中文版 | English
题名

臂旁核Penk神经元在机械痛觉敏化中的作用及其机制研究

其他题名
THE ROLE OF LPBN PENK NEURON IN THE INDUCTION OF MECHANICAL ALLDYNIA
姓名
姓名拼音
LIU Xi
学号
12032133
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
程龙珍
导师单位
神经生物学系
论文答辩日期
2023-11-14
论文提交日期
2023-12-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

伤害性刺激在多数情况下能够引起疼痛的感觉,但并非总是如此,例如在激烈的战斗中,某些士兵在严重受伤的当时并未感觉到疼痛;与此同时,非伤害性的刺激,如衣物轻轻地划过皮肤,在炎症或神经损伤后,却可能引起剧烈的疼痛。机械触诱发痛是炎症性和神经病理性疼痛的一个特征性症状。触诱发痛主要分为两种类型,一种是静态(点状)触诱发痛,是由如von Frey毛等对皮肤表面施加稳定的轻触压力引起;另外一种是动态触诱发痛,是由如画笔等轻轻地划过皮肤的表面引起的。触诱发痛对吗啡等阿片类镇痛药相对不敏感,属于顽固性和难治性的异常疼痛,严重影响患者的日常起居和工作生活质量,目前临床上尚缺乏有效的治疗手段,主要原因是其感知的神经机制尚不清楚。Ronald MelzakPatrick Wall两位伟大的科学家在1965年提出的著名的“痛的闸门控制学说”认为,触诱发痛的发生主要是由于慢性疼痛的情况下,脊髓背角的“闸门控制”失效,从而使正常情况下被“门控”的传递触觉刺激的低阈值机械感受器low threshold mechanoreceptors, LTMRs能够激活脊髓背角特异传递痛觉的神经元,从而使慢性疼痛患者在受到非痛的轻触刺激后感知到了痛觉。

痛的“闸门学说”可以很好地解释非痛刺激引起的疼痛现象。然而几十年过去了,研究者们虽然找到了脊髓背角介导机械痛的兴奋性和抑制性神经元类型及其脊髓上行神经环路,但是,关于痛觉机械力感知异常的神经环路机制研究,目前国内外仍然处于起步阶段,诸多核心科学问题尚未回答,是当前研究的热点和前沿领域。例如,临床上存在一些慢性疼痛患者,单侧的局部炎症或神经损伤会导致长时间、全身性的机械痛觉敏化,然而对于大多数患者来说,机械痛只是短暂的,或仅局限于单侧。控制机械痛觉敏化的这些不同时空特征的细胞和神经环路机制,特别是触诱发痛侧性laterality的控制机制,目前仍知之甚少。我们近期的一项研究揭示,从脑干lPBNOprm1神经元,经由下丘脑dmHPdyn神经元,再投射到脊髓背角spinal dorsal horn,SDH的脑-脊髓下行神经环路lPBNOprm1→dmHPdyn→SDH,通过“下丘脑Dyn-脊髓KOR”轴控制外周炎症和或神经损伤引起的机械痛觉敏化触诱发痛的持续时间和扩散范围。进一步,本项目拟在此前期工作基础上,进一步研究痛觉机械力感知异常的脑下行神经环路机制。

在本研究中使用化学遗传学以及条件性敲除等遗传学方法发现,从脑干外侧臂旁核lateral parabrachial nucleuslPBN)前脑啡肽(preproenkephalinPenk神经元(lPBNPenk)投射到背腹侧下丘脑(dorsal medial regions of hypothalamusdmH)的γ-氨基丁酸(Gamma-Aminobutyric AcidGABA)能神经元(dmHGABA环路(lPBNPenk – dmHGABA)介导了机械痛觉敏化的诱导。主要实验结果如下:

  1. 背侧臂旁核(superior-internal lPBNslPBN)参与机械痛觉敏化的诱导和或表达。
  2. 揭示lPBN Penk神经元介导机械痛觉敏化的诱导和或表达。
  3. 激活slPBN投射到dmHPenk神经元时可以直接产生机械痛觉敏化,当抑制slPBN投射到dmHPenk神经元时,可以阻止由辣椒素引起的机械痛觉敏化的产生。
  4. 抑制由下丘脑投射到脊髓背角(spinal dorsal hornSDH)的γ-氨基丁酸(Gamma-Aminobutyric AcidGABA)能神经元,正常小鼠出现机械痛觉敏化,而激活下丘脑投射到SDHGABA能神经元时,可以阻断由辣椒素引起的机械痛觉敏化。

