J]. Adv. Funct. Mater., 2019, 29: 1901420.
[171] Y. LU, R. FEI, X. LU, et al. Artificial Multiferroics and Enhanced Magnetoelectric Effect in van der Waals Heterostructures[J]. ACS Appl. Mater. Interfaces, 2020, 12: 6243-6249.
[172] G. WANG, W. QIN, S. WANG, et al. CrI3/Y2CH2 Heterointerface-Induced Stable Half-Metallicity of Two-Dimensional CrI3 Monolayer Ferromagnets[J]. ACS Appl. Mater. Interfaces, 2021, 13: 16694-16703.
[173] M. ZHAO, X. DAI and Y. TANG. Charge transfer and strain tuned antiferromagnetism in the two-dimensional CrCl3/[Mo2C(-O)]2 heterojunction[J]. Phys. Chem. Chem. Phys., 2020, 22: 20477-20481.
[174] M. YANG, H. SHU, P. TANG, et al. Intrinsic Polarization-Induced Enhanced Ferromagnetism and Self-Doped p-n Junctions in CrBr3/GaN van der Waals Heterostructures[J]. ACS Appl. Mater. Interfaces, 2021, 13: 8764-8773.
[175] Q.-F. XU, W.-Q. XIE, Z.-W. LU, et al. Theoretical study of enhanced ferromagnetism and tunable magnetic anisotropy of monolayer CrI3 by surface adsorption[J]. Phys. Lett. A, 2020, 384: 126754.
[176] W.-N. REN, K.-J. JIN, J.-S. WANG, et al. Tunable electronic structure and magnetic anisotropy in bilayer ferromagnetic semiconductor Cr2Ge2Te6[J]. Sci. Rep., 2021, 11: 2744.
[177] H. YE, X. WANG, D. BAI, et al. Significant enhancement of magnetic anisotropy and conductivity in GaN/CrI3 van der Waals heterostructures via electrostatic doping[J]. Phys. Rev. B, 2021, 104: 075433.
[178] M. HUANG, S. WANG, Z. WANG, et al. Colossal Anomalous Hall Effect in Ferromagnetic van der Waals CrTe2[J]. ACS Nano, 2021, 15: 9759-9763.
[179] H. HE, L. HUANG, M. XIAO, et al. Effect of AlN buffer layer on the microstructure and bandgap of AlN films deposited on sapphire substrates by pulsed laser deposition[J]. J. Mater. Sci. Mater. Electron., 2013, 24: 4499-4502.
[180] P. TSIPAS, S. KASSAVETIS, D. TSOUTSOU, et al. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111)[J]. Appl. Phys. Lett., 2013, 103: 251605.
[181] C. BACAKSIZ, H. SAHIN, H. D. OZAYDIN, et al. Hexagonal AlN: Dimensional-crossover-driven band-gap transition[J]. Phys. Rev. B, 2015, 91: 085430.
[182] L. LI and M. WU. Binary Compound Bilayer and Multilayer with Vertical Polarizations: Two-Dimensional Ferroelectrics, Multiferroics, and Nanogenerators[J]. ACS Nano, 2017, 11: 6382-6388.
[183] M. ZHAO, Y. XIA, X. LIU, et al. First-Principles Calculations of AlN Nanowires and Nanotubes:  Atomic Structures, Energetics, and Surface States[J]. J. Phys. Chem. B, 2006, 110: 8764-8768.
[184] W. WANG, Y. ZHENG, X. LI, et al. 2D AlN Layers Sandwiched Between Graphene and Si Substrates[J]. Adv Mater, 2019, 31: 1803448.
[185] M. BESHKOVA and R. YAKIMOVA. Properties and potential applications of two-dimensional AlN [J]. Vacuum 2020, 176: 109231.
[186] A. KONISHI, T. OGAWA, C. A. J. FISHER, et al. Mechanism of polarization switching in wurtzite-structured zinc oxide thin films[J]. Appl. Phys. Lett., 2016, 109: 102903.
[187] G. KRESSE and J. FURTHMüLLER. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996, 54: 11169-11186.
[188] P. E. BLöCHL. Projector augmented-wave method[J]. Phys. Rev. B, 1994, 50: 17953-17979.
[189] H. J. MONKHORST and J. D. PACK. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1976, 13: 5188-5192.
[190] S. GRIMME. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J. Comput. Chem., 2006, 27: 1787-1799.
[191] T. BUČKO, J. HAFNER, S. LEBèGUE, et al. Improved Description of the Structure of Molecular and Layered Crystals: Ab Initio DFT Calculations with van der Waals Corrections[J]. J. Phys. Chem. A, 2010, 114: 11814-11824.
