中文版 | English
题名

有机催化1-萘偶氮构建轴手性骨架的研究

其他题名
STUDIES ON ORGANOCATALYTIC CONSTRUCTION OF AXIALLY CHIRAL SKELETONS VIA 1-AZONAPHTHALENES
姓名
姓名拼音
DA Bingchao
学号
11930704
学位类型
博士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
谭斌
导师单位
化学系
论文答辩日期
2023-11-09
论文提交日期
2023-12-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  轴手性化合物广泛存在于手性配体、有机小分子催化剂、天然产物以及生物活性分子中。随着功能化与多样化的轴手性化合物的不断开发与应用,轴手性化学已经成为手性化学中的热门研究领域,从而使得轴手性化合物的催化不对称合成获得了化学工作者极大的关注并获得了长足的发展。因此,不断开发构建新型轴手性骨架的方法是轴手性化学研究领域中至关重要的课题之一。另一方面,有机小分子催化相对于金属催化与酶催化模式,更加符合绿色化学可持续发展的理念,且有机催化的化学反应通常呈现无重金残留、催化效率与选择性高,条件温和、催化剂回收重复利用方便等诸多优越性。基于此研究背景以及实际需求,本文设计通过以偶氮作为萘环的活化基团,以2-萘酚、吲哚、咔唑为亲核试剂,以手性布朗斯特酸为有机小分子催化剂,通过1-萘偶氮C4位碳氢键不对称官能团化反应,构建新的C-C键或C-N键轴手性骨架,并探索所合成的轴手性化合物的转化与应用。

  为了构建C-C键联芳基轴手性骨架,本论文利用2-萘酚作为芳基化试剂,在手性布朗斯特酸催化下,与咪唑啉酮酰基取代的1-萘偶氮通过不对称交叉偶联反应,实现了1-萘偶氮C4位碳氢键不对称芳基化反应,合成轴手性联萘氨基酚衍生物。底物中咪唑啉酮酰基作为辅基,在提高不对称交叉偶联反应的活性和立体选择性方面起到至关重要的作用。该合成策略在温和的反应条件下以及较短的反应时间内,对于各种类型的常见的取代基(包括烷基、烷氧基、烯基、炔基、()芳环、卤素、酯基、硅醚、硼酸酯和磺酸酯等)修饰的2-萘酚与1-萘偶氮高效地完成不对称交叉偶联反应。通过这一方法,我们成功高效地合成了69种轴手性联萘氨基酚衍生物。这充分表明了该合成方法具有较高的反应活性,并展现出优秀的区域选择性、对映选择性以及广泛的官能团兼容性。此外,对于所合成的轴手性联萘氨基酚,我们通过进一步衍生化反应合成了一系列新型轴手性分子,成功实现了联芳基轴手性产物的多样化转化与应用。

  在手性磷酸催化下,以2-位取代的吲哚类化合物作为亲核试剂,通过1-萘偶氮C4位碳氢键不对称官能团反应构建了C-C键轴手性骨架,高效合成了一系列芳基吲哚类型的轴手性化合物。该反应兼容常见的多种官能团,并能够在短时间内(1-10分钟)快速完成转化,产率高达99%,对映选择性达到99%。此外,在所得芳基吲哚轴手性产物中加入氧化剂可将其转变为偶氮类型原料,并在布朗斯特酸存在下进一步实现1-萘偶氮C2位碳氢键官能团化反应,从而实现了C-S键与C-P键的高效构建,并且产物的对映选择性与原料保持一致。通过DFT理论计算,我们最终阐明了反应经历的历程以及解释了该反应区域选择性控制的来源。

  此外,为了探索C-N键轴手性骨架的不对称构建,我们设计了在手性磷酸的催化下,以咔唑作为胺化试剂,实现1-萘偶氮C4位不对称胺化反应,并成功合成了一系列包含芳基咔唑结构的C-N键轴手性化合物。尽管底物中邻位取代基的存在增强了产物的稳定性,然而咔唑作为亲核试剂,碳氢键胺化反应会面临较大的空间位阻问题,这对于提高反应活性和对映选择性控制都构成不利影响。为解决该问题,在条件优化过程中,我们最终选择了咪唑啉酮酰基取代的1-萘偶氮作为底物,并采用具有大共轭边臂修饰的手性磷酸作为催化剂。其中,底物上引入的咪唑啉酮酰基与手性磷酸之间通过非共价相互作用发挥重要作用,提高了碳氢键不对称胺化反应的活性和对映选择性。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-12
参考文献列表

