[1] K. S. NOVOSELOV, A. K. GEIM, S. V. MOROZOV, et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004, 306: 666-669.
[2] S. V. MOROZOV, K. S. NOVOSELOV, M. I. KATSNELSON, et al. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer[J]. Phys. Rev. Lett., 2008, 100: 016602.
[3] M. J. ALLEN, V. C. TUNG and R. B. KANER. Honeycomb Carbon: A Review of Graphene[J]. Chem. Rev, 2010, 110: 132-145.
[4] X. YU, H. CHENG, M. ZHANG, et al. Graphene-based smart materials[J]. Nat. Rev. Mater, 2017, 2: 17046.
[5] B. AïSSA, N. K. MEMON, A. ALI, et al. Recent Progress in the Growth and Applications of Graphene as a Smart Material: A Review[J]. Front. Mater., 2015, 2.
[6] K. WATANABE, T. TANIGUCHI and H. KANDA. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal[J]. Nat. Mater., 2004, 3: 404-409.
[7] K. ZHANG, Y. FENG, F. WANG, et al. Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications[J]. J. Mater. Chem. C, 2017, 5: 11992-12022.
[8] B. LIU and K. ZHOU. Recent progress on graphene-analogous 2D nanomaterials: Properties, modeling and applications[J]. Prog. Mater. Sci, 2019, 100: 99-169.
[9] J. WANG, F. MA, W. LIANG, et al. Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures[J]. Mater. Today Phys, 2017, 2: 6-34.
[10] H. LIU, A. T. NEAL, Z. ZHU, et al. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility[J]. ACS Nano, 2014, 8: 4033-4041.
[11] G. LONG, D. MARYENKO, J. SHEN, et al. Achieving Ultrahigh Carrier Mobility in Two-Dimensional Hole Gas of Black Phosphorus[J]. Nano Lett, 2016, 16: 7768-7773.
[12] S. MANZELI, D. OVCHINNIKOV, D. PASQUIER, et al. 2D transition metal dichalcogenides[J]. Nat. Rev. Mater, 2017, 2: 17033.
[13] K. S. NOVOSELOV, A. MISHCHENKO, A. CARVALHO, et al. 2D materials and van der Waals heterostructures[J]. Science, 2016, 353: aac9439.
[14] M. NAGUIB, M. KURTOGLU, V. PRESSER, et al. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2[J]. Adv. Mater., 2011, 23: 4248-4253.
[15] J. ZHANG, N. KONG, S. UZUN, et al. Scalable Manufacturing of Free-Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity[J]. Adv. Mater., 2020, 32: 2001093.
[16] K. LI, M. LIANG, H. WANG, et al. 3D MXene Architectures for Efficient Energy Storage and Conversion[J]. Adv. Funct. Mater., 2020, 30: 2000842.
[17] Z. FAN, X. HUANG, C. TAN, et al. Thin metal nanostructures: synthesis, properties and applications[J]. Chem. Sci, 2015, 6: 95-111.
[18] X. HUANG, S. LI, Y. HUANG, et al. Synthesis of hexagonal close-packed gold nanostructures[J]. Nat Commun, 2011, 2: 292.
[19] C. LAN, Z. ZHOU, R. WEI, et al. Two-dimensional perovskite materials: From synthesis to energy-related applications[J]. Mater. Today Energy, 2019, 11: 61-82.
[20] E. SHI, Y. GAO, B. P. FINKENAUER, et al. Two-dimensional halide perovskite nanomaterials and heterostructures[J]. Chem. Soc. Rev., 2018, 47: 6046-6072.
[21] V. GOYAL, D. TEWELDEBRHAN and A. A. BALANDIN. Mechanically-exfoliated stacks of thin films of Bi2Te3 topological insulators with enhanced thermoelectric performance[J]. Appl. Phys. Lett., 2010, 97: 133117.
[22] W. DANG, H. PENG, H. LI, et al. Epitaxial Heterostructures of Ultrathin Topological Insulator Nanoplate and Graphene[J]. Nano Lett, 2010, 10: 2870-2876.
[23] H. S. QUAH, L. T. NG, B. DONNADIEU, et al. Molecular Scissoring: Facile 3D to 2D Conversion of Lanthanide Metal Organic Frameworks Via Solvent Exfoliation[J]. Inorg. Chem, 2016, 55: 10851-10854.
[24] X. WANG, C. CHI, K. ZHANG, et al. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation[J]. Nat Commun, 2017, 8: 14460.
[25] H.-Y. YE, W.-Q. LIAO, C.-L. HU, et al. Bandgap Engineering of Lead-Halide Perovskite-Type Ferroelectrics[J]. Adv. Mater., 2016, 28: 2579-2586.
[26] Y. GAO. First-principles Investigations of Low Dimensional Materials as Condensed Matter Quantum Simulators[D]. 香港: 香港科技大学, 2021.
[27] N. D. MERMIN and H. WAGNER. Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models[J]. Phys. Rev. Lett., 1966, 17: 1307-1307.
[28] O. V. YAZYEV and L. HELM. Defect-induced magnetism in graphene[J]. Phys. Rev. B, 2007, 75: 125408.
[29] C. GONG and X. ZHANG. Two-dimensional magnetic crystals and emergent heterostructure devices[J]. Science, 2019, 363: eaav4450.
[30] J. JUNG, T. PEREG-BARNEA and A. H. MACDONALD. Theory of Interedge Superexchange in Zigzag Edge Magnetism[J]. Phys Rev Lett, 2009, 102: 227205.
[31] Y.-W. SON, M. L. COHEN and S. G. LOUIE. Half-metallic graphene nanoribbons[J]. Nature, 2006, 444: 347-349.
[32] A. J. M. GIESBERS, K. UHLíŘOVá, M. KONEČNý, et al. Interface-Induced Room-Temperature Ferromagnetism in Hydrogenated Epitaxial Graphene[J]. Phys. Rev. Lett., 2013, 111: 166101.
[33] W. HAN, R. K. KAWAKAMI, M. GMITRA, et al. Graphene spintronics[J]. Nature Nanotechnology, 2014, 9: 794-807.
[34] B. HUANG, G. CLARK, E. NAVARRO-MORATALLA, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit[J]. Nature, 2017, 546: 270-273.
[35] C. GONG, L. LI, Z. LI, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals[J]. Nature, 2017, 546: 265-269.
