[1] TRUINI A, GARCIA-LARREA L, CRUCCU G. Reappraising neuropathic pain in humans--how symptoms help disclose mechanisms [J]. Nat Rev Neurol, 2013, 9(10): 572-82.
[2] WOOLF C J. Central sensitization: implications for the diagnosis and treatment of pain [J]. Pain, 2011, 152(3 Suppl): S2-s15.
[3] OCHOA J L, YARNITSKY D. Mechanical hyperalgesias in neuropathic pain patients: dynamic and static subtypes [J]. Ann Neurol, 1993, 33(5): 465-72.
[4] MELZACK R, WALL P D. Pain mechanisms: a new theory [J]. Science, 1965, 150(3699): 971-9.
[5] DUAN B, CHENG L, BOURANE S, et al. Identification of spinal circuits transmitting and gating mechanical pain [J]. Cell, 2014, 159(6): 1417-32.
[6] KILO S, SCHMELZ M, KOLTZENBURG M, et al. Different patterns of hyperalgesia induced by experimental inflammation in human skin [J]. Brain, 1994, 117 ( Pt 2): 385-96.
[7] KOLTZENBURG M, TOREBJÖRK H E, WAHREN L K. Nociceptor modulated central sensitization causes mechanical hyperalgesia in acute chemogenic and chronic neuropathic pain [J]. Brain, 1994, 117 ( Pt 3): 579-91.
[8] GOTTRUP H, KRISTENSEN A D, BACH F W, et al. Aftersensations in experimental and clinical hypersensitivity [J]. Pain, 2003, 103(1-2): 57-64.
[9] SAMUELSSON M, LEFFLER A S, HANSSON P. Dynamic mechanical allodynia in the secondary hyperalgesic area in the capsaicin model-Perceptually similar phenomena as in painful neuropathy? [J]. Scand J Pain, 2011, 2(2): 85-92.
[10] GARCIA-LARREA L, CONVERS P, MAGNIN M, et al. Laser-evoked potential abnormalities in central pain patients: the influence of spontaneous and provoked pain [J]. Brain, 2002, 125(Pt 12): 2766-81.
[11] DUCREUX D, ATTAL N, PARKER F, et al. Mechanisms of central neuropathic pain: a combined psychophysical and fMRI study in syringomyelia [J]. Brain, 2006, 129(Pt 4): 963-76.
[12] GRACELY R H, LYNCH S A, BENNETT G J. Painful neuropathy: altered central processing maintained dynamically by peripheral input [J]. Pain, 1992, 51(2): 175-94.
[13] CAMPBELL J N, RAJA S N, MEYER R A, et al. Myelinated afferents signal the hyperalgesia associated with nerve injury [J]. Pain, 1988, 32(1): 89-94.
[14] TRUINI A, BIASIOTTA A, DI STEFANO G, et al. Peripheral nociceptor sensitization mediates allodynia in patients with distal symmetric polyneuropathy [J]. J Neurol, 2013, 260(3): 761-6.
[15] LILJENCRANTZ J, BJÖRNSDOTTER M, MORRISON I, et al. Altered C-tactile processing in human dynamic tactile allodynia [J]. Pain, 2013, 154(2): 227-34.
[16] SEAL R P, WANG X, GUAN Y, et al. Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors [J]. Nature, 2009, 462(7273): 651-5.
[17] GREENSPAN D J, OHARA S, SARLANI E, et al. Allodynia in patients with post-stroke central pain (CPSP) studied by statistical quantitative sensory testing within individuals [J]. Pain, 2004, 109(3): 357-66.
[18] PARK K M, MAX M B, ROBINOVITZ E, et al. Effects of intravenous ketamine, alfentanil, or placebo on pain, pinprick hyperalgesia, and allodynia produced by intradermal capsaicin in human subjects [J]. Pain, 1995, 63(2): 163-72.