综上所述,本课题找到了一条脑内调控机械痛觉敏化产生的环路,从slPBNPenk神经元到dmHGABA能神经元。当兴奋环路中的slPBNPenk→dmH投射神经元或者抑制dmHGABA→SDH投射神经元时,都会打开脊髓的门控,促使机械痛觉敏化的产生。相反,当抑制环路中的slPBNPenk→dmH投射神经元或者兴奋dmHGABA→SDH投射神经元时,可以抑制由辣椒素诱发的机械痛觉敏化。本研究目标是寻找介导机械痛觉敏化的脑下行神经环路,研究结果希望可以为为治疗机械力感知异常导致的慢性持续性疼痛,如临床上顽固性和难治性的异常机械触诱发痛等,提供基础理论支撑和潜在的新型药物研发和临床治疗靶点和新思路。

其他摘要

In most cases, noxious stimuli can produce pain perception, but not always. For instance, in the battle field, soldiers were severly injured, but did not feel pain. In contrast, non-painful stimuli, such as gentle moving of clothes across cutaneous skin, could induce intense pain following inflammation or nerve injury. Mechanical allodynia is a hallmark symptom of inflammatory and neuropathic pain. Mechanical allodynia is mainly divided into two types: static (punctate) allodynia, caused by applying steady light pressure across the skin such as with von Frey filaments; and dynamic allodynia, caused by lightly brushing objects such as a brush across the skin's surface. Mechanical allodynia is relatively resistant to opioids such as morphine and represents a type of refractory and intractable abnormal pain. It severely affects the quality of patients life, and effective treatment methods are still lacking in clinical practice. The main reason is that the neural mechanism of its perception is not yet clear. In 1965, two great scientists, Ronald Melzak and Patrick Wall, proposed the famous "Gate Control Theory of Pain", which suggests that the occurrence of mechanically induced pain is mainly due to the failure of "gate control" in the dorsal horn of the spinal cord under chronic pain conditions. This allows low-threshold mechanoreceptors (LTMRs), which are normally "gated" and transmit tactile stimuli, to activate specific neurons in the dorsal horn of the spinal cord that transmit pain, thus causing chronic pain patients to perceive pain after receiving non-painful light touch stimuli.

The "Gate Theory of Pain" can well explain the phenomenon of pain caused by non-painful stimuli. However, decades have passed, and although researchers have identified the excitatory and inhibitory neuron types in the dorsal horn of the spinal cord that mediate mechanical pain and their spinal ascending neural circuits, research on the neural circuit mechanisms of abnormal mechanical pain perception is still in its infancy both domestically and internationally. Many core scientific questions remain unanswered, making this a current research hotspot and frontier field. For example, in clinical settings, there are chronic pain patients where unilateral local inflammation or nerve damage can lead to prolonged, systemic mechanical allodynia. However, for most patients, mechanical pain is only transient or confined to one side. The cellular and neural circuit mechanisms that control these different spatial and temporal characteristics of mechanical allodynia, especially the control mechanisms of mechanical allodynia laterality, are still largely unknown. Our recent study reveals that a brain-spinal descending neural circuit (lPBNOprm1→dmHPdyn→SDH) from the lPBNOprm1neurons in the brainstem, via dmHPdyn neurons in the dorsal medial regions of hypothalamus, projecting to the spinal dorsal horn (SDH), controls the duration and spread of mechanical allodynia caused by peripheral inflammation and/or nerve injury through the "Hypothalamic Dyn-Spinal KOR" axis. Furthermore, this project intends to further study the neural circuit mechanisms of abnormal mechanical pain perception in the descending neural circuits of the brain, based on the preliminary work.

In this study, using chemogenetics and conditional knockout genetic methods, we discovered that the circuit from the preproenkephalin (Penk) neurons in the lateral parabrachial nucleus (lPBN) projecting to the gamma-aminobutyric acid (GABA) neurons in the dorsal medial regions of the dorsal medial regions of hypothalamus (dmH) (lPBNPenk – dmHGABA) mediates the induction of mechanical allodynia. The main experimental results are as follows:

The superior-internal lPBN (slPBN) is involved in the induction and/or expression of mechanical allodynia.