[36] L. CHEN, J.-H. CHUNG, T. CHEN, et al. Magnetic anisotropy in ferromagnetic CrI3[J]. Phys. Rev. B, 2020, 101: 134418.
[37] N. MOUNET, M. GIBERTINI, P. SCHWALLER, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds[J]. Nature Nanotech, 2018, 13: 246-252.
[38] Z. ZHANG, J. A.-O. X. SHANG, C. JIANG, et al. Direct Photoluminescence Probing of Ferromagnetism in Monolayer Two-Dimensional CrBr3[J]. Nano Lett, 2019, 19: 3138-3142.
[39] A. BEDOYA-PINTO, J.-R. JI, A. K. PANDEYA, et al. Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer[J]. Science, 2021, 374: 616-620.
[40] J. SUN, X. ZHONG, W. CUI, et al. The intrinsic magnetism, quantum anomalous Hall effect and Curie temperature in 2D transition metal trihalides[J]. Phys. Chem. Chem. Phys., 2020, 22: 2429-2436.
[41] M. AN, Y. ZHANG, J. CHEN, et al. Tuning Magnetism in Layered Magnet VI3: A Theoretical Study[J]. J. Phys. Chem. C, 2019, 123: 30545-30550.
[42] S. TIAN, J.-F. ZHANG, C. LI, et al. Ferromagnetic van der Waals Crystal VI3[J]. J. Am. Chem. Soc., 2019, 141: 5326-5333.
[43] P. DOLEŽAL, M. KRATOCHVíLOVá, V. HOLý, et al. Crystal structures and phase transitions of the van der Waals ferromagnet VI3[J]. Phys Rev Materials, 2019, 3: 121401.
[44] E. GATI, Y. INAGAKI, T. KONG, et al. Multiple ferromagnetic transitions and structural distortion in the van der Waals ferromagnet VI3 at ambient and finite pressures[J]. Phys Rev B, 2019, 100: 094408.
[45] Y.-P. WANG and M.-Q. LONG. Electronic and magnetic properties of van der Waals ferromagnetic semiconductor VI3[J]. Phys Rev B, 2020, 101: 024411.
[46] L. D. CASTO, A. J. CLUNE, M. O. YOKOSUK, et al. Strong spin-lattice coupling in CrSiTe3[J]. APL Mater, 2015, 3: 041515.
[47] H. L. ZHUANG, Y. XIE, P. R. C. KENT, et al. Computational discovery of ferromagnetic semiconducting single-layer CrSnTe3[J]. Phys. Rev. B, 2015, 92: 035407.
[48] Y. DENG, Y. YU, Y. SONG, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2[J]. Nature, 2018, 563: 94-99.
[49] M. BONILLA, S. KOLEKAR, Y. MA, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates[J]. Nature Nanotech, 2018, 13: 289-293.
[50] D. J. O’HARA, T. ZHU, A. H. TROUT, et al. Room Temperature Intrinsic Ferromagnetism in Epitaxial Manganese Selenide Films in the Monolayer Limit[J]. Nano Lett, 2018, 18: 3125-3131.
[51] J. YANG, W. WANG, Y. LIU, et al. Thickness dependence of the charge-density-wave transition temperature in VSe2[J]. Appl. Phys. Lett., 2014, 105: 063109.
[52] P. CHEN, W. W. PAI, Y. H. CHAN, et al. Unique Gap Structure and Symmetry of the Charge Density Wave in Single-Layer VSe2[J]. Phys. Rev. Lett., 2018, 121: 196402.
[53] A. O. FUMEGA, M. GOBBI, P. DREHER, et al. Absence of Ferromagnetism in VSe2 Caused by Its Charge Density Wave Phase[J]. J. Phys. Chem. C, 2019, 123: 27802-27810.
[54] J. LI, Y. LI, S. DU, et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials[J]. Sci. Adv., 5: eaaw5685.
[55] Y. YUAN, X. WANG, H. LI, et al. Electronic States and Magnetic Response of MnBi2Te4 by Scanning Tunneling Microscopy and Spectroscopy[J]. Nano Lett, 2020, 20: 3271-3277.
[56] M. M. OTROKOV, I. I. KLIMOVSKIKH, H. BENTMANN, et al. Prediction and observation of an antiferromagnetic topological insulator[J]. Nature, 2019, 576: 416-422.
[57] C. WANG, X. ZHOU, L. ZHOU, et al. A family of high-temperature ferromagnetic monolayers with locked spin-dichroism-mobility anisotropy: MnNX and CrCX (X = Cl, Br, I; C = S, Se, Te)[J]. Science Bulletin, 2019, 64: 293-300.
[58] N. MIAO, B. XU, L. ZHU, et al. 2D Intrinsic Ferromagnets from van der Waals Antiferromagnets[J]. J. Am. Chem. Soc., 2018, 140: 2417-2420.
[59] S. SAXENA and R. MEHRA. Low-power and high-speed 13T SRAM cell using FinFETs[J]. IET Circuits Devices Syst., 2017, 11: 250-255.
[60] M. N. BAIBICH, J. M. BROTO, A. FERT, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices[J]. Phys. Rev. Lett., 1988, 61: 2472-2475.
[61] G. BINASCH, P. GRüNBERG, F. SAURENBACH, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange[J]. Phys. Rev. B, 1989, 39: 4828-4830.
[62] A. HIROHATA, K. YAMADA, Y. NAKATANI, et al. Review on spintronics: Principles and device applications[J]. J. Magn. Magn. Mater, 2020, 509: 166711.
[63] S. DATTA and B. DAS. Electronic analog of the electro-optic modulator[J]. Appl. Phys. Lett., 1990, 56: 665-667.
[64] I. DZYALOSHINSKY. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics[J]. J Phys Chem Solids, 1958, 4: 241-255.
[65] T. MORIYA. Anisotropic Superexchange Interaction and Weak Ferromagnetism[J]. Physical Review, 1960, 120: 91-98.
[66] Y. CAO, Z. HUANG, Y. YIN, et al. Overview and advances in a layered chiral helimagnet Cr1/3NbS2[J]. Materials Today Advances, 2020, 7: 100080.
[67] P. W. ANDERSON. Antiferromagnetism. Theory of Superexchange Interaction[J]. Phys. Rev., 1950, 79: 350-356.