[19] GOTTRUP H, BACH F W, JUHL G, et al. Differential effect of ketamine and lidocaine on spontaneous and mechanical evoked pain in patients with nerve injury pain [J]. Anesthesiology, 2006, 104(3): 527-36.
[20] LAMOTTE R H, SHAIN C N, SIMONE D A, et al. Neurogenic hyperalgesia: psychophysical studies of underlying mechanisms [J]. J Neurophysiol, 1991, 66(1): 190-211.
[21] ZIEGLER E A, MAGERL W, MEYER R A, et al. Secondary hyperalgesia to punctate mechanical stimuli. Central sensitization to A-fibre nociceptor input [J]. Brain, 1999, 122 ( Pt 12): 2245-57.
[22] CHAPLAN S R, BACH F W, POGREL J W, et al. Quantitative assessment of tactile allodynia in the rat paw [J]. J Neurosci Methods, 1994, 53(1): 55-63.
[23] KOLTZENBURG M, LUNDBERG L E R, TOREBJÖRK E H. Dynamic and static components of mechanical hyperalgesia in human hairy skin [J]. Pain, 1992, 51(2): 207-19.
[24] RAJA S N, CAMPBELL J N, MEYER R A. Evidence for different mechanisms of primary and secondary hyperalgesia following heat injury to the glabrous skin [J]. Brain, 1984, 107 ( Pt 4): 1179-88.
[25] ZEILIG G, ENOSH S, RUBIN-ASHER D, et al. The nature and course of sensory changes following spinal cord injury: predictive properties and implications on the mechanism of central pain [J]. Brain, 2012, 135(Pt 2): 418-30.
[26] HARRISON J L, DAVIS K D. Cold-evoked pain varies with skin type and cooling rate: a psychophysical study in humans [J]. Pain, 1999, 83(2): 123-35.
[27] SIMONE D A, KAJANDER K C. Responses of cutaneous A-fiber nociceptors to noxious cold [J]. J Neurophysiol, 1997, 77(4): 2049-60.
[28] CAMPERO M, SERRA J, BOSTOCK H, et al. Slowly conducting afferents activated by innocuous low temperature in human skin [J]. J Physiol, 2001, 535(Pt 3): 855-65.
[29] CAMPERO M, BOSTOCK H. Unmyelinated afferents in human skin and their responsiveness to low temperature [J]. Neurosci Lett, 2010, 470(3): 188-92.
[30] MADRID R, DE LA PEÑA E, DONOVAN-RODRIGUEZ T, et al. Variable threshold of trigeminal cold-thermosensitive neurons is determined by a balance between TRPM8 and Kv1 potassium channels [J]. J Neurosci, 2009, 29(10): 3120-31.
[31] NAMER B, KLEGGETVEIT I P, HANDWERKER H, et al. Role of TRPM8 and TRPA1 for cold allodynia in patients with cold injury [J]. Pain, 2008, 139(1): 63-72.
[32] ZIMMERMANN K, DEUIS J R, INSERRA M C, et al. Analgesic treatment of ciguatoxin-induced cold allodynia [J]. Pain, 2013, 154(10): 1999-2006.
[33] JØRUM E, WARNCKE T, STUBHAUG A. Cold allodynia and hyperalgesia in neuropathic pain: the effect of N-methyl-D-aspartate (NMDA) receptor antagonist ketamine--a double-blind, cross-over comparison with alfentanil and placebo [J]. Pain, 2003, 101(3): 229-35.
[34] JOHANEK L M, MEYER R A, FRIEDMAN R M, et al. A role for polymodal C-fiber afferents in nonhistaminergic itch [J]. J Neurosci, 2008, 28(30): 7659-69.
[35] TREEDE R D, MEYER R A, RAJA S N, et al. Peripheral and central mechanisms of cutaneous hyperalgesia [J]. Prog Neurobiol, 1992, 38(4): 397-421.