Revealed that lPBN Penk neurons mediate the induction and/or expression of mechanical allodynia.

Activation of Penk neurons in the slPBN projecting to the dmH can directly produce mechanical allodynia. In contrast, inhibiting Penk neurons in the slPBN projecting to the dmH can prevent the occurrence of mechanical allodynia caused by capsaicin.

Inhibiting GABA neurons from the dorsal medial regions of hypothalamus projecting to the spinal dorsal horn (SDH) causes mechanical allodynia in normal mice. In contrast, activating GABA neurons from the dorsal medial regions of hypothalamus projecting to the SDH can block the mechanical allodynia caused by capsaicin.

In summary, this study found a brain circuit that regulates the induction of mechanical allodynia, from Penk neurons in the slPBN to GABA neurons in the dmH. Exciting neurons in the slPBNPenk→dmH projection or inhibiting dmHGABA→SDH projection neurons both open the spinal gate, leading to the generation of mechanical allodynia. Conversely, inhibiting neurons in the slPBNPenk→dmH projection or exciting dmHGABA→SDH projection neurons can suppress mechanical allodynia induced by capsaicin. The goal of this study is to find the brain descending neural circuit that mediates mechanical allodynia. The research results hope to provide theoretical support and potential new drug development and clinical treatment targets and new ideas for treating chronic persistent pain caused by abnormal mechanical force perception, such as refractory and intractable abnormal mechanical allodynia in clinical settings.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-12
参考文献列表

