中文版 | English
题名

基于三维血管化肿瘤模型评估及优化肝癌介入治疗和免疫治疗

其他题名
ENGINEERING ORGAN-STRUCTURED TUMOR MODELS FOR EVALUATION AND OPTIMIZATION OF LIVER CANCER INTERVENTIONAL THERAPY AND IMMUNOTHERAPY
姓名
姓名拼音
XIAO Jingyu
学号
11930890
学位类型
博士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
郭琼玉
导师单位
生物医学工程系
论文答辩日期
2023-07-12
论文提交日期
2023-12-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  原发性肝癌是我国第四大常见的恶性肿瘤,由于高侵袭率和致死率仍然面临严峻的健康挑战。经动脉化疗栓塞(TACE)作为不可手术切除肝癌的一线疗法,临床上主要通过介入微创手术使用载药栓塞剂阻断肿瘤供血动脉并同时疏送化疗药物至肿瘤部位。然而,TACE 疗法疗效并不理想,仍存在误栓风险和栓塞不完全易导致高复发率等痛点。目前,TACE 疗法与其他疗法(如局部热疗、免疫疗法等)结合成为了肝癌治疗研究的主要方向,但均缺乏有效的评估模型而强烈依赖于临床实验,导致研究进展缓慢。本研究的主要目的是构建适用于评估富血供肝癌疗法的三维血管化肿瘤模型,深入评估并探究TACE 疗法中栓塞化疗的关键性难点,并在此基础上开发精准栓塞疗法减少误栓风险以及优化免疫疗法巩固治疗疗效,为 TACE治疗提供更加有效的辅助治疗方案。

    本研究中我们创新性地提出了一种三维血管化肿瘤模型,该模型利用脱细胞肝脏支架植入肿瘤细胞,保持了肝静脉、门静脉和肝动脉等多套血管的畅通,并在此基础上首次实现多种疗法的评估。我们首先利用该模型对TACE疗法进行评估,通过门静脉注射药物洗脱微球模拟栓塞化疗,并通过肝静脉输送氧气和养分保证肿瘤模型的细胞活性,对栓塞分布、药物扩散深度以及细胞对药物扩散和营养供应平衡的反应进行评估与量化,发现临床用球形载药栓塞微球易漂移产生误栓,且栓塞血管外基质药物有效递送深度受制于肿瘤周围的残留血供,极大地影响了栓塞化疗疗效。基于此,我们提出了经导管精准光热栓塞(EPPE)辅助疗法,首次利用介入微导管将光纤精准导入供血血管入口处,通过光热效应诱导局部栓塞,达到完全阻断整个肿瘤血液供应的目的,并在血管化肿瘤模型和大鼠肝脏模型中进行了验证。此外,肝癌免疫疗法有望解决TACE疗法中残余血供的问题,但仍缺乏特异性靶点。我们提出了新抗原相关的过继性毒性T淋巴细胞(CTL)免疫疗法,成功筛选出了6条具有高免疫原性肝癌新抗原,建立了新抗原修饰的HepG2三维血管化肿瘤模型,并对模型中新抗原修饰的HepG2细胞与特异性T细胞的免疫反应进行了验证。

    综上所述,我们构建了三维血管化肝脏肿瘤模型对TACE疗法,EPPE疗法和CTL免疫疗法等三种肝癌疗法进行了有效的评估。其中EPPE疗法作为一种全新的介入热疗方法,不仅解决了光热穿透深度的难题,而且避免了传统TACE疗法误栓风险;同时CTL免疫疗法成功筛选出了多个特异性靶点,有望用于开发个性化肝癌疫苗。这两种新型疗法有望与TACE疗法结合,提供新的治疗策略以提高肝癌的治疗疗效。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-12
参考文献列表

[1] ANWANWAN D, SINGH S K, SINGH S, et al. Challenges in liver cancer and possible treatment approaches [J]. Biochim Biophys Acta Rev Cancer, 2020, 1873(1): 188314.
[2] COURI T, PILLAI A. Goals and targets for personalized therapy for HCC [J]. Hepatol Int, 2019, 13(2): 125-137.
[3] FORNER A, REIG M, BRUIX J, et al. Hepatocellular carcinoma [J]. Lancet, 2018, 391(10127): 1301-1314.
[4] VOGEL A, MEYER T, SAPISOCHIN G, et al. Hepatocellular carcinoma [J]. Lancet, 2022, 400(10360): 1345-1362.
[5] SIEGEL R L, MILLER K D, JEMAL A, et al. Cancer statistics, 2018 [J]. CA Cancer J Clin, 2018, 68(1): 7-30.