[68] J. B. GOODENOUGH. Theory of the Role of Covalence in the Perovskite-Type Manganites [La, M(II)]MnO3[J]. Phys. Rev., 1955, 100: 564-573.
[69] J. KANAMORI. Superexchange interaction and symmetry properties of electron orbitals[J]. J Phys Chem Solids, 1959, 10: 87-98.
[70] B. V. KARPENKO, L. D. FAL’KOVSKAYA and A. V. KUZNETSOV. Magnetic structure and double exchange in the La1-xCaxMnO3[J]. Phys. Metals Metallogr., 2008, 105: 443-452.
[71] K. YOSIDA. Magnetic Properties of Cu-Mn Alloys[J]. Phys. Rev., 1957, 106: 893-898.
[72] T. KASUYA. A Theory of Metallic Ferro- and Antiferromagnetism on Zener's Model[J]. Prog. theor. phys., 1956, 16: 45-57.
[73] C. ZENER. Interaction Between the d Shells in the Transition Metals[J]. Phys. Rev., 1951, 81: 440-444.
[74] M. FIEBIG. Revival of the magnetoelectric effect[J]. J. Phys. D: Appl. Phys., 2005, 38: R123.
[75] S. JIANG, J. SHAN and K. F. MAK. Electric-field switching of two-dimensional van der Waals magnets[J]. Nat Mater, 2018, 17: 406-410.
[76] Y. NIU, H. LV, X. WU, et al. Electric-Field Control of Spin Polarization above Room Temperature in Single-Layer A-Type Antiferromagnetic Semiconductor[J]. J. Phys. Chem. Lett., 2023, 14: 4042-4049.
[77] W. DANG, M. ZHU, Z. ZHU, et al. Electric-Field-Tunable Spin Polarization and Carrier-Transport Anisotropy in an A-Type Antiferromagnetic van der Waals Bilayer[J]. Phys. Rev. Appl., 2022, 18: 064086.
[78] H. LV, Y. NIU, X. WU, et al. Electric-Field Tunable Magnetism in van der Waals Bilayers with A-Type Antiferromagnetic Order: Unipolar versus Bipolar Magnetic Semiconductor[J]. Nano Lett, 2021, 21: 7050-7055.
[79] Q. CHEN, X. ZHENG, P. JIANG, et al. Electric field induced tunable half-metallicity in an A-type antiferromagnetic bilayer LaBr2[J]. Phys. Rev. B, 2022, 106: 245423.
[80] S. JIANG, L. LI, Z. WANG, et al. Controlling magnetism in 2D CrI3 by electrostatic doping[J]. Nat. Nanotechnol., 2018, 13: 549-553.
[81] B. HUANG, G. CLARK, D. R. KLEIN, et al. Electrical control of 2D magnetism in bilayer CrI3[J]. Nat. Nanotechnol., 2018, 13: 544.
[82] Z. WANG, T. ZHANG, M. DING, et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor[J]. Nature Nanotech, 2018, 13: 554-559.
[83] K. F. MAK, J. SHAN and D. C. RALPH. Probing and controlling magnetic states in 2D layered magnetic materials[J]. Nat Rev Phys, 2019, 1: 646-661.
[84] Y. LU, H. WANG, L. WANG, et al. Mechanism of carrier doping induced magnetic phase transitions in two-dimensional materials[J]. Phys. Rev. B, 2022, 106: 205403.
[85] Y. HAN, S. SUN, S. QI, et al. Interlayer ferromagnetism and high-temperature quantum anomalous Hall effect in p-doped MnBi2Te4 multilayers[J]. Phys. Rev. B, 2021, 103: 245403.
[86] Y. TIAN, W. GAO, E. A. HENRIKSEN, et al. Optically Driven Magnetic Phase Transition of Monolayer RuCl3[J]. Nano Lett, 2019, 19: 7673-7680.
[87] Y. ZHU, Y. GAO, X. JIANG, et al. Effects of vacancy defects on the magnetic properties of vanadium diselenide monolayers: a first principle investigation[J]. Phys. Chem. Chem. Phys., 2022, 24: 17615-17622.
[88] Y. ZHAO, L. LIN, Q. ZHOU, et al. Surface Vacancy-Induced Switchable Electric Polarization and Enhanced Ferromagnetism in Monolayer Metal Trihalides[J]. Nano Lett, 2018, 18: 2943-2949.
[89] C. HUANG, J. FENG, F. WU, et al. Toward Intrinsic Room-Temperature Ferromagnetism in Two-Dimensional Semiconductors[J]. J. Am. Chem. Soc., 2018, 140: 11519-11525.
[90] X. WANG, H. GUO, H. CHEN, et al. Intrinsic ferromagnetic half-metal: Non-equivalent alloying compounds CrMnI6 monolayer[J]. Appl. Surf. Sci., 2023, 623: 157084.
[91] J. GUAN, C. HUANG, K. DENG, et al. First-Principles Prediction of Room-Temperature Ferromagnetic Semiconductor MnS2 via Isovalent Alloying[J]. J. Phys. Chem. C, 2019, 123: 10114-10119.
[92] S. I. VISHKAYI, Z. TORBATIAN, A. QAIUMZADEH, et al. Strain and electric-field control of spin-spin interactions in monolayer CrI3[J]. Phys. Rev. Mater., 2020, 4: 094004.
[93] A. M. LEóN, J. W. GONZáLEZ, J. MEJíA-LóPEZ, et al. Strain-induced phase transition in CrI3 bilayers[J]. 2D Mater., 2020, 7: 035008.
[94] J. CENKER, S. SIVAKUMAR, K. XIE, et al. Reversible strain-induced magnetic phase transition in a van der Waals magnet[J]. Nat. Nanotechnol., 2022, 17: 256-261.
[95] Y. MA, Y. DAI, M. GUO, et al. Evidence of the Existence of Magnetism in Pristine VX2 Monolayers (X = S, Se) and Their Strain-Induced Tunable Magnetic Properties[J]. ACS Nano, 2012, 6: 1695-1701.
[96] Y. ZHOU, Z. WANG, P. YANG, et al. Tensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2[J]. ACS Nano, 2012, 6: 9727-9736.
[97] I. KHAN and J. HONG. High Curie temperature and strain-induced semiconductor-metal transition with spin reorientation transition in 2D CrPbTe3 monolayer[J]. Nanotechnology, 2020, 31: 195704.