[1] TRUINI A, GARCIA-LARREA L, CRUCCU G. Reappraising neuropathic pain in humans--how symptoms help disclose mechanisms [J]. Nat Rev Neurol, 2013, 9(10): 572-82.
[2] WOOLF C J. Central sensitization: implications for the diagnosis and treatment of pain [J]. Pain, 2011, 152(3 Suppl): S2-s15.
[3] OCHOA J L, YARNITSKY D. Mechanical hyperalgesias in neuropathic pain patients: dynamic and static subtypes [J]. Ann Neurol, 1993, 33(5): 465-72.
[4] MELZACK R, WALL P D. Pain mechanisms: a new theory [J]. Science, 1965, 150(3699): 971-9.
[5] DUAN B, CHENG L, BOURANE S, et al. Identification of spinal circuits transmitting and gating mechanical pain [J]. Cell, 2014, 159(6): 1417-32.
[6] KILO S, SCHMELZ M, KOLTZENBURG M, et al. Different patterns of hyperalgesia induced by experimental inflammation in human skin [J]. Brain, 1994, 117 ( Pt 2): 385-96.
[7] KOLTZENBURG M, TOREBJÖRK H E, WAHREN L K. Nociceptor modulated central sensitization causes mechanical hyperalgesia in acute chemogenic and chronic neuropathic pain [J]. Brain, 1994, 117 ( Pt 3): 579-91.
[8] GOTTRUP H, KRISTENSEN A D, BACH F W, et al. Aftersensations in experimental and clinical hypersensitivity [J]. Pain, 2003, 103(1-2): 57-64.
[9] SAMUELSSON M, LEFFLER A S, HANSSON P. Dynamic mechanical allodynia in the secondary hyperalgesic area in the capsaicin model-Perceptually similar phenomena as in painful neuropathy? [J]. Scand J Pain, 2011, 2(2): 85-92.
[10] GARCIA-LARREA L, CONVERS P, MAGNIN M, et al. Laser-evoked potential abnormalities in central pain patients: the influence of spontaneous and provoked pain [J]. Brain, 2002, 125(Pt 12): 2766-81.
[11] DUCREUX D, ATTAL N, PARKER F, et al. Mechanisms of central neuropathic pain: a combined psychophysical and fMRI study in syringomyelia [J]. Brain, 2006, 129(Pt 4): 963-76.
[12] GRACELY R H, LYNCH S A, BENNETT G J. Painful neuropathy: altered central processing maintained dynamically by peripheral input [J]. Pain, 1992, 51(2): 175-94.
[13] CAMPBELL J N, RAJA S N, MEYER R A, et al. Myelinated afferents signal the hyperalgesia associated with nerve injury [J]. Pain, 1988, 32(1): 89-94.
[14] TRUINI A, BIASIOTTA A, DI STEFANO G, et al. Peripheral nociceptor sensitization mediates allodynia in patients with distal symmetric polyneuropathy [J]. J Neurol, 2013, 260(3): 761-6.
[15] LILJENCRANTZ J, BJÖRNSDOTTER M, MORRISON I, et al. Altered C-tactile processing in human dynamic tactile allodynia [J]. Pain, 2013, 154(2): 227-34.
[16] SEAL R P, WANG X, GUAN Y, et al. Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors [J]. Nature, 2009, 462(7273): 651-5.
[17] GREENSPAN D J, OHARA S, SARLANI E, et al. Allodynia in patients with post-stroke central pain (CPSP) studied by statistical quantitative sensory testing within individuals [J]. Pain, 2004, 109(3): 357-66.
[18] PARK K M, MAX M B, ROBINOVITZ E, et al. Effects of intravenous ketamine, alfentanil, or placebo on pain, pinprick hyperalgesia, and allodynia produced by intradermal capsaicin in human subjects [J]. Pain, 1995, 63(2): 163-72.
[19] GOTTRUP H, BACH F W, JUHL G, et al. Differential effect of ketamine and lidocaine on spontaneous and mechanical evoked pain in patients with nerve injury pain [J]. Anesthesiology, 2006, 104(3): 527-36.
[20] LAMOTTE R H, SHAIN C N, SIMONE D A, et al. Neurogenic hyperalgesia: psychophysical studies of underlying mechanisms [J]. J Neurophysiol, 1991, 66(1): 190-211.
[21] ZIEGLER E A, MAGERL W, MEYER R A, et al. Secondary hyperalgesia to punctate mechanical stimuli. Central sensitization to A-fibre nociceptor input [J]. Brain, 1999, 122 ( Pt 12): 2245-57.
[22] CHAPLAN S R, BACH F W, POGREL J W, et al. Quantitative assessment of tactile allodynia in the rat paw [J]. J Neurosci Methods, 1994, 53(1): 55-63.