[6] GRANDHI M S, KIM A K, RONNEKLEIV-KELLY S M, et al. Hepatocellular carcinoma: from diagnosis to treatment [J]. Surg Oncol, 2016, 25(2): 74-85.
[7] QIAN Y, LIU Q, LI P, et al. Highly tumor-specific and long-acting lodine-131 microbeads for enhanced treatment of hepatocellular carcinoma with low-dose radiochemoembolization [J]. ACS Nano, 2021, 15(2): 2933-2946.
[8] MAURI G, VARANO G M, ORSI F, et al. TAE for HCC: when the old way is better than the new ones [J]. Cardiovasc Interv Radiol, 2016, 39(6): 799-800.
[9] SILVA J P, BERGER N G, TSAI S, et al. Transarterial chemoembolization in hepatocellular carcinoma with portal vein tumor thrombosis: a systematic review and meta-analysis [J]. HPB (Oxford), 2017, 19(8): 659-666.
[10] OSUGA K, HORI S, KITAYOSHI H, et al. Embolization of high flow arteriovenous malformations: experience with use of superabsorbent polymer microspheres [J]. J Vasc Interv Radiol, 2002, 13(11): 1125-1133.
[11] GUPTA S, WRIGHT K C, ENSOR J, et al. Hepatic arterial embolization with doxorubicin-loaded superabsorbent polymer microspheres in a rabbit liver tumor model [J]. Cardiovasc Interv Radiol, 2011, 34(5): 1021-1030.
[12] HARMON J S, KABINEJADIAN F, SEDA R, et al. Minimally invasive gas embolization using acoustic droplet vaporization in a rodent model of hepatocellular carcinoma [J]. Sci Rep, 2019, 9(1): 11040.
[13] GABA R C, EMMADI R, PARVINIAN A, et al. Correlation of doxorubicin delivery and tumor necrosis after drug-eluting bead transarterial chemoembolization of rabbit VX2 liver tumors [J]. Radiology, 2016, 280(3): 752-761.
[14] IDEE J M, GUIU B. Use of lipiodol as a drug-delivery system for transcatheter arterial chemoembolization of hepatocellular carcinoma: a review [J]. Crit Rev Oncol Hematol, 2013, 88(3): 530-549.
[15] HU J, ALBADAWI H, CHONG B W, et al. Advances in biomaterials and technologies for vascular embolization [J]. Adv Mater, 2019, 31(33): e1901071.
[16] HATANAKA T, ARAI H, KAKIZAKI S, et al. Balloon-occluded transcatheter arterial chemoembolization for hepatocellular carcinoma [J]. World J Hepatol, 2018, 10(7): 485-495.
[17] CHEN H, ZHANG J, CHANG K, et al. Highly absorbing multispectral near-infrared polymer nanoparticles from one conjugated backbone for photoacoustic imaging and photothermal therapy [J]. Biomaterials, 2017, 144: 42-52.
[18] LIU Y, BHATTARAI P, DAI Z, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer [J]. Chem Soc Rev, 2019, 48(7): 2053-2108.
[19] TAN L, WANG S, XU K, et al. Layered MoS2 hollow spheres for highly-efficient photothermal therapy of rabbit liver orthotopic transplantation tumors [J]. Small, 2016, 12(15): 2046-2055.
[20] ZHANG F, HAN X, HU Y, et al. Interventional photothermal therapy enhanced brachytherapy: a new strategy to fight deep pancreatic cancer [J]. Adv Sci (Weinh), 2019, 6(5): 1801507.
[21] GENG J, SUN C, LIU J, et al. Biocompatible conjugated polymer nanoparticles for efficient photothermal tumor therapy [J]. Small, 2015, 11(13): 1603-1610.
[22] HUANG P, LIN J, LI W, et al. Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy [J]. Angew Chem Int Ed Engl, 2013, 52(52): 13958-13964.
[23] SHAO J, ABDELGHANI M, SHEN G, et al. Erythrocyte membrane modified janus polymeric motors for thrombus therapy [J]. ACS Nano, 2018, 12(5): 4877-4885.
[24] CHEN Y, E C Y, GONG Z W, et al. Chimeric antigen receptor-engineered T-cell therapy for liver cancer [J]. Hepatobiliary Pancreat Dis Int, 2018, 17(4): 301-309.
[25] BRUIX J, GORES G J, MAZZAFERRO V. Hepatocellular carcinoma: clinical frontiers and perspectives [J]. Gut, 2014, 63(5): 844-855.
[26] MUKAIDA N, NAKAMOTO Y. Emergence of immunotherapy as a novel way to treat hepatocellular carcinoma [J]. World J Gastroenterol, 2018, 24(17): 1839-1858.