[192] A. TOGO and I. TANAKA. First principles phonon calculations in materials science[J]. Scr. Mater., 2015, 108: 1-5.
[193] S. TOTH and B. LAKE. Linear spin wave theory for single-Q incommensurate magnetic structures[J]. J. Phys. Condens. Matter, 2015, 27: 166002.
[194] V. I. ANISIMOV, F. ARYASETIAWAN and A. I. LICHTENSTEIN. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method[J]. J. Phys. Condens. Matter, 1997, 9: 767-808.
[195] S. L. DUDAREV, G. A. BOTTON, S. Y. SAVRASOV, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study[J]. Phys. Rev. B, 1998, 57: 1505-1509.
[196] A. V. KUKLIN, M. A. VISOTIN, W. BAEK, et al. CrI3 magnetic nanotubes: A comparative DFT and DFT+U study, and strain effect[J]. Physica E Low Dimens. Syst, 2020, 123: 114205.
[197] S. W. JANG, M. Y. JEONG, H. YOON, et al. Microscopic understanding of magnetic interactions in bilayer CrI3[J]. Phys. Rev. Mater., 2019, 3: 031001.
[198] J. KANAMORI. Superexchange interaction and symmetry properties of electron orbitals[J]. J Phys Chem Solids, 1959, 10: 87-98.
[199] W.-B. ZHANG, Q. QU, P. ZHU, et al. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides[J]. J. Mater. Chem. C, 2015, 3: 12457-12468.
[200] S. TOMAR, B. GHOSH, S. MARDANYA, et al. Intrinsic magnetism in monolayer transition metal trihalides: A comparative study[J]. J. Magn. Magn. Mater, 2019, 489: 165384.
[201] M.-W. LIN, H. L. ZHUANG, J. YAN, et al. Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material[J]. J. Mater. Chem. C., 2016, 4: 315-322.
[202] A. F. MAY, S. CALDER, C. CANTONI, et al. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3-xGeTe2[J]. Phys. Rev. B, 2016, 93: 014411.
[203] W. LIU, L. HE, Y. XU, et al. Enhancing Magnetic Ordering in Cr-Doped Bi2Se3 Using High-TC Ferrimagnetic Insulator[J]. Nano Lett., 2015, 15: 764-769.
[204] S. LIU, X. YUAN, Y. ZOU, et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy[J]. NPJ 2D Mater. Appl., 2017, 1: 30.
[205] Q. LI, M. YANG, C. GONG, et al. Patterning-Induced Ferromagnetism of Fe3GeTe2 van der Waals Materials beyond Room Temperature[J]. Nano Lett, 2018, 18: 5974-5980.
[206] M. BONILLA, S. KOLEKAR, Y. MA, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates[J]. Nat. Nanotechnol, 2018, 13: 289-293.
[207] F. FABRE, A. FINCO, A. PURBAWATI, et al. Characterization of room-temperature in-plane magnetization in thin flakes of CrTe2 with a single-spin magnetometer[J]. Phys. Rev. Mater, 2021, 5: 034008.
[208] Y. SUN, P. YAN, J. NING, et al. Ferromagnetism in two-dimensional CrTe2 epitaxial films down to a few atomic layers[J]. AIP Advances, 2021, 11: 2492.
[209] L. MENG, Z. ZHOU, M. XU, et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition[J]. Nat Commun, 2021, 12: 809.
[210] H. Y. LV, W. J. LU, D. F. SHAO, et al. Strain-controlled switch between ferromagnetism and antiferromagnetism in 1T-CrX2 (X=Se,Te) monolayers[J]. Phys. Rev. B, 2015, 92: 214419.
[211] M. HUANG, Z. MA, S. WANG, et al. Significant perpendicular magnetic anisotropy in room-temperature layered ferromagnet of Cr-intercalated CrTe2[J]. 2D Materials, 2021, 8: 031003.
[212] M. A. MCGUIRE. Crystal and Magnetic Structures in Layered, Transition Metal Dihalides and Trihalides[J]. Crystals, 2017, 7: 121.
[213] A. KARTSEV, M. AUGUSTIN, R. F. L. EVANS, et al. Biquadratic exchange interactions in two-dimensional magnets[J]. NPJ Comput. Mater, 2020, 6: 150.
[214] J. Y. NI, X. Y. LI, D. AMOROSO, et al. Giant Biquadratic Exchange in 2D Magnets and Its Role in Stabilizing Ferromagnetism of NiCl2 Monolayers[J]. Phys. Rev. Lett, 2021, 127: 247204.