[36] MAIER C, BARON R, TÖLLE T R, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes [J]. Pain, 2010, 150(3): 439-50.
[37] DIB-HAJJ S D, RUSH A M, CUMMINS T R, et al. Gain-of-function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons [J]. Brain, 2005, 128(Pt 8): 1847-54.
[38] ØRSTAVIK K, WEIDNER C, SCHMIDT R, et al. Pathological C-fibres in patients with a chronic painful condition [J]. Brain, 2003, 126(Pt 3): 567-78.
[39] MA W, ZHANG Y, BANTEL C, et al. Medium and large injured dorsal root ganglion cells increase TRPV-1, accompanied by increased alpha2C-adrenoceptor co-expression and functional inhibition by clonidine [J]. Pain, 2005, 113(3): 386-94.
[40] URANO H, ARA T, FUJINAMI Y, et al. Aberrant TRPV1 expression in heat hyperalgesia associated with trigeminal neuropathic pain [J]. Int J Med Sci, 2012, 9(8): 690-7.
[41] DRAY A. Neuropathic pain: emerging treatments [J]. Br J Anaesth, 2008, 101(1): 48-58.
[42] VRANKEN J H, HOLLMANN M W, VAN DER VEGT M H, et al. Duloxetine in patients with central neuropathic pain caused by spinal cord injury or stroke: a randomized, double-blind, placebo-controlled trial [J]. Pain, 2011, 152(2): 267-73.
[43] SINDRUP S H, ANDERSEN G, MADSEN C, et al. Tramadol relieves pain and allodynia in polyneuropathy: a randomised, double-blind, controlled trial [J]. Pain, 1999, 83(1): 85-90.
[44] NURMIKKO T J, SERPELL M G, HOGGART B, et al. Sativex successfully treats neuropathic pain characterised by allodynia: a randomised, double-blind, placebo-controlled clinical trial [J]. Pain, 2007, 133(1-3): 210-20.
[45] VESTERGAARD K, ANDERSEN G, GOTTRUP H, et al. Lamotrigine for central poststroke pain: a randomized controlled trial [J]. Neurology, 2001, 56(2): 184-90.
[46] WALLACE M S, MAGNUSON S, RIDGEWAY B. Efficacy of oral mexiletine for neuropathic pain with allodynia: a double-blind, placebo-controlled, crossover study [J]. Reg Anesth Pain Med, 2000, 25(5): 459-67.
[47] ROWBOTHAM M C, DAVIES P S, FIELDS H L. Topical lidocaine gel relieves postherpetic neuralgia [J]. Ann Neurol, 1995, 37(2): 246-53.
[48] RANOUX D, ATTAL N, MORAIN F, et al. Botulinum toxin type A induces direct analgesic effects in chronic neuropathic pain [J]. Ann Neurol, 2008, 64(3): 274-83.
[49] ATTAL N, GUIRIMAND F, BRASSEUR L, et al. Effects of IV morphine in central pain: a randomized placebo-controlled study [J]. Neurology, 2002, 58(4): 554-63.
[50] ATTAL N, ROUAUD J, BRASSEUR L, et al. Systemic lidocaine in pain due to peripheral nerve injury and predictors of response [J]. Neurology, 2004, 62(2): 218-25.
[51] GORMSEN L, FINNERUP N B, ALMQVIST P M, et al. The efficacy of the AMPA receptor antagonist NS1209 and lidocaine in nerve injury pain: a randomized, double-blind, placebo-controlled, three-way crossover study [J]. Anesth Analg, 2009, 108(4): 1311-9.
[52] SIMPSON D M, SCHIFITTO G, CLIFFORD D B, et al. Pregabalin for painful HIV neuropathy: a randomized, double-blind, placebo-controlled trial [J]. Neurology, 2010, 74(5): 413-20.
[53] FINNERUP N B, SINDRUP S H, BACH F W, et al. Lamotrigine in spinal cord injury pain: a randomized controlled trial [J]. Pain, 2002, 96(3): 375-83.