[1] CHENG J K, XIANG S-H, LI S, et al. Recent advances in catalytic asymmetric construction of atropisomers [J]. Chemical Reviews, 2021, 121(8): 4805-4902.
[2] MIYASHITA A A, YASUDA A, TAKAYA H, et al. Synthesis of 2, 2'-bis (diphenylphosphino)-1, 1'-binaphthyl (BINAP), an atropisomeric chiral bis (triaryl) phosphine, and its use in the rhodium (I)-catalyzed asymmetric hydrogenation of. alpha.-(acylamino) acrylic acids [J]. Journal of the American Chemical Society, 1980, 102(27): 7932-7934.
[3] TANG W, ZHANG X. New chiral phosphorus ligands for enantioselective hydrogenation [J]. Chemical Reviews, 2003, 103(8): 3029-3070.
[4] ZHOU Q-L. Privileged chiral ligands and catalysts [M]. WileyVCH: Weinheim, Germany, 2011.
[5] PARMAR D, SUGIONO E, RAJA S, et al. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates [J]. Chemical Reviews, 2014, 114(18): 9047-9153.
[6] AKIYAMA T, MORI K. Stronger Brønsted acids: recent progress [J]. Chemical Reviews, 2015, 115(17): 9277-9306.
[7] BRINGMANN G, MENCHE D. Stereoselective total synthesis of axially chiral natural products via biaryl lactones [J]. Accounts of Chemical Research, 2001, 34(8): 615-624.
[8] KOZLOWSKI M C, MORGAN B J, LINTON E C. Total synthesis of chiral biaryl natural products by asymmetric biaryl coupling [J]. Chemical Society Reviews, 2009, 38(11): 3193-3207.
[9] SMYTH J E, BUTLER N M, KELLER P A. A twist of nature–the significance of atropisomers in biological systems [J]. Natural Product Reports, 2015, 32(11): 1562-1583.
[10] HARTLEY C S, LAZAR C, WAND M D, et al. Detection of chiral perturbations in ferroelectric liquid crystals induced by an atropisomeric biphenyl dopant [J]. Journal of the American Chemical Society, 2002, 124(45): 13513-13518.
[11] ERBAS-CAKMAK S, LEIGH D A, MCTERNAN C T, et al. Artificial molecular machines [J]. Chemical Reviews, 2015, 115(18): 10081-10206.
[12] WEN K, YU S, HUANG Z, et al. Rational design of a fluorescent sensor to simultaneously determine both the enantiomeric composition and the concentration of chiral functional amines [J]. Journal of the American Chemical Society, 2015, 137(13): 4517-4524.
[13] COLLINS B S, KISTEMAKER J C, OTTEN E, et al. A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle [J]. Nature Chemistry, 2016, 8(9): 860-866.
[14] TAKAISHI K, YASUI M, EMA T. Binaphthyl–bipyridyl cyclic dyads as a chiroptical switch [J]. Journal of the American Chemical Society, 2018, 140(16): 5334-5338.
[15] SAPOTTA M, SPENST P, SAHA-MöLLER C R, et al. Guest-mediated chirality transfer in the host–guest complexes of an atropisomeric perylene bisimide cyclophane host [J]. Organic Chemistry Frontiers, 2019, 6(7): 892-899.
[16] AHRENDT K A, BORTHS C J, MACMILLAN D W. New strategies for organic catalysis: the first highly enantioselective organocatalytic Diels− Alder reaction [J]. Journal of the American Chemical Society, 2000, 122(17): 4243-4244.
[17] LIST B, LERNER R A, BARBAS C F. Proline-catalyzed direct asymmetric aldol reactions [J]. Journal of the American Chemical Society, 2000, 122(10): 2395-2396.
[18] REETZ M, LIST B, JAROCH S, et al. Organocatalysis [M]. Springer Science & Business Media, 2008.
[19] KUMARASAMY E, RAGHUNATHAN R, SIBI M P, et al. Nonbiaryl and heterobiaryl atropisomers: molecular templates with promise for atropselective chemical transformations [J]. Chemical Reviews, 2015, 115(20): 11239-11300.
[20] SUN H-R, SHARIF A, CHEN J, et al. Atroposelective Synthesis of Heterobiaryls through Ring Formation [J]. Chemistry–A European Journal, 2023, 29(27): e202300183.
[21] LINK A, SPARR C. Organocatalytic atroposelective aldol condensation: synthesis of axially chiral biaryls by arene formation [J]. Angewandte Chemie International Edition, 2014, 53(21): 5458-5461.
[22] HU Y-L, WANG Z, YANG H, et al. Conversion of two stereocenters to one or two chiral axes: atroposelective synthesis of 2, 3-diarylbenzoindoles [J]. Chemical Science, 2019, 10(28): 6777-6784.
[23] RAUT V S, JEAN M, VANTHUYNE N, et al. Enantioselective syntheses of furan atropisomers by an oxidative central-to-axial chirality conversion strategy [J]. Journal of the American Chemical Society, 2017, 139(6): 2140-2143.
[24] KWON Y, LI J, REID J P, et al. Disparate catalytic scaffolds for atroposelective cyclodehydration [J]. Journal of the American Chemical Society, 2019, 141(16): 6698-6705.
[25] AN Q J, XIA W, DING W Y, et al. Nitrosobenzene‐Enabled Chiral Phosphoric Acid Catalyzed Enantioselective Construction of Atropisomeric N‐Arylbenzimidazoles [J]. Angewandte Chemie International Edition, 2021, 60(47): 24888-24893.
[26] WU J H, TAN J P, ZHENG J Y, et al. Towards Axially Chiral Pyrazole‐Based Phosphorus Scaffolds by Dipeptide‐Phosphonium Salt Catalysis [J]. Angewandte Chemie International Edition, 2023, 62(13): e202215720.
[27] PENG L, LI K, XIE C, et al. Organocatalytic Asymmetric Annulation of ortho-Alkynylanilines: Synthesis of Axially Chiral Naphthyl-C2-indoles [J]. Angewandte Chemie International Edition, 2019, 58(48): 17199-17204.
[28] WANG Z-S, ZHU L-J, LI C-T, et al. Synthesis of Axially Chiral N-Arylindoles via Atroposelective Cyclization of Ynamides Catalyzed by Chiral Bronsted Acids [J]. Angewandte Chemie International Edition, 2022, 61(20): e202201436.
[29] WANG L, ZHONG J, LIN X. Atroposelective phosphoric acid catalyzed three‐component cascade reaction: enantioselective synthesis of axially chiral N‐arylindoles [J]. Angewandte Chemie International Edition, 2019, 58(44): 15824-15828.
[30] DING W-Y, YU P, AN Q-J, et al. DFT-guided phosphoric-acid-catalyzed atroposelective arene functionalization of nitrosonaphthalene [J]. Chem, 2020, 6(8): 2046-2059.