[23] KOLTZENBURG M, LUNDBERG L E R, TOREBJÖRK E H. Dynamic and static components of mechanical hyperalgesia in human hairy skin [J]. Pain, 1992, 51(2): 207-19.
[24] RAJA S N, CAMPBELL J N, MEYER R A. Evidence for different mechanisms of primary and secondary hyperalgesia following heat injury to the glabrous skin [J]. Brain, 1984, 107 ( Pt 4): 1179-88.
[25] ZEILIG G, ENOSH S, RUBIN-ASHER D, et al. The nature and course of sensory changes following spinal cord injury: predictive properties and implications on the mechanism of central pain [J]. Brain, 2012, 135(Pt 2): 418-30.
[26] HARRISON J L, DAVIS K D. Cold-evoked pain varies with skin type and cooling rate: a psychophysical study in humans [J]. Pain, 1999, 83(2): 123-35.
[27] SIMONE D A, KAJANDER K C. Responses of cutaneous A-fiber nociceptors to noxious cold [J]. J Neurophysiol, 1997, 77(4): 2049-60.
[28] CAMPERO M, SERRA J, BOSTOCK H, et al. Slowly conducting afferents activated by innocuous low temperature in human skin [J]. J Physiol, 2001, 535(Pt 3): 855-65.
[29] CAMPERO M, BOSTOCK H. Unmyelinated afferents in human skin and their responsiveness to low temperature [J]. Neurosci Lett, 2010, 470(3): 188-92.
[30] MADRID R, DE LA PEÑA E, DONOVAN-RODRIGUEZ T, et al. Variable threshold of trigeminal cold-thermosensitive neurons is determined by a balance between TRPM8 and Kv1 potassium channels [J]. J Neurosci, 2009, 29(10): 3120-31.
[31] NAMER B, KLEGGETVEIT I P, HANDWERKER H, et al. Role of TRPM8 and TRPA1 for cold allodynia in patients with cold injury [J]. Pain, 2008, 139(1): 63-72.
[32] ZIMMERMANN K, DEUIS J R, INSERRA M C, et al. Analgesic treatment of ciguatoxin-induced cold allodynia [J]. Pain, 2013, 154(10): 1999-2006.
[33] JØRUM E, WARNCKE T, STUBHAUG A. Cold allodynia and hyperalgesia in neuropathic pain: the effect of N-methyl-D-aspartate (NMDA) receptor antagonist ketamine--a double-blind, cross-over comparison with alfentanil and placebo [J]. Pain, 2003, 101(3): 229-35.
[34] JOHANEK L M, MEYER R A, FRIEDMAN R M, et al. A role for polymodal C-fiber afferents in nonhistaminergic itch [J]. J Neurosci, 2008, 28(30): 7659-69.
[35] TREEDE R D, MEYER R A, RAJA S N, et al. Peripheral and central mechanisms of cutaneous hyperalgesia [J]. Prog Neurobiol, 1992, 38(4): 397-421.
[36] MAIER C, BARON R, TÖLLE T R, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes [J]. Pain, 2010, 150(3): 439-50.
[37] DIB-HAJJ S D, RUSH A M, CUMMINS T R, et al. Gain-of-function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons [J]. Brain, 2005, 128(Pt 8): 1847-54.
[38] ØRSTAVIK K, WEIDNER C, SCHMIDT R, et al. Pathological C-fibres in patients with a chronic painful condition [J]. Brain, 2003, 126(Pt 3): 567-78.
[39] MA W, ZHANG Y, BANTEL C, et al. Medium and large injured dorsal root ganglion cells increase TRPV-1, accompanied by increased alpha2C-adrenoceptor co-expression and functional inhibition by clonidine [J]. Pain, 2005, 113(3): 386-94.
[40] URANO H, ARA T, FUJINAMI Y, et al. Aberrant TRPV1 expression in heat hyperalgesia associated with trigeminal neuropathic pain [J]. Int J Med Sci, 2012, 9(8): 690-7.
[41] DRAY A. Neuropathic pain: emerging treatments [J]. Br J Anaesth, 2008, 101(1): 48-58.
[42] VRANKEN J H, HOLLMANN M W, VAN DER VEGT M H, et al. Duloxetine in patients with central neuropathic pain caused by spinal cord injury or stroke: a randomized, double-blind, placebo-controlled trial [J]. Pain, 2011, 152(2): 267-73.
[43] SINDRUP S H, ANDERSEN G, MADSEN C, et al. Tramadol relieves pain and allodynia in polyneuropathy: a randomised, double-blind, controlled trial [J]. Pain, 1999, 83(1): 85-90.