[27] OU D L, LIN Y Y, HSU C L, et al. Development of a PD-L1-expressing orthotopic liver cancer model: implications for immunotherapy for hepatocellular carcinoma [J]. Liver Cancer, 2019, 8(3): 155-171.
[28] WANG F, XU Q, ZHUANG Z, et al. A single-cell approach to engineer CD8+ T cells targeting cytomegalovirus [J]. Cell Mol Immunol, 2021, 18(5): 1326-1328.
[29] GRETEN T F, LAI C W, LI G, et al. Targeted and immune-based therapies for hepatocellular carcinoma [J]. Gastroenterology, 2019, 156(2): 510-524.
[30] SUN J, HUANG W, YANG S F, et al. Galphai1 and Galphai3mediate VEGF-induced VEGFR2 endocytosis, signaling and angiogenesis [J]. Theranostics, 2018, 8(17): 4695-4709.
[31] LI B, WANG Y, CHEN J, et al. Identification of a new HLA-A*0201-restricted CD8+ T cell epitope from hepatocellular carcinoma-associated antigen HCA587 [J]. Clin Exp Immunol, 2005, 140(2): 310-319.
[32] O'DONNELL T J, RUBINSTEYN A, BONSACK M, et al. MHCflurry: open-source class I MHC binding affinity prediction [J]. Cell Syst, 2018, 7(1): 129-132 e124.
[33] WAIDMANN O. Recent developments with immunotherapy for hepatocellular carcinoma [J]. Expert Opin Biol Ther, 2018, 18(8): 905-910.
[34] FU Y, URBAN D J, NANI R R, et al. Glypican-3-specific antibody drug conjugates targeting hepatocellular carcinoma [J]. Hepatol, 2019, 70(2): 563-576.
[35] GURNEY M, O'DWYER M. Realizing innate potential: CAR-NK cell therapies for acute myeloid leukemia [J]. Cancers (Basel), 2021, 13(7): 1568.
[36] MYERS J A, MILLER J S. Exploring the NK cell platform for cancer immunotherapy [J]. Nat Rev Clin Oncol, 2021, 18(2): 85-100.
[37] BRESNAHAN E, RAMADORI P, HEIKENWALDER M, et al. Novel patient-derived preclinical models of liver cancer [J]. J Hepatol, 2020, 72(2): 239-249.
[38] QIU Z, ZOU K, ZHUANG L, et al. Hepatocellular carcinoma cell lines retain the genomic and transcriptomic landscapes of primary human cancers [J]. Sci Rep, 2016, 6: 27411.
[39] LIU S, HUANG F, RU G, et al. Mouse models of hepatocellular carcinoma: classification, advancement, and application [J]. Front Oncol, 2022, 12: 902820.
[40] SAJJAD H, IMTIAZ S, NOOR T, et al. Cancer models in preclinical research: A chronicle review of advancement in effective cancer research [J]. Animal Model Exp Med, 2021, 4(2): 87-103.
[41] BARAKAT O, ABBASI S, RODRIGUEZ G, et al. Use of decellularized porcine liver for engineering humanized liver organ [J]. J Surg Res, 2012, 173(1): e11-e25.
[42] UYGUN B E, SOTO-GUTIERREZ A, YAGI H, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix [J]. Nat Med, 2010, 16(7): 814-820.
[43] KADOTA Y, YAGI H, HIBI T, et al. Recellularized rat liver graft using primary hepatocytes and mesenchymal stem cells [J]. Wound Repair Regen, 2016, 24(6): A10-A10.
[44] CARUGO D, CAPRETTO L, ROY B, et al. Spatiotemporal dynamics of doxorubicin elution from embolic beads within a microfluidic network [J]. J Control Release, 2015, 214: 62-75.
[45] ZURSTRASSEN C E, GIRELI L P D, TYNG C J, et al. Safety and efficacy of HepaSphere 50-100 μm in the treatment of hepatocellular carcinoma [J]. Minim Invasiv Ther, 2017, 26(4): 212-219.
[46] MEN X, WANG F, CHEN H, et al. Ultrasmall semiconducting polymer dots with rapid clearance for second near-infrared photoacoustic imaging and photothermal cancer therapy [J]. Adv Funct Mater, 2020, 30(24): 1-11.
[47] 中国肝癌规范诊疗质量控制指标(2022版)[J].肝癌电子杂志,2022,9(04):1-11.
[48] YANG J D, HAINAUT P, GORES G J, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management [J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604.
[49] 陈敏山.中国肿瘤整合诊治指南-肝癌(2022精简版)[J].中国肿瘤临床, 2022, 49(17): 865-873.