[215] J. P. PERDEW, K. BURKE and M. ERNZERHOF. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett, 1996, 77: 3865-3868.
[216] I. A. VLADIMIR, F. ARYASETIAWAN and A. I. LICHTENSTEIN. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method[J]. J. Phys. Condens. Matter, 1997, 9: 767.
[217] D. J. CHADI. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1977, 16: 1746-1747.
[218] G. PIZZI, V. VITALE, R. ARITA, et al. Wannier90 as a community code: new features and applications[J]. J. Phys. Condens. Matter, 2020, 32: 165902.
[219] D. J. O'HARA, T. ZHU, A. H. TROUT, et al. Room Temperature Intrinsic Ferromagnetism in Epitaxial Manganese Selenide Films in the Monolayer Limit[J]. Nano Lett, 2018, 18: 3125-3131.
[220] S. LANDRON and M.-B. LEPETIT. Importance of t2g-eg hybridization in transition metal oxides[J]. Phys. Rev. B, 2008, 77: 125106.
[221] P. GAO, X. LI and J. YANG. Thickness Dependent Magnetic Transition in Few Layer 1T Phase CrTe2[J]. J. Phys. Chem. Lett., 2021, 12: 6847-6851.
[222] L. M. SANDRATSKII. Noncollinear magnetism in itinerant-electron systems: Theory and applications[J]. Adv. Phys., 1998, 47: 91-160.
[223] J. ZHOU, X. SONG, J. CHAI, et al. Structure dependent and strain tunable magnetic ordering in ultrathin chromium telluride[J]. J. Alloys Compd, 2022, 893: 162223.
[224] J. WEN, S.-L. YU, S. LI, et al. Experimental identification of quantum spin liquids[J]. npj Quantum Mater., 2019, 4: 12.
[225] A. KITAEV. Anyons in an exactly solved model and beyond[J]. Annals of Physics, 2006, 321: 2-111.
[226] G. JACKELI and G. KHALIULLIN. Mott Insulators in the Strong Spin-Orbit Coupling Limit: From Heisenberg to a Quantum Compass and Kitaev Models[J]. Phys Rev Lett, 2009, 102: 017205.
[227] Q. LUO, S. HU, B. XI, et al. Ground-state phase diagram of an anisotropic spin-1/2 model on the triangular lattice[J]. Phys Rev B, 2017, 95: 165110.
[228] S. WANG, Z. QI, B. XI, et al. Comprehensive study of the global phase diagram of the J-K- model on a triangular lattice[J]. Phys Rev B, 2021, 103: 054410.
[229] C. HUANG, B. LIU, L. JIANG, et al. Evidence of Kitaev interaction in monolayer 1T-CrTe2[J]. Phys Rev B, 2023, 108: 094433.
[230] C. XU, J. FENG, H. XIANG, et al. Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers[J]. npj Comput Mater, 2018, 4: 57.
[231] J.-J. XIAN, C. WANG, J.-H. NIE, et al. Spin mapping of intralayer antiferromagnetism and field-induced spin reorientation in monolayer CrTe2.[J]. Nat Commun, 2022, 13: 257.
[232] H. ZHU, Y. GAO, Y. HOU, et al. Insight into strain and electronic correlation dependent magnetism in monolayer 1T-CrTe2[J]. Phys Rev B, 2023, 108: 144404.
[233] W. ZHU, C. SONG, Y. ZHOU, et al. Insight into interlayer magnetic coupling in 1T-type transition metal dichalcogenides based on the stacking of nonmagnetic atoms[J]. Phys. Rev. B, 2021, 103: 224404.
[234] P. JIANG, C. WANG, D. CHEN, et al. Stacking tunable interlayer magnetism in bilayer CrI­3[J]. Phys. Rev. B, 2019, 99: 144401.
[235] Y. J. GONG, J. H. LIN, X. L. WANG, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers[J]. Nat Mater, 2014, 13: 1135-1142.
[236] S. MüHLBAUER, B. BINZ, F. JONIETZ, et al. Skyrmion Lattice in a Chiral Magnet[J]. Science, 2009, 323: 915-919.
[237] X. Z. YU, Y. ONOSE, N. KANAZAWA, et al. Real-space observation of a two-dimensional skyrmion crystal[J]. Nature, 2010, 465: 901-904.
[238] A. N. BOGDANOV and C. PANAGOPOULOS. Physical foundations and basic properties of magnetic skyrmions[J]. Nat Rev Phys, 2020, 2: 492-498.
[239] U. K. RößLER, A. N. BOGDANOV and C. PFLEIDERER. Spontaneous skyrmion ground states in magnetic metals[J]. Nature, 2006, 442: 797-801.