[54] FALAH M, MADSEN C, HOLBECH J V, et al. A randomized, placebo-controlled trial of levetiracetam in central pain in multiple sclerosis [J]. Eur J Pain, 2012, 16(6): 860-9.
[55] FINNERUP N B, BIERING-SØRENSEN F, JOHANNESEN I L, et al. Intravenous lidocaine relieves spinal cord injury pain: a randomized controlled trial [J]. Anesthesiology, 2005, 102(5): 1023-30.
[56] MORENO-DUARTE I, MORSE L R, ALAM M, et al. Targeted therapies using electrical and magnetic neural stimulation for the treatment of chronic pain in spinal cord injury [J]. Neuroimage, 2014, 85 Pt 3: 1003-13.
[57] NARDONE R, HÖLLER Y, LEIS S, et al. Invasive and non-invasive brain stimulation for treatment of neuropathic pain in patients with spinal cord injury: a review [J]. J Spinal Cord Med, 2014, 37(1): 19-31.
[58] WITTING N, SVENSSON P, JENSEN T S. Differential recruitment of endogenous pain inhibitory systems in neuropathic pain patients [J]. Pain, 2003, 103(1-2): 75-81.
[59] PETERSEN G L, FINNERUP N B, NØRSKOV K N, et al. Placebo manipulations reduce hyperalgesia in neuropathic pain [J]. Pain, 2012, 153(6): 1292-300.
[60] CHIANG M C, BOWEN A, SCHIER L A, et al. Parabrachial Complex: A Hub for Pain and Aversion [J]. J Neurosci, 2019, 39(42): 8225-30.
[61] VIJAYALINGAM S, EZEKIEL U R, XU F, et al. Human iPSC-Derived Neuronal Cells From CTBP1-Mutated Patients Reveal Altered Expression of Neurodevelopmental Gene Networks [J]. Front Neurosci, 2020, 14: 562292.
[62] GAURIAU C, BERNARD J F. Pain pathways and parabrachial circuits in the rat [J]. Exp Physiol, 2002, 87(2): 251-8.
[63] CHOU T C, SCAMMELL T E, GOOLEY J J, et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms [J]. J Neurosci, 2003, 23(33): 10691-702.
[64] GOOLEY J J, SCHOMER A, SAPER C B. The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms [J]. Nat Neurosci, 2006, 9(3): 398-407.
[65] THOMPSON R H, SWANSON L W. Organization of inputs to the dorsomedial nucleus of the hypothalamus: a reexamination with Fluorogold and PHAL in the rat [J]. Brain Res Brain Res Rev, 1998, 27(2): 89-118.
[66] STOTZ-POTTER E H, WILLIS L R, DIMICCO J A. Muscimol acts in dorsomedial but not paraventricular hypothalamic nucleus to suppress cardiovascular effects of stress [J]. J Neurosci, 1996, 16(3): 1173-9.
[67] BERNARDIS L L, BELLINGER L L. The dorsomedial hypothalamic nucleus revisited: 1998 update [J]. Proc Soc Exp Biol Med, 1998, 218(4): 284-306.
[68] MIEDA M, WILLIAMS S C, RICHARDSON J A, et al. The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker [J]. Proc Natl Acad Sci U S A, 2006, 103(32): 12150-5.
[69] KEIFER O P, JR., HURT R C, RESSLER K J, et al. The Physiology of Fear: Reconceptualizing the Role of the Central Amygdala in Fear Learning [J]. Physiology (Bethesda), 2015, 30(5): 389-401.
[70] COMPANION M A, GONZALEZ D A, ROBINSON S L, et al. Lateral habenula-projecting central amygdala circuits expressing GABA and NPY Y1 receptor modulate binge-like ethanol intake in mice [J]. Addict Neurosci, 2022, 3.