[50] GESCHWIND J H, LENCIONI R, MARRERO J A, et al. Worldwide trends in locoregional therapy for hepatocellular carcinoma (HCC): second interim analysis of the global investigation of therapeutic decisions in HCC and of its treatment with sorafenib (GIDEON) study [J]. J Clin Oncol, 2012, 30(4): S103.
[51] ZHU A X, DUDA D G, SAHANI D V, et al. HCC and angiogenesis: possible targets and future directions [J]. Nat Rev Clin Oncol, 2011, 8(5): 292-301.
[52] ANTON N, PARLOG A, BOU ABOUT G, et al. Non-invasive quantitative imaging of hepatocellular carcinoma growth in mice by micro-CT using liver-targeted iodinated nano-emulsions [J]. Sci Rep, 2017, 7(1): 13935.
[53] ARII S, YAMAOKA Y, FUTAGAWA S, et al. Results of surgical and nonsurgical treatment for small-sized hepatocellular carcinomas: a retrospective and nationwide survey in Japan [J]. Hepatol, 2000, 32(6): 1224-1229.
[54] CHAN K M, YU M C, CHOU H S, et al. Significance of tumor necrosis for outcome of patients with hepatocellular carcinoma receiving locoregional therapy prior to liver transplantation [J]. Ann Surg Oncol, 2011, 18(9): 2638-2646.
[55] CIVAN J M, BECKER-WEIDMAN D, WONG S Y, et al. Sensitivity of MRI for detecting hepatocellular carcinoma after locoregional therapy prior to liver transplant [J]. Hepatol, 2013, 58: 291a-291a.
[56] AKINYEMIJU T, ABERA S, et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: Results from the global burden of disease study 2015 [J]. Jama Oncol, 2017, 3(12): 1683-1691.
[57] GUPTA S, WRIGHT K C, ENSOR J, et al. Hepatic arterial embolization with doxorubicin-loaded superabsorbent polymer microspheres in a rabbit liver tumor model [J]. Cardiovasc Inter Rad, 2011, 34(5): 1021-1030.
[58] HECKMAN J T, DEVERA M B, MARSH J W, et al. Bridging locoregional therapy for hepatocellular carcinoma prior to liver transplantation [J]. Ann Surg Oncol, 2008, 15(11): 3169-3177.
[59] HIBI T, SUGAWARA Y. Locoregional therapy as a bridge to liver transplantation for hepatocellular carcinoma within Milan criteria: from a transplant oncology viewpoint [J]. Hepatobil Surg Nutr, 2018, 7(2): 134-135.
[60] CHUNG Y H, HAN G, YOON J H, et al. Interim analysis of START: study in asia of the combination of TACE (transcatheter arterial chemoembolization) with sorafenib in patients with hepatocellular carcinoma trial [J]. Int J Cancer, 2013, 132(10): 2448-2458.
[61] FIORE F, DEL PRETE M, FRANCO R, et al. Transarterial embolization (TAE) is equally effective and slightly safer than transarterial chemoembolization (TACE) to manage liver metastases in neuroendocrine tumors [J]. Endocrine, 2014, 47(1): 177-182.
[62] HANKS B A, SUHOCKI P V, DELONG D M, et al. The efficacy and tolerability of transarterial chemo-embolization (TACE) compared with transarterial embolization (TAE) for patients with unresectable hepatocellular carcinoma (HCC) [J]. J Clin Oncol, 2008, 26(15): 816-822.
[63] MASSANI M, STECCA T, RUFFOLO C, et al. Should we routinely use DEBTACE for unresectable HCC? cTACE versus DEBTACE: a single-center survival analysis [J]. Updates Surg, 2017, 69(1): 67-73.
[64] POGGI G, QUARETTI P, MINOIA C, et al. Transhepatic arterial chemoembolization with oxaliplatin-eluting microspheres (OEM-TACE) for unresectable hepatic tumors [J]. Anticancer Res, 2008, 28(6b): 3835-3842.
[65] TERZI E, GOLFIERI R, PISCAGLIA F, et al. Response rate and clinical outcome of HCC after first and repeated cTACE performed "on demand" [J]. J Hepatol, 2012, 57(6): 1258-1267.
[66] VOGL T J, LAHRSOW M, ALBRECHT M H, et al. Survival of patients with non-resectable, chemotherapy-resistant colorectal cancer liver metastases undergoing conventional lipiodol-based transarterial chemoembolization (cTACE) palliatively versus neoadjuvantly prior to percutaneous thermal ablation [J]. Eur J Radiol, 2018, 102: 138-145.
[67] JORDAN O, DENYS A, DE BAERE T, et al. Comparative study of chemoembolization loadable beads: in vitro drug release and physical properties of DC bead and hepasphere loaded with doxorubicin and irinotecan [J]. J Vas Interv Radiol, 2010, 21(7): 1084-1090.