[98] X.-J. DONG, J.-Y. YOU, B. GU, et al. Strain-Induced Room-Temperature Ferromagnetic Semiconductors with Large Anomalous Hall Conductivity in Two-Dimensional Cr2Ge2Se6[J]. Phys. Rev. Applied, 2019, 12: 014020.
[99] S. YU, H. ZHU, K. ESHUN, et al. Strain-engineering the anisotropic electrical conductance in ReS2 monolayer[J]. Appl. Phys. Lett., 2016, 108: 191901.
[100] Y. WANG, C. LOU, B. ZHAO, et al. Doping- and strain-tuned high Curie temperature half-metallicity and quantum anomalous Hall effect in monolayer NiAl2S4 with non-Dirac and Dirac states[J]. Phys. Rev. B, 2023, 107: 085416.
[101] Y. TIAN, M. J. GRAY, H. JI, et al. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal[J]. 2D Mater., 2016, 3: 025035.
[102] X. LI and J. YANG. CrXTe3 (X = Si, Ge) nanosheets: two dimensional intrinsic ferromagnetic semiconductors[J]. J. Mater. Chem. C, 2014, 2: 7071-7076.
[103] J. LI, J. FENG, P. WANG, et al. Nature of spin-lattice coupling in two-dimensional CrI3 and CrGeTe3[J]. Sci. China Phys. Mech. Astron, 2021, 64: 286811.
[104] N. SIVADAS, S. OKAMOTO, X. D. XU, et al. Stacking-Dependent Magnetism in Bilayer CrI3[J]. Nano Lett, 2018, 18: 7658-7664.
[105] W. CHEN, Z. SUN, Z. WANG, et al. Direct observation of van der Waals stacking-dependent interlayer magnetism[J]. Science, 2019, 366: 983-987.
[106] D. WANG and B. SANYAL. Systematic Study of Monolayer to Trilayer CrI3: Stacking Sequence Dependence of Electronic Structure and Magnetism[J]. J. Phys. Chem. C, 2021, 125: 18467-18473.
[107] X. ZHANG, S. C. AMBHIRE, Q. LU, et al. Giant Topological Hall Effect in van der Waals Heterostructures of CrTe2/Bi2Te3[J]. ACS Nano, 2021, 15: 15710-15719.
[108] W. SUN, W. WANG, H. LI, et al. Controlling bimerons as skyrmion analogues by ferroelectric polarization in 2D van der Waals multiferroic heterostructures[J]. Nat Commun, 2020, 11: 5930.
[109] L. WANG, Y. GA, P. LI, et al. Electrical switchable room-temperature magnetic skyrmions in multiferroic MXene[J]. Phys. Rev. B, 2023, 108: 054440.
[110] B. H. ZHANG, Y. S. HOU, Z. WANG, et al. Tuning Dzyaloshinskii-Moriya interactions in magnetic bilayers with a ferroelectric substrate[J]. Phys. Rev. B, 2021, 103: 054417.
[111] C. LIU, Z. LI, J. HU, et al. Probing the Néel-Type Antiferromagnetic Order and Coherent Magnon-Exciton Coupling in Van Der Waals VPS3[J]. Adv Mater, 2023, 35: 2300247.
[112] Z. HE, K. DOU, W. DU, et al. Multiple Topological Magnetism in van der Waals Heterostructure of MnTe2/ZrS2[J]. Nano Lett, 2023, 23: 312-318.
[113] C. GONG, E. M. KIM, Y. WANG, et al. Multiferroicity in atomic van der Waals heterostructures[J]. Nat Commun, 2019, 10: 2657.
[114] S. YANG, T. ZHANG and C. JIANG. van der Waals Magnets: Material Family, Detection and Modulation of Magnetism, and Perspective in Spintronics[J]. Adv. Sci., 2021, 8: 2002488.
[115] D. C. FREITAS, R. WEHT, A. SULPICE, et al. Ferromagnetism in layered metastable 1T-CrTe2[J]. J Phys Condens Matter, 2015, 27: 176002.
[116] X. SUN, W. LI, X. WANG, et al. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2[J]. Nano Res., 2020, 13: 3358-3363.
[117] X. ZHANG, Q. LU, W. LIU, et al. Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films[J]. Nat Commun, 2021, 12: 2492.
[118] J.-J. XIAN, C. WANG, R. LI, et al. Spin mapping of intralayer antiferromagnetism and spin-flop transition in monolayer CrTe2[J]. Nat Commun, 2022, 13: 257.
[119] X. YANG, X. ZHOU, W. FENG, et al. Tunable magneto-optical effect, anomalous Hall effect, and anomalous Nernst effect in the two-dimensional room-temperature ferromagnet 1T-CrTe2[J]. Phys. Rev. B, 2021, 103: 024436.
[120] S. LI, S.-S. WANG, B. TAI, et al. Tunable anomalous Hall transport in bulk and two-dimensional 1T-CrTe2: A first-principles study[J]. Phys. Rev. B, 2021, 103: 045114.
[121] L. WU, L. ZHOU, X. ZHOU, et al. In-plane epitaxy-strain-tuning intralayer and interlayer magnetic coupling in CrSe2 and CrTe2 monolayers and bilayers[J]. Phys. Rev. B, 2022, 106: L081401.
[122] A. OTERO FUMEGA, J. PHILLIPS and V. PARDO. Controlled Two-Dimensional Ferromagnetism in 1T-CrTe2: The Role of Charge Density Wave and Strain[J]. J. Phys. Chem. C, 2020, 124: 21047-21053.
[123] N. ABUAWWAD, M. DOS SANTOS DIAS, H. ABUSARA, et al. Noncollinear magnetism in two-dimensional CrTe2[J]. J. Phys. Condens. Matter, 2022, 34: 454001.
[124] L. BALENTS. Spin liquids in frustrated magnets[J]. Nature, 2010, 464: 199-208.
[125] D. AMOROSO, P. BARONE and S. PICOZZI. Spontaneous skyrmionic lattice from anisotropic symmetric exchange in a Ni-halide monolayer[J]. Nat Commun, 2020, 11: 5784.
[126] P. A. M. J. P. O. T. R. S. A. M. DIRAC, PHYSICAL and E. SCIENCES. Quantum Mechanics of Many-Electron Systems[J]. Proc R Soc Lond Ser A, 1929, 123: 714-733.
[127] L. H. THOMAS. The calculation of atomic fields[J]. Math. Proc. Camb. Philos. Soc., 1927, 23: 542-548.