[240] A. FERT, V. CROS and J. SAMPAIO. Skyrmions on the track[J]. Nat Nanotechnol, 2013, 8: 152-156.
[241] A. SOUMYANARAYANAN, M. RAJU, A. L. GONZALEZ OYARCE, et al. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers[J]. Nat Mater, 2017, 16: 898-904.
[242] L. WANG, Q. FENG, Y. KIM, et al. Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures[J]. Nat Mater, 2018, 17: 1087-1094.
[243] Y. A. KHARKOV, O. P. SUSHKOV and M. MOSTOVOY. Bound States of Skyrmions and Merons near the Lifshitz Point[J]. Phys. Rev. Lett., 2017, 119: 207201.
[244] M. AUGUSTIN, S. JENKINS, R. F. L. EVANS, et al. Properties and dynamics of meron topological spin textures in the two-dimensional magnet CrCl3[J]. Nat Commun, 2021, 12: 185.
[245] N. GAO, S. G. JE, M. Y. IM, et al. Creation and annihilation of topological meron pairs in in-plane magnetized films[J]. Nat Commun, 2019, 10: 5603.
[246] X. Z. YU, W. KOSHIBAE, Y. TOKUNAGA, et al. Transformation between meron and skyrmion topological spin textures in a chiral magnet[J]. Nature, 2018, 564: 95-98.
[247] S. K. KIM. Dynamics of bimeron skyrmions in easy-plane magnets induced by a spin supercurrent[J]. Phys. Rev. B, 2019, 99: 224406.
[248] Y. WU, S. ZHANG, J. ZHANG, et al. Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure[J]. Nat Commun, 2020, 11: 3860.
[249] Z. SHEN, C. SONG, Y. XUE, et al. Strain-tunable Dzyaloshinskii-Moriya interaction and skyrmions in two-dimensional Janus Cr2X3Y3 (X, Y = Cl, Br, I) trihalide monolayers[J]. Phys Rev B, 2022, 106: 094403.
[250] A. FERNáNDEZ-PACHECO, E. VEDMEDENKO, F. UMMELEN, et al. Symmetry-breaking interlayer Dzyaloshinskii–Moriya interactions in synthetic antiferromagnets[J]. Nat Mater, 2019, 18: 679-684.
[251] X. LU, R. FEI, L. ZHU, et al. Meron-like topological spin defects in monolayer CrCl3[J]. Nat Commun, 2020, 11: 4724.
[252] B. YANG, Y. LI, H. XIANG, et al. Moiré magnetic exchange interactions in twisted magnets[J]. Nat Comput Sci, 2023, 3: 314-320.
[253] X. HE, N. HELBIG, M. J. VERSTRAETE, et al. TB2J: A python package for computing magnetic interaction parameters[J]. Comput. Phys. Commun, 2021, 264: 107938.
[254] J. Y. NI, X. Y. LI, D. AMOROSO, et al. Giant Biquadratic Exchange in 2D Magnets and Its Role in Stabilizing Ferromagnetism of NiCl2 Monolayers[J]. Phys. Rev. Lett., 2021, 127: 247204.
[255] B. SKUBIC, J. HELLSVIK, L. NORDSTRöM, et al. A method for atomistic spin dynamics simulations: implementation and examples[J]. J. Phys. Condens. Matter, 2008, 20: 315203.
[256] B. BERG and M. LüSCHER. Definition and statistical distributions of a topological number in the lattice O(3) σ-model[J]. Nucl Phys B, 1981, 190: 412-424.
[257] T. OKUBO, S. CHUNG and H. KAWAMURA. Multiple-q States and the Skyrmion Lattice of the Triangular-Lattice Heisenberg Antiferromagnet under Magnetic Fields[J]. Phys. Rev. Lett., 2012, 108: 017206.
[258] A. O. LEONOV and M. MOSTOVOY. Edge states and skyrmion dynamics in nanostripes of frustrated magnets[J]. Nat Commun, 2017, 8: 14394.
[259] Y. HOU, F. XUE, L. QIU, et al. Multifunctional two-dimensional van der Waals Janus magnet Cr-based dichalcogenide halides[J]. npj Comput Mater, 2022, 8: 120.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/633314
专题理学院_物理系
推荐引用方式
GB/T 7714
Zhu HY. First-Principles Study on Magnetism and its Manipulation in Two-Dimensional Magnetic Materials[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930944-朱海燕-物理系.pdf(12945KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[朱海燕]的文章
百度学术
百度学术中相似的文章
[朱海燕]的文章
必应学术
必应学术中相似的文章
[朱海燕]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。