[68] FAN L, DUAN M, XIE Z, et al. Injectable and radiopaque liquid metal/calcium alginate hydrogels for endovascular embolization and tumor embolotherapy [J]. Small, 2019: e1903421.
[69] D'INCA H, PIOT O, DIEBOLD M D, et al. Doxorubicin drug-eluting embolic chemoembolization of hepatocellular carcinoma: study of midterm doxorubicin delivery in resected liver specimens [J]. J Vasc Interv Radiol, 2017, 28(6): 804-810.
[70] DI PAOLO A, BOCCI G. Drug distribution in tumors: mechanisms, role in drug resistance, and methods for modification [J]. Curr Oncol Rep, 2007, 9(2): 109-114.
[71] DASH S, MURTHY P N, NATH L, et al. Kinetic modeling on drug release from controlled drug delivery systems [J]. Acta Pol Pharm, 2010, 67(3): 217-223.
[72] DREHER M R, SHARMA K V, WOODS D L, et al. Radiopaque drug-eluting beads for transcatheter embolotherapy: experimental study of drug penetration and coverage in swine [J]. J Vasc Interv Radiol, 2012, 23(2): 257-264 e254.
[73] FUCHS K, DURAN R, DENYS A, et al. Drug-eluting embolic microspheres for local drug delivery - State of the art [J]. J Control Release, 2017, 262: 127-138.
[74] KHANKAN A A, OSUGA K, HORI S, et al. Embolic effects of superabsorbent polymer microspheres in rabbit renal model: comparison with tris-acryl gelatin microspheres and polyvinyl alcohol [J]. Radiat Med, 2004, 22(6): 384-390.
[75] MADOFF D C, ABDALLA E K, GUPTA S, et al. Transhepatic ipsilateral right portal vein embolization extended to segment IV: improving hypertrophy and resection outcomes with spherical particles and coils [J]. J Vasc Interv Radiol, 2005, 16(2 Pt 1): 215-225.
[76] MARELLI L, STIGLIANO R, TRIANTOS C, et al. Transarterial therapy for hepatocellular carcinoma: Which technique is more effective? A systematic review of cohort and randomized studies [J]. Cardiovasc Inter Rad, 2007, 30(1): 6-25.
[77] WANG Y H, FU Y C, CHIU H C, et al. Cationic nanoparticles with quaternary ammonium-functionalized PLGA-PEG-based copolymers for potent gene transfection [J]. J Nano Res, 2013, 15(11): 1-16.
[78] WANG J, LI J, REN J. Surface modification of poly(lactic-co-glycolic acid) microspheres with enhanced hydrophilicity and dispersibility for arterial embolization [J]. Materials (Basel), 2019, 12(12): 1959.
[79] TANYA DEBNATH K R, CHANDRA SHEKAR MALLARPU, et al. In vitro development of an acellular biological liver scaffold repopulated with rat hepatocytes [J]. J Tissue Sci Eng, 2019, 10(1):1000224.
[80] CAINE M, MCCAFFERTY M S, MCGHEE S, et al. Impact of yttrium-90 microsphere density, flow dynamics, and administration technique on spatial distribution: Analysis using an in vitro model [J]. J Vasc Interv Radiol, 2017, 28(2): 260-26.
[81] DOUCET J, KIRI L, O'CONNELL K, et al. Advances in degradable embolic microspheres: a state of the art review [J]. J Funct Biomater, 2018, 9(1): 14.
[82] HARAGUCHI K, TAKADA T. Polymer-Clay Nanocomposite microspheres and their thermosensitive characteristics [J]. Macromol Chem Phys, 2014, 215(3): 295-305.
[83] CAINE M, CARUGO D, ZHANG X, et al. Review of the development of methods for characterization of microspheres for use in embolotherapy: translating bench to cathlab [J]. Adv Healthc Mater, 2017, 6(9): 67-68.
[84] DEKERVEL J, VAN MALENSTEIN H, VANDECAVEYE V, et al. Transcatheter arterial chemoembolization with doxorubicin-eluting superabsorbent polymer microspheres in the treatment of hepatocellular carcinoma: midterm follow-up [J]. J Vasc Interv Radiol, 2014, 25(2): 248-255.
[85] SIEGHART W, HUCKE F, PECK-RADOSAVLJEVIC M, et al. Transarterial chemoembolization: modalities, indication, and patient selection [J]. J Hepatol, 2015, 62(5): 1187-1195.
[86] GU Z T, WANG H, LI L, et al. Heat stress induces apoptosis through transcription-independent p53-mediated mitochondrial pathways in human umbilical vein endothelial cell [J]. Sci Rep, 2014, 4: 4469.