[128] F. E. Statistical method to determine some properties of atoms[J]. Rend. Accad. Naz. Lincei, 1927, 6: 5.
[129] M. BORN and R. OPPENHEIMER. Zur Quantentheorie der Molekeln[J]. Ann. Phys., 1927, 389: 457-484.
[130] D. R. HARTREE. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods[J]. Math. Proc. Camb. Philos. Soc., 1928, 24: 89-110.
[131] V. FOCK. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems[J]. Zeitschrift für Physik, 1930, 61: 126-148.
[132] P. HOHENBERG and W. KOHN. Inhomogeneous Electron Gas[J]. Phys. Rev., 1964, 136: B864-B871.
[133] KOHN W and S. L. J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev. A, 1965, 140: A1133-A1138.
[134] SLATER and J. CLARKE. The Theory of Complex Spectra[J]. Phys. Rev., 1929, 34: 1293-1322.
[135] E. K. U. GROSS and W. KOHN. Local Density-Functional Theory of Frequency-Dependent Linear Response[J]. Phys. Rev. Lett., 1986, 57: 923-923.
[136] J. P. PERDEW and K. SCHMIDT. Jacob’s ladder of density functional approximations for the exchange-correlation energy[J]. AIP Conference Proceedings, 2001, 577: 1-20.
[137] J. P. PERDEW and W. YUE. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation[J]. Phys. Rev. B, 1986, 33: 8800-8802.
[138] K. BURKE, J. P. PERDEW and Y. WANG. Derivation of a Generalized Gradient Approximation: The PW91 Density Functional[M]. Boston, MA: Springer US, 1998.
[139] J. P. PERDEW, K. BURKE and M. ERNZERHOF. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996, 77: 3865-3868.
[140] A. D. BECKE. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys. Rev. A, 1988, 38: 3098-3100.
[141] C. LEE, W. YANG and R. G. PARR. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B, 1988, 37: 785-789.
[142] A. D. BECKE. Density‐functional thermochemistry. III. The role of exact exchange[J]. J. Chem. Phys., 1993, 98: 5648-5652.
[143] P. J. STEPHENS, F. J. DEVLIN, C. F. CHABALOWSKI, et al. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields[J]. J. Phys. Chem., 1994, 98: 11623-11627.
[144] J. HEYD, J. E. PERALTA, G. E. SCUSERIA, et al. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional[J]. J. Chem. Phys., 2005, 123: 174101.
[145] J. E. PERALTA, J. HEYD, G. E. SCUSERIA, et al. Spin-orbit splittings and energy band gaps calculated with the Heyd-Scuseria-Ernzerhof screened hybrid functional[J]. Phys. Rev. B, 2006, 74: 073101.
[146] H. J. XIANG, E. J. KAN, S.-H. WEI, et al. Predicting the spin-lattice order of frustrated systems from first principles[J]. Phys. Rev. B, 2011, 84: 224429.
[147] X. LI, H. YU, F. LOU, et al. Spin Hamiltonians in Magnets: Theories and Computations[J]. Molecules, 2021, 26: 803.
[148] H. XIANG, C. LEE, H.-J. KOO, et al. Magnetic properties and energy-mapping analysis[J]. Dalton Trans, 2013, 42: 823-853.
[149] J. LI, J. FENG, P. WANG, et al. Nature of spin-lattice coupling in two-dimensional CrI3 and CrGeTe3[J]. Science China Physics, Mechanics & Astronomy, 2021, 64: 286811.
[150] N. MARZARI and D. VANDERBILT. Maximally localized generalized Wannier functions for composite energy bands[J]. Phys. Rev. B, 1997, 56: 12847-12865.
[151] J. D. CLOIZEAUX. Energy Bands and Projection Operators in a Crystal: Analytic and Asymptotic Properties[J]. Phys. Rev., 1964, 135: A685-A697.
[152] A. A. MOSTOFI, J. R. YATES, Y.-S. LEE, et al. wannier90: A tool for obtaining maximally-localised Wannier functions[J]. Comput Phys Commun, 2008, 178: 685-699.
[153] N. METROPOLIS, A. W. ROSENBLUTH, M. N. ROSENBLUTH, et al. Equation of State Calculations by Fast Computing Machines[J]. J. Chem. Phys., 2004, 21: 1087-1092.
[154] U. WOLFF. Collective Monte Carlo Updating for Spin Systems[J]. Phys. Rev. Lett., 1989, 62: 361-364.
[155] A. M. FERRENBERG and R. H. SWENDSEN. Optimized Monte Carlo data analysis[J]. Phys. Rev. Lett., 1989, 63: 1195-1198.
[156] L. ONSAGER. Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition[J]. Phys. Rev., 1944, 65: 117-149.
[157] KURT BINDER and D. W. HEERMANN. Monte Carlo Simulation in Statistical Physics[M]. Switzerland: Springer Cham, 2019.
[158] X. CAI, T. SONG, N. P. WILSON, et al. Atomically Thin CrCl3: An In-Plane Layered Antiferromagnetic Insulator[J]. Nano Lett, 2019, 19: 3993-3998.
[159] H. H. KIM, B. YANG, S. LI, et al. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides[J]. Proc. Natl. Acad. Sci. U.S.A., 2019, 116: 11131-11136.
[160] M. A. MCGUIRE, G. CLARK, S. KC, et al. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals[J]. Phys. Rev. Mater., 2017, 1: 014001.
[161] L. WEBSTER and J.-A. YAN. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3[J]. Phys. Rev. B, 2018, 98: 144411.
[162] F. XUE, Y. S. HOU, Z. WANG, et al. Two-dimensional ferromagnetic van der Waals CrCl3 monolayer with enhanced anisotropy and Curie temperature[J]. Phys. Rev. B, 2019, 100: 224429.
[163] J. KIM, K. W. KIM, B. KIM, et al. Exploitable Magnetic Anisotropy of the Two-Dimensional Magnet CrI3[J]. Nano Lett, 2020, 20: 929-935.
[164] M. LUO and Y. H. SHEN. Exploitable Magnetic Anisotropy of Magnetic CrBr3 Monolayer[J]. JETP Lett., 2020, 112: 58-63.
[165] F. MATSUKURA, Y. TOKURA and H. OHNO. Control of magnetism by electric fields[J]. Nat. Nanotechnol., 2015, 10: 209-220.