[44] NURMIKKO T J, SERPELL M G, HOGGART B, et al. Sativex successfully treats neuropathic pain characterised by allodynia: a randomised, double-blind, placebo-controlled clinical trial [J]. Pain, 2007, 133(1-3): 210-20.
[45] VESTERGAARD K, ANDERSEN G, GOTTRUP H, et al. Lamotrigine for central poststroke pain: a randomized controlled trial [J]. Neurology, 2001, 56(2): 184-90.
[46] WALLACE M S, MAGNUSON S, RIDGEWAY B. Efficacy of oral mexiletine for neuropathic pain with allodynia: a double-blind, placebo-controlled, crossover study [J]. Reg Anesth Pain Med, 2000, 25(5): 459-67.
[47] ROWBOTHAM M C, DAVIES P S, FIELDS H L. Topical lidocaine gel relieves postherpetic neuralgia [J]. Ann Neurol, 1995, 37(2): 246-53.
[48] RANOUX D, ATTAL N, MORAIN F, et al. Botulinum toxin type A induces direct analgesic effects in chronic neuropathic pain [J]. Ann Neurol, 2008, 64(3): 274-83.
[49] ATTAL N, GUIRIMAND F, BRASSEUR L, et al. Effects of IV morphine in central pain: a randomized placebo-controlled study [J]. Neurology, 2002, 58(4): 554-63.
[50] ATTAL N, ROUAUD J, BRASSEUR L, et al. Systemic lidocaine in pain due to peripheral nerve injury and predictors of response [J]. Neurology, 2004, 62(2): 218-25.
[51] GORMSEN L, FINNERUP N B, ALMQVIST P M, et al. The efficacy of the AMPA receptor antagonist NS1209 and lidocaine in nerve injury pain: a randomized, double-blind, placebo-controlled, three-way crossover study [J]. Anesth Analg, 2009, 108(4): 1311-9.
[52] SIMPSON D M, SCHIFITTO G, CLIFFORD D B, et al. Pregabalin for painful HIV neuropathy: a randomized, double-blind, placebo-controlled trial [J]. Neurology, 2010, 74(5): 413-20.
[53] FINNERUP N B, SINDRUP S H, BACH F W, et al. Lamotrigine in spinal cord injury pain: a randomized controlled trial [J]. Pain, 2002, 96(3): 375-83.
[54] FALAH M, MADSEN C, HOLBECH J V, et al. A randomized, placebo-controlled trial of levetiracetam in central pain in multiple sclerosis [J]. Eur J Pain, 2012, 16(6): 860-9.
[55] FINNERUP N B, BIERING-SØRENSEN F, JOHANNESEN I L, et al. Intravenous lidocaine relieves spinal cord injury pain: a randomized controlled trial [J]. Anesthesiology, 2005, 102(5): 1023-30.
[56] MORENO-DUARTE I, MORSE L R, ALAM M, et al. Targeted therapies using electrical and magnetic neural stimulation for the treatment of chronic pain in spinal cord injury [J]. Neuroimage, 2014, 85 Pt 3: 1003-13.
[57] NARDONE R, HÖLLER Y, LEIS S, et al. Invasive and non-invasive brain stimulation for treatment of neuropathic pain in patients with spinal cord injury: a review [J]. J Spinal Cord Med, 2014, 37(1): 19-31.
[58] WITTING N, SVENSSON P, JENSEN T S. Differential recruitment of endogenous pain inhibitory systems in neuropathic pain patients [J]. Pain, 2003, 103(1-2): 75-81.
[59] PETERSEN G L, FINNERUP N B, NØRSKOV K N, et al. Placebo manipulations reduce hyperalgesia in neuropathic pain [J]. Pain, 2012, 153(6): 1292-300.
[60] CHIANG M C, BOWEN A, SCHIER L A, et al. Parabrachial Complex: A Hub for Pain and Aversion [J]. J Neurosci, 2019, 39(42): 8225-30.
[61] VIJAYALINGAM S, EZEKIEL U R, XU F, et al. Human iPSC-Derived Neuronal Cells From CTBP1-Mutated Patients Reveal Altered Expression of Neurodevelopmental Gene Networks [J]. Front Neurosci, 2020, 14: 562292.
[62] GAURIAU C, BERNARD J F. Pain pathways and parabrachial circuits in the rat [J]. Exp Physiol, 2002, 87(2): 251-8.
[63] CHOU T C, SCAMMELL T E, GOOLEY J J, et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms [J]. J Neurosci, 2003, 23(33): 10691-702.
[64] GOOLEY J J, SCHOMER A, SAPER C B. The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms [J]. Nat Neurosci, 2006, 9(3): 398-407.
[65] THOMPSON R H, SWANSON L W. Organization of inputs to the dorsomedial nucleus of the hypothalamus: a reexamination with Fluorogold and PHAL in the rat [J]. Brain Res Brain Res Rev, 1998, 27(2): 89-118.