[87] 彭鰜侨, 何健, 郭志华. 肿瘤热诊进展的系统回顾[J]. 中国医药导报, 2022, 19(27):4.
[88] HUANG X, LU Y, GUO M, et al. Recent strategies for nano-based PTT combined with immunotherapy: from a biomaterial point of view [J]. Theranostics, 2021, 11(15): 7546-7569.
[89] KINOSHITA T. RFA experiences, indications and clinical outcomes [J]. Int J Clin Oncol, 2019, 24(6): 603-607.
[90] IZZO F, GRANATA V, GRASSI R, et al. Radiofrequency ablation and microwave ablation in liver tumors: an update [J]. Oncologist, 2019, 24(10): e990-e1005.
[91] WIJLEMANS J W, BARTELS L W, DECKERS R, et al. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation of liver tumors [J]. Cancer Imaging, 2012, 12(2): 387-394.
[92] XU P, LIANG F. Nanomaterial-based tumor photothermal immunotherapy [J]. Int J Nanomedicine, 2020, 15: 9159-9180.
[93] DEREJE D M, PONTREMOLI C, MORAN PLATA M J, et al. Polymethine dyes for PDT: recent advances and perspectives to drive future applications [J]. Photochem Photobiol Sci, 2022, 21(3): 397-419.
[94] WANG Y, ZHANG L, ZHAO G, et al. Homologous targeting nanoparticles for enhanced PDT against osteosarcoma HOS cells and the related molecular mechanisms [J]. J Nanobiotechnology, 2022, 20(1): 83.
[95] SHANG T, YU X, HAN S, et al. Nanomedicine-based tumor photothermal therapy synergized immunotherapy [J]. Biomater Sci, 2020, 8(19): 5241-5259.
[96] LIU Y, DABROWSKA C, MAVOUSIAN A, et al. Bio-assembling macro-scale, lumenized airway tubes of defined shape via multi-organoid patterning and fusion [J]. Adv Sci, 2021, 8(9): 2003332.
[97] EBERL A, HEUMANN S, KOTEK R, et al. Enzymatic hydrolysis of PTT polymers and oligomers [J]. J Biotechnol, 2008, 135(1): 45-51.
[98] PANG H, TIAN C, HE G, et al. NIR-absorbing Prussian blue nanoparticles for transarterial infusion photothermal therapy of VX2 tumors implanted in rabbits [J]. Nanoscale, 2021, 13(18): 8490-8497.
[99] YANG K, ZHANG S, ZHANG G, et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy [J]. Nano Lett, 2010, 10(9): 3318-3323.
[100]ZHANG K, FANG Y, HE Y, et al. Extravascular gelation shrinkage-derived internal stress enables tumor starvation therapy with suppressed metastasis and recurrence [J]. Nat Commun, 2019, 10(1): 5380.
[101]YIN J, WANG X, SUN X, et al. Thrombin based photothermal-responsive nanoplatform for tumor-specific embolization therapy [J]. Small, 2021, 17(52): e2105033.
[102]FITZGERALD J, MCMONNIES R, SHARKEY A, et al. Thrombin generation and bleeding in cardiac surgery: a clinical narrative review [J]. Can J Anaesth, 2020, 67(6): 746-753.
[103]JILIAN R. MELAMED R S E, EMILY S. DAY, et al. Elucidating the Fundamental Mechanisms of Cell Death Triggered by Photothermal Therapy [J]. ACS Nano, 2015, 9(1): 6-11.
[104]BUR, TANDON H, PRADHAN M K, et al. Potent HCV NS3 protease inhibition by a water-soluble phyllanthin congener [J]. ACS Omega, 2020, 5(20): 11553-11562.
[105]YADAV M, JHUNJHUNWALA S, PHUNG Q T, et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing [J]. Nature, 2014, 515(7528): 572-576.
[106]RUF B, HEINRICH B, GRETEN T F. Immunobiology and immunotherapy of HCC: spotlight on innate and innate-like immune cells [J]. Cell Mol Immunol, 2021, 18(1): 112-127.
[107]KUTLU O C, CHAN J A, ALOIA T A, et al. Comparative effectiveness of first-line radiofrequency ablation versus surgical resection and transplantation for patients with early hepatocellular carcinoma [J]. Cancer, 2017, 123(10): 1817-1827.
[108]VRANIC S, BESLIJA S, GATALICA Z, et al. Targeting HER2 expression in cancer: new drugs and new indications [J]. Bosn J Basic Med Sci, 2021, 21(1): 1-4.