[166] L. CIORCIARO, M. KRONER, K. WATANABE, et al. Observation of Magnetic Proximity Effect Using Resonant Optical Spectroscopy of an Electrically Tunable MoSe2/CrBr3 Heterostructure[J]. Phys. Rev. Lett., 2020, 124: 197401.
[167] A. S. AHMAD, Y. LIANG, M. DONG, et al. Pressure-driven switching of magnetism in layered CrCl3[J]. Nanoscale, 2020, 12: 22935-22944.
[168] F. XUE, Z. WANG, Y. HOU, et al. Control of magnetic properties of MnBi2Te4 using a van der Waals ferroelectric III2−VI3 film and biaxial strain[J]. Phys. Rev. B, 2020, 101: 184426.
[169] A. LI, W. ZHOU, S. PENG, et al. Half-metallicity and enhanced magnetism in monolayer T-CrTe2 by lithium adsorption[J]. Phys. Lett. A, 2021, 394.
[170] Y. ZHAO, J.-J. ZHANG, S. YUAN, et al. Nonvolatile Electrical Control and Heterointerface-Induced Half-Metallicity of 2D Ferromagnets[J]. Adv. Funct. Mater., 2019, 29: 1901420.
[171] Y. LU, R. FEI, X. LU, et al. Artificial Multiferroics and Enhanced Magnetoelectric Effect in van der Waals Heterostructures[J]. ACS Appl. Mater. Interfaces, 2020, 12: 6243-6249.
[172] G. WANG, W. QIN, S. WANG, et al. CrI3/Y2CH2 Heterointerface-Induced Stable Half-Metallicity of Two-Dimensional CrI3 Monolayer Ferromagnets[J]. ACS Appl. Mater. Interfaces, 2021, 13: 16694-16703.
[173] M. ZHAO, X. DAI and Y. TANG. Charge transfer and strain tuned antiferromagnetism in the two-dimensional CrCl3/[Mo2C(-O)]2 heterojunction[J]. Phys. Chem. Chem. Phys., 2020, 22: 20477-20481.
[174] M. YANG, H. SHU, P. TANG, et al. Intrinsic Polarization-Induced Enhanced Ferromagnetism and Self-Doped p-n Junctions in CrBr3/GaN van der Waals Heterostructures[J]. ACS Appl. Mater. Interfaces, 2021, 13: 8764-8773.
[175] Q.-F. XU, W.-Q. XIE, Z.-W. LU, et al. Theoretical study of enhanced ferromagnetism and tunable magnetic anisotropy of monolayer CrI3 by surface adsorption[J]. Phys. Lett. A, 2020, 384: 126754.
[176] W.-N. REN, K.-J. JIN, J.-S. WANG, et al. Tunable electronic structure and magnetic anisotropy in bilayer ferromagnetic semiconductor Cr2Ge2Te6[J]. Sci. Rep., 2021, 11: 2744.
[177] H. YE, X. WANG, D. BAI, et al. Significant enhancement of magnetic anisotropy and conductivity in GaN/CrI3 van der Waals heterostructures via electrostatic doping[J]. Phys. Rev. B, 2021, 104: 075433.
[178] M. HUANG, S. WANG, Z. WANG, et al. Colossal Anomalous Hall Effect in Ferromagnetic van der Waals CrTe2[J]. ACS Nano, 2021, 15: 9759-9763.
[179] H. HE, L. HUANG, M. XIAO, et al. Effect of AlN buffer layer on the microstructure and bandgap of AlN films deposited on sapphire substrates by pulsed laser deposition[J]. J. Mater. Sci. Mater. Electron., 2013, 24: 4499-4502.
[180] P. TSIPAS, S. KASSAVETIS, D. TSOUTSOU, et al. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111)[J]. Appl. Phys. Lett., 2013, 103: 251605.
[181] C. BACAKSIZ, H. SAHIN, H. D. OZAYDIN, et al. Hexagonal AlN: Dimensional-crossover-driven band-gap transition[J]. Phys. Rev. B, 2015, 91: 085430.
[182] L. LI and M. WU. Binary Compound Bilayer and Multilayer with Vertical Polarizations: Two-Dimensional Ferroelectrics, Multiferroics, and Nanogenerators[J]. ACS Nano, 2017, 11: 6382-6388.
[183] M. ZHAO, Y. XIA, X. LIU, et al. First-Principles Calculations of AlN Nanowires and Nanotubes: Atomic Structures, Energetics, and Surface States[J]. J. Phys. Chem. B, 2006, 110: 8764-8768.
[184] W. WANG, Y. ZHENG, X. LI, et al. 2D AlN Layers Sandwiched Between Graphene and Si Substrates[J]. Adv Mater, 2019, 31: 1803448.
[185] M. BESHKOVA and R. YAKIMOVA. Properties and potential applications of two-dimensional AlN [J]. Vacuum 2020, 176: 109231.
[186] A. KONISHI, T. OGAWA, C. A. J. FISHER, et al. Mechanism of polarization switching in wurtzite-structured zinc oxide thin films[J]. Appl. Phys. Lett., 2016, 109: 102903.
[187] G. KRESSE and J. FURTHMüLLER. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996, 54: 11169-11186.
[188] P. E. BLöCHL. Projector augmented-wave method[J]. Phys. Rev. B, 1994, 50: 17953-17979.
[189] H. J. MONKHORST and J. D. PACK. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1976, 13: 5188-5192.
[190] S. GRIMME. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J. Comput. Chem., 2006, 27: 1787-1799.
[191] T. BUČKO, J. HAFNER, S. LEBèGUE, et al. Improved Description of the Structure of Molecular and Layered Crystals: Ab Initio DFT Calculations with van der Waals Corrections[J]. J. Phys. Chem. A, 2010, 114: 11814-11824.
[192] A. TOGO and I. TANAKA. First principles phonon calculations in materials science[J]. Scr. Mater., 2015, 108: 1-5.
[193] S. TOTH and B. LAKE. Linear spin wave theory for single-Q incommensurate magnetic structures[J]. J. Phys. Condens. Matter, 2015, 27: 166002.
[194] V. I. ANISIMOV, F. ARYASETIAWAN and A. I. LICHTENSTEIN. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method[J]. J. Phys. Condens. Matter, 1997, 9: 767-808.