[71] SOLANO-CASTIELLA E, ANWANDER A, LOHMANN G, et al. Diffusion tensor imaging segments the human amygdala in vivo [J]. Neuroimage, 2010, 49(4): 2958-65.
[72] MAKINO S, SHIBASAKI T, YAMAUCHI N, et al. Psychological stress increased corticotropin-releasing hormone mRNA and content in the central nucleus of the amygdala but not in the hypothalamic paraventricular nucleus in the rat [J]. Brain Res, 1999, 850(1-2): 136-43.
[73] MARGATHO L O, ELIAS C F, ELIAS L L, et al. Oxytocin in the central amygdaloid nucleus modulates the neuroendocrine responses induced by hypertonic volume expansion in the rat [J]. J Neuroendocrinol, 2013, 25(5): 466-77.
[74] SMITH E S, GEISSLER S A, SCHALLERT T, et al. The role of central amygdala dopamine in disengagement behavior [J]. Behav Neurosci, 2013, 127(2): 164-74.
[75] ZIMMERMAN J M, RABINAK C A, MCLACHLAN I G, et al. The central nucleus of the amygdala is essential for acquiring and expressing conditional fear after overtraining [J]. Learn Mem, 2007, 14(9): 634-44.
[76] MAKINO S, GOLD P W, SCHULKIN J. Corticosterone effects on corticotropin-releasing hormone mRNA in the central nucleus of the amygdala and the parvocellular region of the paraventricular nucleus of the hypothalamus [J]. Brain Res, 1994, 640(1-2): 105-12.
[77] HYYTIÄ P, KOOB G F. GABAA receptor antagonism in the extended amygdala decreases ethanol self-administration in rats [J]. Eur J Pharmacol, 1995, 283(1-3): 151-9.
[78] PARKER K E, PEDERSEN C E, GOMEZ A M, et al. A Paranigral VTA Nociceptin Circuit that Constrains Motivation for Reward [J]. Cell, 2019, 178(3): 653-71.e19.
[79] MARGOLIS E B, MOULTON M G, LAMBETH P S, et al. The life and times of endogenous opioid peptides: Updated understanding of synthesis, spatiotemporal dynamics, and the clinical impact in alcohol use disorder [J]. Neuropharmacology, 2023, 225: 109376.
[80] ZADINA J E, HACKLER L, GE L J, et al. A potent and selective endogenous agonist for the mu-opiate receptor [J]. Nature, 1997, 386(6624): 499-502.
[81] TERSKIY A, WANNEMACHER K M, YADAV P N, et al. Search of the human proteome for endomorphin-1 and endomorphin-2 precursor proteins [J]. Life Sci, 2007, 81(23-24): 1593-601.
[82] KAIYA H. Chapter 21 - Mexneurin [M]//ANDO H, UKENA K, NAGATA S. Handbook of Hormones (Second Edition). San Diego; Academic Press. 2021: 173-4.
[83] TANAKA S. Comparative aspects of intracellular proteolytic processing of peptide hormone precursors: studies of proopiomelanocortin processing [J]. Zoolog Sci, 2003, 20(10): 1183-98.
[84] NETTO C A. Role of Brain Β-endorphin in Memory Modulation Revisited [J]. Neuroscience, 2022, 497: 30-8.
[85] HUGHES J, SMITH T W, KOSTERLITZ H W, et al. Identification of two related pentapeptides from the brain with potent opiate agonist activity [J]. Nature, 1975, 258(5536): 577-80.
[86] BELLA NDONG D, BLAIS V, HOLLERAN B J, et al. Exploration of the fifth position of leu-enkephalin and its role in binding and activating delta (DOP) and mu (MOP) opioid receptors [J]. Peptide Science, 2019, 111(1): e24070.
[87] CHEN M, ZHANG X, FAN J, et al. Dynorphin A (1–8) inhibits oxidative stress and apoptosis in MCAO rats, affording neuroprotection through NMDA receptor and κ-opioid receptor channels [J]. Neuropeptides, 2021, 89: 102182.