[66] STOTZ-POTTER E H, WILLIS L R, DIMICCO J A. Muscimol acts in dorsomedial but not paraventricular hypothalamic nucleus to suppress cardiovascular effects of stress [J]. J Neurosci, 1996, 16(3): 1173-9.
[67] BERNARDIS L L, BELLINGER L L. The dorsomedial hypothalamic nucleus revisited: 1998 update [J]. Proc Soc Exp Biol Med, 1998, 218(4): 284-306.
[68] MIEDA M, WILLIAMS S C, RICHARDSON J A, et al. The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker [J]. Proc Natl Acad Sci U S A, 2006, 103(32): 12150-5.
[69] KEIFER O P, JR., HURT R C, RESSLER K J, et al. The Physiology of Fear: Reconceptualizing the Role of the Central Amygdala in Fear Learning [J]. Physiology (Bethesda), 2015, 30(5): 389-401.
[70] COMPANION M A, GONZALEZ D A, ROBINSON S L, et al. Lateral habenula-projecting central amygdala circuits expressing GABA and NPY Y1 receptor modulate binge-like ethanol intake in mice [J]. Addict Neurosci, 2022, 3.
[71] SOLANO-CASTIELLA E, ANWANDER A, LOHMANN G, et al. Diffusion tensor imaging segments the human amygdala in vivo [J]. Neuroimage, 2010, 49(4): 2958-65.
[72] MAKINO S, SHIBASAKI T, YAMAUCHI N, et al. Psychological stress increased corticotropin-releasing hormone mRNA and content in the central nucleus of the amygdala but not in the hypothalamic paraventricular nucleus in the rat [J]. Brain Res, 1999, 850(1-2): 136-43.
[73] MARGATHO L O, ELIAS C F, ELIAS L L, et al. Oxytocin in the central amygdaloid nucleus modulates the neuroendocrine responses induced by hypertonic volume expansion in the rat [J]. J Neuroendocrinol, 2013, 25(5): 466-77.
[74] SMITH E S, GEISSLER S A, SCHALLERT T, et al. The role of central amygdala dopamine in disengagement behavior [J]. Behav Neurosci, 2013, 127(2): 164-74.
[75] ZIMMERMAN J M, RABINAK C A, MCLACHLAN I G, et al. The central nucleus of the amygdala is essential for acquiring and expressing conditional fear after overtraining [J]. Learn Mem, 2007, 14(9): 634-44.
[76] MAKINO S, GOLD P W, SCHULKIN J. Corticosterone effects on corticotropin-releasing hormone mRNA in the central nucleus of the amygdala and the parvocellular region of the paraventricular nucleus of the hypothalamus [J]. Brain Res, 1994, 640(1-2): 105-12.
[77] HYYTIÄ P, KOOB G F. GABAA receptor antagonism in the extended amygdala decreases ethanol self-administration in rats [J]. Eur J Pharmacol, 1995, 283(1-3): 151-9.
[78] PARKER K E, PEDERSEN C E, GOMEZ A M, et al. A Paranigral VTA Nociceptin Circuit that Constrains Motivation for Reward [J]. Cell, 2019, 178(3): 653-71.e19.
[79] MARGOLIS E B, MOULTON M G, LAMBETH P S, et al. The life and times of endogenous opioid peptides: Updated understanding of synthesis, spatiotemporal dynamics, and the clinical impact in alcohol use disorder [J]. Neuropharmacology, 2023, 225: 109376.
[80] ZADINA J E, HACKLER L, GE L J, et al. A potent and selective endogenous agonist for the mu-opiate receptor [J]. Nature, 1997, 386(6624): 499-502.
[81] TERSKIY A, WANNEMACHER K M, YADAV P N, et al. Search of the human proteome for endomorphin-1 and endomorphin-2 precursor proteins [J]. Life Sci, 2007, 81(23-24): 1593-601.
[82] KAIYA H. Chapter 21 - Mexneurin [M]//ANDO H, UKENA K, NAGATA S. Handbook of Hormones (Second Edition). San Diego; Academic Press. 2021: 173-4.
[83] TANAKA S. Comparative aspects of intracellular proteolytic processing of peptide hormone precursors: studies of proopiomelanocortin processing [J]. Zoolog Sci, 2003, 20(10): 1183-98.
[84] NETTO C A. Role of Brain Β-endorphin in Memory Modulation Revisited [J]. Neuroscience, 2022, 497: 30-8.
[85] HUGHES J, SMITH T W, KOSTERLITZ H W, et al. Identification of two related pentapeptides from the brain with potent opiate agonist activity [J]. Nature, 1975, 258(5536): 577-80.