[195] S. L. DUDAREV, G. A. BOTTON, S. Y. SAVRASOV, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study[J]. Phys. Rev. B, 1998, 57: 1505-1509.
[196] A. V. KUKLIN, M. A. VISOTIN, W. BAEK, et al. CrI3 magnetic nanotubes: A comparative DFT and DFT+U study, and strain effect[J]. Physica E Low Dimens. Syst, 2020, 123: 114205.
[197] S. W. JANG, M. Y. JEONG, H. YOON, et al. Microscopic understanding of magnetic interactions in bilayer CrI3[J]. Phys. Rev. Mater., 2019, 3: 031001.
[198] J. KANAMORI. Superexchange interaction and symmetry properties of electron orbitals[J]. J Phys Chem Solids, 1959, 10: 87-98.
[199] W.-B. ZHANG, Q. QU, P. ZHU, et al. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides[J]. J. Mater. Chem. C, 2015, 3: 12457-12468.
[200] S. TOMAR, B. GHOSH, S. MARDANYA, et al. Intrinsic magnetism in monolayer transition metal trihalides: A comparative study[J]. J. Magn. Magn. Mater, 2019, 489: 165384.
[201] M.-W. LIN, H. L. ZHUANG, J. YAN, et al. Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material[J]. J. Mater. Chem. C., 2016, 4: 315-322.
[202] A. F. MAY, S. CALDER, C. CANTONI, et al. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3-xGeTe2[J]. Phys. Rev. B, 2016, 93: 014411.
[203] W. LIU, L. HE, Y. XU, et al. Enhancing Magnetic Ordering in Cr-Doped Bi2Se3 Using High-TC Ferrimagnetic Insulator[J]. Nano Lett., 2015, 15: 764-769.
[204] S. LIU, X. YUAN, Y. ZOU, et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy[J]. NPJ 2D Mater. Appl., 2017, 1: 30.
[205] Q. LI, M. YANG, C. GONG, et al. Patterning-Induced Ferromagnetism of Fe3GeTe2 van der Waals Materials beyond Room Temperature[J]. Nano Lett, 2018, 18: 5974-5980.
[206] M. BONILLA, S. KOLEKAR, Y. MA, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates[J]. Nat. Nanotechnol, 2018, 13: 289-293.
[207] F. FABRE, A. FINCO, A. PURBAWATI, et al. Characterization of room-temperature in-plane magnetization in thin flakes of CrTe2 with a single-spin magnetometer[J]. Phys. Rev. Mater, 2021, 5: 034008.
[208] Y. SUN, P. YAN, J. NING, et al. Ferromagnetism in two-dimensional CrTe2 epitaxial films down to a few atomic layers[J]. AIP Advances, 2021, 11: 2492.
[209] L. MENG, Z. ZHOU, M. XU, et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition[J]. Nat Commun, 2021, 12: 809.
[210] H. Y. LV, W. J. LU, D. F. SHAO, et al. Strain-controlled switch between ferromagnetism and antiferromagnetism in 1T-CrX2 (X=Se,Te) monolayers[J]. Phys. Rev. B, 2015, 92: 214419.
[211] M. HUANG, Z. MA, S. WANG, et al. Significant perpendicular magnetic anisotropy in room-temperature layered ferromagnet of Cr-intercalated CrTe2[J]. 2D Materials, 2021, 8: 031003.
[212] M. A. MCGUIRE. Crystal and Magnetic Structures in Layered, Transition Metal Dihalides and Trihalides[J]. Crystals, 2017, 7: 121.
[213] A. KARTSEV, M. AUGUSTIN, R. F. L. EVANS, et al. Biquadratic exchange interactions in two-dimensional magnets[J]. NPJ Comput. Mater, 2020, 6: 150.
[214] J. Y. NI, X. Y. LI, D. AMOROSO, et al. Giant Biquadratic Exchange in 2D Magnets and Its Role in Stabilizing Ferromagnetism of NiCl2 Monolayers[J]. Phys. Rev. Lett, 2021, 127: 247204.
[215] J. P. PERDEW, K. BURKE and M. ERNZERHOF. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett, 1996, 77: 3865-3868.
[216] I. A. VLADIMIR, F. ARYASETIAWAN and A. I. LICHTENSTEIN. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method[J]. J. Phys. Condens. Matter, 1997, 9: 767.
[217] D. J. CHADI. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1977, 16: 1746-1747.
[218] G. PIZZI, V. VITALE, R. ARITA, et al. Wannier90 as a community code: new features and applications[J]. J. Phys. Condens. Matter, 2020, 32: 165902.
[219] D. J. O'HARA, T. ZHU, A. H. TROUT, et al. Room Temperature Intrinsic Ferromagnetism in Epitaxial Manganese Selenide Films in the Monolayer Limit[J]. Nano Lett, 2018, 18: 3125-3131.
[220] S. LANDRON and M.-B. LEPETIT. Importance of t2g-eg hybridization in transition metal oxides[J]. Phys. Rev. B, 2008, 77: 125106.
[221] P. GAO, X. LI and J. YANG. Thickness Dependent Magnetic Transition in Few Layer 1T Phase CrTe2[J]. J. Phys. Chem. Lett., 2021, 12: 6847-6851.
[222] L. M. SANDRATSKII. Noncollinear magnetism in itinerant-electron systems: Theory and applications[J]. Adv. Phys., 1998, 47: 91-160.
[223] J. ZHOU, X. SONG, J. CHAI, et al. Structure dependent and strain tunable magnetic ordering in ultrathin chromium telluride[J]. J. Alloys Compd, 2022, 893: 162223.
[224] J. WEN, S.-L. YU, S. LI, et al. Experimental identification of quantum spin liquids[J]. npj Quantum Mater., 2019, 4: 12.
[225] A. KITAEV. Anyons in an exactly solved model and beyond[J]. Annals of Physics, 2006, 321: 2-111.
[226] G. JACKELI and G. KHALIULLIN. Mott Insulators in the Strong Spin-Orbit Coupling Limit: From Heisenberg to a Quantum Compass and Kitaev Models[J]. Phys Rev Lett, 2009, 102: 017205.
[227] Q. LUO, S. HU, B. XI, et al. Ground-state phase diagram of an anisotropic spin-1/2 model on the triangular lattice[J]. Phys Rev B, 2017, 95: 165110.