[109]XIANG J, LIU P, ZHENG X, et al. The effect of riboflavin/UVA cross-linking on anti-degeneration and promoting angiogenic capability of decellularized liver matrix [J]. J Biomed Mater Res A, 2017, 105(10): 2662-2669.
[110]YANG A, FARMER E, WU T C, et al. Perspectives for therapeutic HPV vaccine development [J]. J Biomed Sci, 2016, 23(1): 75.
[111]ZHOU J, MA P, LI J, et al. Comparative analysis of cytotoxic T lymphocyte response induced by dendritic cells pulsed with recombinant adeno-associated virus carrying alpha-fetoprotein gene or cancer cell lysate [J]. Mol Med Rep, 2015, 11(4): 3174-3180.
[112]OHNO T, HIRASHIMA N, ORITO E, et al. Impaired cytotoxic T lymphocyte inductivity by dendritic cells derived from patients with hepatitis C virus-positive hepatocellular carcinoma [J]. Hepatol Res, 2007, 37(4): 276-285.
[113]TADA Y, YOSHIKAWA T, SHIMOMURA M, et al. Analysis of cytotoxic T lymphocytes from a patient with hepatocellular carcinoma who showed a clinical response to vaccination with a glypican3derived peptide [J]. Int J Oncol, 2013, 43(4): 1019-1026.
[114]KOTTON C N, KAMAR N. New Insights on CMV management in solid organ transplant patients: prevention, treatment, and management of resistant/refractory disease [J]. Infect Dis Ther, 2022: 333-342.
[115]NAMUR J, PASCALE F, MAEDA N, et al. Safety and efficacy compared between irinotecan-loaded microspheres HepaSphere and DC Bead in a model of VX2 liver metastases in the rabbit [J]. J Vasc Interv Radiol, 2015, 26(7): 1067-1075.
[116]YU H, ZHU G Y, XU R Z, et al. Arterial embolization hyperthermia using As2O3 nanoparticles in VX2 carcinoma-Induced liver tumors [J]. PLoS One, 2011, 6(3): e17926.
[117]BHISE N S, RIBAS J, MANOHARAN V, et al. Organ-on-a-chip platforms for studying drug delivery systems [J]. J Control Release, 2014, 190: 82-93.
[118]ASHAMMAKHI N, ELKHAMMAS E, HASAN A, et al. Translating advances in organ-on-a-chip technology for supporting organs [J]. J Biomed Mater Res B Appl Biomater, 2019, 107(6): 2006-2018.
[119]ESCH E W, BAHINSKI A, HUH D, et al. Organs-on-chips at the frontiers of drug discovery [J]. Nat Rev Drug Discov, 2015, 14(4): 248-260.
[120]HERLAND A, MAOZ B M, DAS D, et al. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips [J]. Nat Biomed Eng, 2020, 4(4): 421-436.
[121]LEE S, KO J, PARK D, et al. Microfluidic-based vascularized microphysiological systems [J]. Lab Chip, 2018, 18(18): 2686-2709.
[122]LU S, CUZZUCOLI F, JIANG J, et al. Development of a biomimetic liver tumor-on-a-chip model based on decellularized liver matrix for toxicity testing [J]. Lab Chip, 2018, 18(22): 3379-3392.
[123]ZHANG Y S, ARNERI A, BERSINI S, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip [J]. Biomaterials, 2016, 110: 45-59.
[124]WU G, WU D, LO J, et al. A bioartificial liver support system integrated with a DLM/GelMA-based bioengineered whole liver for prevention of hepatic encephalopathy via enhanced ammonia reduction [J]. Biomater Sci, 2020, 8(10): 2814-2824.
[125]SUN D S, LIU Y, WANG H H, et al. Novel decellularized liver matrix-alginate hybrid gel beads for the 3D culture of hepatocellular carcinoma cells [J]. Int J Biol Macromol, 2018, 109: 1154-1163.
[126]ZHOU P, LESSA N, ESTRADA D C, et al. Decellularized liver matrix as a carrier for the transplantation of human fetal and primary hepatocytes in Mice [J]. Liver Transpl, 2011, 17(4): 418-427.
[127]SABETKISH S, KAJBAFZADEH A M, SABETKISH N, et al. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix liver scaffolds [J]. J Biomed Mater Res A, 2015, 103(4): 1498-1508.
[128]CHEN T R, JUAN S H, HUANG Y W, et al. A secondary structure-based position-specific scoring matrix applied to the improvement in protein secondary structure prediction [J]. PLoS One, 2021, 16(7): e0255076.
[129]GAO Y, XIAO J, CHEN Z, et al. Engineering orthotopic tumor spheroids with organ-specific vasculatures for local chemoembolization evaluation [J]. Biomater Sci, 2023, 11(6): 2115-2128.