[86] BELLA NDONG D, BLAIS V, HOLLERAN B J, et al. Exploration of the fifth position of leu-enkephalin and its role in binding and activating delta (DOP) and mu (MOP) opioid receptors [J]. Peptide Science, 2019, 111(1): e24070.
[87] CHEN M, ZHANG X, FAN J, et al. Dynorphin A (1–8) inhibits oxidative stress and apoptosis in MCAO rats, affording neuroprotection through NMDA receptor and κ-opioid receptor channels [J]. Neuropeptides, 2021, 89: 102182.
[88] CHIANG M C, NGUYEN E K, CANTO-BUSTOS M, et al. Divergent Neural Pathways Emanating from the Lateral Parabrachial Nucleus Mediate Distinct Components of the Pain Response [J]. Neuron, 2020, 106(6): 927-39.e5.
[89] HUO J, DU F, DUAN K, et al. Identification of brain-to-spinal circuits controlling the laterality and duration of mechanical allodynia in mice [J]. Cell Rep, 2023, 42(4): 112300.
[90] HUANG T, LIN S H, MALEWICZ N M, et al. Identifying the pathways required for coping behaviours associated with sustained pain [J]. Nature, 2019, 565(7737): 86-90.
[91] DENG J, ZHOU H, LIN J K, et al. The Parabrachial Nucleus Directly Channels Spinal Nociceptive Signals to the Intralaminar Thalamic Nuclei, but Not the Amygdala [J]. Neuron, 2020, 107(5): 909-23.e6.
[92] LOLIGNIER S, EIJKELKAMP N, WOOD J N. Mechanical allodynia [J]. Pflugers Arch, 2015, 467(1): 133-9.
[93] BARIK A, CHESLER A T. Parallel Parabrachial Pathways Provide Pieces of the Pain Puzzle [J]. Neuron, 2020, 106(6): 873-5.
[94] WANG F, CHEN Y, LIN Y, et al. A parabrachial to hypothalamic pathway mediates defensive behavior [J]. Elife, 2023, 12.
[95] WESS J. Use of Designer G Protein-Coupled Receptors to Dissect Metabolic Pathways [J]. Trends Endocrinol Metab, 2016, 27(9): 600-3.
[96] WESS J, NAKAJIMA K, JAIN S. Novel designer receptors to probe GPCR signaling and physiology [J]. Trends Pharmacol Sci, 2013, 34(7): 385-92.
[97] ZHU H, ROTH B L. Silencing synapses with DREADDs [J]. Neuron, 2014, 82(4): 723-5.
[98] KATO F, SUGIMURA Y K, TAKAHASHI Y. Pain-Associated Neural Plasticity in the Parabrachial to Central Amygdala Circuit : Pain Changes the Brain, and the Brain Changes the Pain [J]. Adv Exp Med Biol, 2018, 1099: 157-66.
[99] SUN L, LIU R, GUO F, et al. Parabrachial nucleus circuit governs neuropathic pain-like behavior [J]. Nat Commun, 2020, 11(1): 5974.
[100]SCAMMELL T E, JACKSON A C, FRANKS N P, et al. Histamine: neural circuits and new medications [J]. Sleep, 2019, 42(1).
[101]KIM H, KIM M, IM S K, et al. Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes [J]. Lab Anim Res, 2018, 34(4): 147-59.
[102]KIM H, FANG S. Crosstalk between FXR and TGR5 controls glucagon-like peptide 1 secretion to maintain glycemic homeostasis [J]. Lab Anim Res, 2018, 34(4): 140-6.
[103]SUZUKI E, NAKAYAMA M. VCre/VloxP and SCre/SloxP: new site-specific recombination systems for genome engineering [J]. Nucleic Acids Res, 2011, 39(8): e49.
[104]ZHANG X Y, DOU Y N, YUAN L, et al. Different neuronal populations mediate inflammatory pain analgesia by exogenous and endogenous opioids [J]. Elife, 2020, 9.
[105]GANGULY K, SCHINDER A F, WONG S T, et al. GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition [J]. Cell, 2001, 105(4): 521-32.
[106]CALLAWAY E M, LUO L. Monosynaptic Circuit Tracing with Glycoprotein-Deleted Rabies Viruses [J]. J Neurosci, 2015, 35(24): 8979-85.

所在学位评定分委会
生物学
国内图书分类号
Q26
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/633341
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
柳溪. 臂旁核Penk神经元在机械痛觉敏化中的作用及其机制研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032133-柳溪-生物系.pdf(8432KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[柳溪]的文章
百度学术
百度学术中相似的文章
[柳溪]的文章
必应学术
必应学术中相似的文章
[柳溪]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。