[228] S. WANG, Z. QI, B. XI, et al. Comprehensive study of the global phase diagram of the J-K- model on a triangular lattice[J]. Phys Rev B, 2021, 103: 054410.
[229] C. HUANG, B. LIU, L. JIANG, et al. Evidence of Kitaev interaction in monolayer 1T-CrTe2[J]. Phys Rev B, 2023, 108: 094433.
[230] C. XU, J. FENG, H. XIANG, et al. Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers[J]. npj Comput Mater, 2018, 4: 57.
[231] J.-J. XIAN, C. WANG, J.-H. NIE, et al. Spin mapping of intralayer antiferromagnetism and field-induced spin reorientation in monolayer CrTe2.[J]. Nat Commun, 2022, 13: 257.
[232] H. ZHU, Y. GAO, Y. HOU, et al. Insight into strain and electronic correlation dependent magnetism in monolayer 1T-CrTe2[J]. Phys Rev B, 2023, 108: 144404.
[233] W. ZHU, C. SONG, Y. ZHOU, et al. Insight into interlayer magnetic coupling in 1T-type transition metal dichalcogenides based on the stacking of nonmagnetic atoms[J]. Phys. Rev. B, 2021, 103: 224404.
[234] P. JIANG, C. WANG, D. CHEN, et al. Stacking tunable interlayer magnetism in bilayer CrI3[J]. Phys. Rev. B, 2019, 99: 144401.
[235] Y. J. GONG, J. H. LIN, X. L. WANG, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers[J]. Nat Mater, 2014, 13: 1135-1142.
[236] S. MüHLBAUER, B. BINZ, F. JONIETZ, et al. Skyrmion Lattice in a Chiral Magnet[J]. Science, 2009, 323: 915-919.
[237] X. Z. YU, Y. ONOSE, N. KANAZAWA, et al. Real-space observation of a two-dimensional skyrmion crystal[J]. Nature, 2010, 465: 901-904.
[238] A. N. BOGDANOV and C. PANAGOPOULOS. Physical foundations and basic properties of magnetic skyrmions[J]. Nat Rev Phys, 2020, 2: 492-498.
[239] U. K. RößLER, A. N. BOGDANOV and C. PFLEIDERER. Spontaneous skyrmion ground states in magnetic metals[J]. Nature, 2006, 442: 797-801.
[240] A. FERT, V. CROS and J. SAMPAIO. Skyrmions on the track[J]. Nat Nanotechnol, 2013, 8: 152-156.
[241] A. SOUMYANARAYANAN, M. RAJU, A. L. GONZALEZ OYARCE, et al. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers[J]. Nat Mater, 2017, 16: 898-904.
[242] L. WANG, Q. FENG, Y. KIM, et al. Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures[J]. Nat Mater, 2018, 17: 1087-1094.
[243] Y. A. KHARKOV, O. P. SUSHKOV and M. MOSTOVOY. Bound States of Skyrmions and Merons near the Lifshitz Point[J]. Phys. Rev. Lett., 2017, 119: 207201.
[244] M. AUGUSTIN, S. JENKINS, R. F. L. EVANS, et al. Properties and dynamics of meron topological spin textures in the two-dimensional magnet CrCl3[J]. Nat Commun, 2021, 12: 185.
[245] N. GAO, S. G. JE, M. Y. IM, et al. Creation and annihilation of topological meron pairs in in-plane magnetized films[J]. Nat Commun, 2019, 10: 5603.
[246] X. Z. YU, W. KOSHIBAE, Y. TOKUNAGA, et al. Transformation between meron and skyrmion topological spin textures in a chiral magnet[J]. Nature, 2018, 564: 95-98.
[247] S. K. KIM. Dynamics of bimeron skyrmions in easy-plane magnets induced by a spin supercurrent[J]. Phys. Rev. B, 2019, 99: 224406.
[248] Y. WU, S. ZHANG, J. ZHANG, et al. Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure[J]. Nat Commun, 2020, 11: 3860.
[249] Z. SHEN, C. SONG, Y. XUE, et al. Strain-tunable Dzyaloshinskii-Moriya interaction and skyrmions in two-dimensional Janus Cr2X3Y3 (X, Y = Cl, Br, I) trihalide monolayers[J]. Phys Rev B, 2022, 106: 094403.
[250] A. FERNáNDEZ-PACHECO, E. VEDMEDENKO, F. UMMELEN, et al. Symmetry-breaking interlayer Dzyaloshinskii–Moriya interactions in synthetic antiferromagnets[J]. Nat Mater, 2019, 18: 679-684.
[251] X. LU, R. FEI, L. ZHU, et al. Meron-like topological spin defects in monolayer CrCl3[J]. Nat Commun, 2020, 11: 4724.
[252] B. YANG, Y. LI, H. XIANG, et al. Moiré magnetic exchange interactions in twisted magnets[J]. Nat Comput Sci, 2023, 3: 314-320.
[253] X. HE, N. HELBIG, M. J. VERSTRAETE, et al. TB2J: A python package for computing magnetic interaction parameters[J]. Comput. Phys. Commun, 2021, 264: 107938.
[254] J. Y. NI, X. Y. LI, D. AMOROSO, et al. Giant Biquadratic Exchange in 2D Magnets and Its Role in Stabilizing Ferromagnetism of NiCl2 Monolayers[J]. Phys. Rev. Lett., 2021, 127: 247204.
[255] B. SKUBIC, J. HELLSVIK, L. NORDSTRöM, et al. A method for atomistic spin dynamics simulations: implementation and examples[J]. J. Phys. Condens. Matter, 2008, 20: 315203.
[256] B. BERG and M. LüSCHER. Definition and statistical distributions of a topological number in the lattice O(3) σ-model[J]. Nucl Phys B, 1981, 190: 412-424.
[257] T. OKUBO, S. CHUNG and H. KAWAMURA. Multiple-q States and the Skyrmion Lattice of the Triangular-Lattice Heisenberg Antiferromagnet under Magnetic Fields[J]. Phys. Rev. Lett., 2012, 108: 017206.
[258] A. O. LEONOV and M. MOSTOVOY. Edge states and skyrmion dynamics in nanostripes of frustrated magnets[J]. Nat Commun, 2017, 8: 14394.
[259] Y. HOU, F. XUE, L. QIU, et al. Multifunctional two-dimensional van der Waals Janus magnet Cr-based dichalcogenide halides[J]. npj Comput Mater, 2022, 8: 120.
修改评论