[130]JEMAL A, BRAY F, CENTER M M, et al. Global cancer statistics [J]. Cancer J Clin, 2011, 61(2): 69-90.
[131]HOFER M, LUTOLF M P. Engineering organoids [J]. Nat Rev Mater, 2021, 6(5): 402-420.
[132]NEVZOROVA Y A, BOYER-DIAZ Z, CUBERO F J, et al. Animal models for liver disease - a practical approach for translational research [J]. J Hepatol, 2020, 73(2): 423-440.
[133]VON AULOCK S. Is there an end in sight for animal testing? Can organ- on-a-chip replace animal use in safety testing with advanced human-focused approaches? [J]. Altex-Altern Anim Ex, 2019, 36(1): 142-144.
[134]LIU K, ZHANG X, XU W, et al. Targeting the vasculature in hepatocellular carcinoma treatment: starving versus normalizing blood supply [J]. Clin Transl Gastroenterol, 2017, 8(6): e98.
[135]DENG X, SHAO Z, ZHAO Y, et al. Solutions to the drawbacks of photothermal and photodynamic cancer therapy [J]. Adv Sci (Weinh), 2021, 8(3): 2002504.
[136]YU S, CHEN Z, ZENG X, et al. Advances in nanomedicine for cancer starvation therapy [J]. Theranostics, 2019, 9(26): 8026-8047.
[137]ZOU J H, ZHANG L, REN Z G, et al. Efficacy and safety of cTACE versus DEB-TACE in patients with hepatocellular carcinoma: a meta-analysis [J]. J Dig Dis, 2016, 17(8): 510-517.
[138]LI Z, HUANG H, TANG S, et al. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy [J]. Biomaterials, 2016, 74: 144-154.
[139]LIU T, WANG C, GU X, et al. Drug delivery with PEGylated MoS2 nano- sheets for combined photothermal and chemotherapy of cancer [J]. Adv Mater, 2014, 26(21): 3433-3440.
[140]PALMA E, DOORNEBAL E J, CHOKSHI S, et al. Precision-cut liver slices: a versatile tool to advance liver research [J]. Hepatol Int, 2019, 13(1): 51-57.
[141]HUSSEIN K H, PARK K M, GHIM J H, et al. Three dimensional culture of HepG2 liver cells on a rat decellularized liver matrix for pharmacological studies [J]. J Biomed Mater Res B Appl Biomater, 2016, 104(2): 263-273.
[142]FERREIRA L P, GASPAR V M, MANO J F, et al. Decellularized extracellular matrix for bioengineering physiomimetic 3D in vitro tumor models [J]. Trends Biotechnol, 2020, 38(12): 1397-1414.
[143]WANG X H, QIN Y, HU M H, et al. Dendritic cells pulsed with gp96-peptide complexes derived from human hepatocellular carcinoma (HCC) induce specific cytotoxic T lymphocytes [J]. Cancer Immunol Immunother, 2005, 54(10): 971-980.
[144]LIU G, LI D, LI Z, et al. PSSMHCpan: a novel PSSM-based software for predicting class I peptide-HLA binding affinity [J]. Gigascience, 2017, 6(5): 1-11.
[145]NEWELL E W, SIGAL N, NAIR N, et al. Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization [J]. Nat Biotechnol, 2013, 31(7): 623-629.
[146]OGISO S, YASUCHIKA K, FUKUMITSU K, et al. Efficient recellularisation of decellularised whole-liver grafts using biliary tree and foetal hepatocytes [J]. Sci Rep, 2016, 6: 35887.
[147]KIM D H, AHN J, KANG H K, et al. Development of highly functional bioengineered human liver with perfusable vasculature [J]. Biomaterials, 2021, 265: 120417.
[148]WANG Y, KANKALA R K, ZHANG J, et al. Modeling endothelialized hepatic tumor microtissues for drug screening [J]. Adv Sci (Weinh), 2020, 7(21): 2002002.
[149]SCHIRRMACHER V. From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (Review) [J]. Int J Oncol, 2019, 54(2): 407-419.
[150]SIM H W, KNOX J. Hepatocellular carcinoma in the era of immunotherapy [J]. Curr Probl Cancer, 2018, 42(1): 40-48.

所在学位评定分委会
生物学
国内图书分类号
R318.08
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/633343
专题工学院_生物医学工程系
推荐引用方式
GB/T 7714
肖靖雨. 基于三维血管化肿瘤模型评估及优化肝癌介入治疗和免疫治疗[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930890-肖靖雨-生物医学工程系(12006KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[肖靖雨]的文章
百度学术
百度学术中相似的文章
[肖靖雨]的文章
必应学术
必应学术中相似的文章
[肖靖雨]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。