[88] CHIANG M C, NGUYEN E K, CANTO-BUSTOS M, et al. Divergent Neural Pathways Emanating from the Lateral Parabrachial Nucleus Mediate Distinct Components of the Pain Response [J]. Neuron, 2020, 106(6): 927-39.e5.
[89] HUO J, DU F, DUAN K, et al. Identification of brain-to-spinal circuits controlling the laterality and duration of mechanical allodynia in mice [J]. Cell Rep, 2023, 42(4): 112300.
[90] HUANG T, LIN S H, MALEWICZ N M, et al. Identifying the pathways required for coping behaviours associated with sustained pain [J]. Nature, 2019, 565(7737): 86-90.
[91] DENG J, ZHOU H, LIN J K, et al. The Parabrachial Nucleus Directly Channels Spinal Nociceptive Signals to the Intralaminar Thalamic Nuclei, but Not the Amygdala [J]. Neuron, 2020, 107(5): 909-23.e6.
[92] LOLIGNIER S, EIJKELKAMP N, WOOD J N. Mechanical allodynia [J]. Pflugers Arch, 2015, 467(1): 133-9.
[93] BARIK A, CHESLER A T. Parallel Parabrachial Pathways Provide Pieces of the Pain Puzzle [J]. Neuron, 2020, 106(6): 873-5.
[94] WANG F, CHEN Y, LIN Y, et al. A parabrachial to hypothalamic pathway mediates defensive behavior [J]. Elife, 2023, 12.
[95] WESS J. Use of Designer G Protein-Coupled Receptors to Dissect Metabolic Pathways [J]. Trends Endocrinol Metab, 2016, 27(9): 600-3.
[96] WESS J, NAKAJIMA K, JAIN S. Novel designer receptors to probe GPCR signaling and physiology [J]. Trends Pharmacol Sci, 2013, 34(7): 385-92.
[97] ZHU H, ROTH B L. Silencing synapses with DREADDs [J]. Neuron, 2014, 82(4): 723-5.
[98] KATO F, SUGIMURA Y K, TAKAHASHI Y. Pain-Associated Neural Plasticity in the Parabrachial to Central Amygdala Circuit : Pain Changes the Brain, and the Brain Changes the Pain [J]. Adv Exp Med Biol, 2018, 1099: 157-66.
[99] SUN L, LIU R, GUO F, et al. Parabrachial nucleus circuit governs neuropathic pain-like behavior [J]. Nat Commun, 2020, 11(1): 5974.
[100]SCAMMELL T E, JACKSON A C, FRANKS N P, et al. Histamine: neural circuits and new medications [J]. Sleep, 2019, 42(1).
[101]KIM H, KIM M, IM S K, et al. Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes [J]. Lab Anim Res, 2018, 34(4): 147-59.
[102]KIM H, FANG S. Crosstalk between FXR and TGR5 controls glucagon-like peptide 1 secretion to maintain glycemic homeostasis [J]. Lab Anim Res, 2018, 34(4): 140-6.
[103]SUZUKI E, NAKAYAMA M. VCre/VloxP and SCre/SloxP: new site-specific recombination systems for genome engineering [J]. Nucleic Acids Res, 2011, 39(8): e49.
[104]ZHANG X Y, DOU Y N, YUAN L, et al. Different neuronal populations mediate inflammatory pain analgesia by exogenous and endogenous opioids [J]. Elife, 2020, 9.
[105]GANGULY K, SCHINDER A F, WONG S T, et al. GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition [J]. Cell, 2001, 105(4): 521-32.
[106]CALLAWAY E M, LUO L. Monosynaptic Circuit Tracing with Glycoprotein-Deleted Rabies Viruses [J]. J Neurosci, 2015, 35(24): 8979-85.
修改评论