[31] XU K, LI W, ZHU S, et al. Atroposelective arene formation by carbene‐catalyzed formal

[4+ 2] cycloaddition [J]. Angewandte Chemie International Edition, 2019, 58(49): 17625-17630.

[32] ZHANG L, SHEN J, WU S, et al. Design and atroposelective construction of IAN analogues by organocatalytic asymmetric heteroannulation of alkynes [J]. Angewandte Chemie International Edition, 2020, 59(51): 23077-23082.

[33] BALAKRISHNA A, AGUIAR A, SOBRAL P J M, et al. Paal-Knorr synthesis of pyrroles: from conventional to green synthesis [J]. Catalysis Reviews, 2019, 61(1): 84-110.

[34] ZHANG L, ZHANG J, MA J, et al. Highly atroposelective synthesis of arylpyrroles by catalytic asymmetric Paal–Knorr reaction [J]. Journal of the American Chemical Society, 2017, 139(5): 1714-1717.

[35] CHEN K W, CHEN Z H, YANG S, et al. Organocatalytic Atroposelective Synthesis of N− N Axially Chiral Indoles and Pyrroles by De Novo Ring Formation [J]. Angewandte Chemie International Edition, 2022, 61(17): e202116829.

[36] CHEN Z H, LI T Z, WANG N Y, et al. Organocatalytic Enantioselective Synthesis of Axially Chiral N,N′-Bisindoles [J]. Angewandte Chemie International Edition, 2023, 62(15): e202300419.

[37] CARMONA J A, RODRIGUEZ-FRANCO C, FERNANDEZ R, et al. Atroposelective transformation of axially chiral (hetero)biaryls. From desymmetrization to modern resolution strategies [J]. Chemical Society Reviews, 2021, 50(5): 2968-2983.

[38] MORI K, ICHIKAWA Y, KOBAYASHI M, et al. Enantioselective synthesis of multisubstituted biaryl skeleton by chiral phosphoric acid catalyzed desymmetrization/kinetic resolution sequence [J]. Journal of the American Chemical Society, 2013, 135(10): 3964-3970.

[39] ROHRBACH S, SMITH A J, PANG J H, et al. Concerted Nucleophilic Aromatic Substitution Reactions [J]. Angewandte Chemie International Edition, 2019, 58(46): 16368-16388.

[40] LIU Y N, YU Y A, ZHAO Q Y, et al. Fluorescent probes based on nucleophilic aromatic substitution reactions for reactive sulfur and selenium species: Recent progress, applications, and design strategies [J]. Coordination Chemistry Reviews, 2021, 427: 213601.

[41] ARMSTRONG R J, SMITH M D. Catalytic Enantioselective Synthesis of Atropisomeric Biaryls: A Cation‐Directed Nucleophilic Aromatic Substitution Reaction [J]. Angewandte Chemie International Edition, 2014, 53(47): 12822-12826.

[42] ZHANG L, XIANG S-H, WANG J, et al. Phosphoric acid-catalyzed atroposelective construction of axially chiral arylpyrroles [J]. Nature Communications, 2019, 10(1): 566.

[43] BRINGMANN G, PRICE MORTIMER A J, KELLER P A, et al. Atroposelective synthesis of axially chiral biaryl compounds [J]. Angewandte Chemie International Edition, 2005, 44(34): 5384-5427.

[44] MA G, SIBI M P. Catalytic kinetic resolution of biaryl compounds [J]. Chemistry–A European Journal, 2015, 21(33): 11644-11657.

[45] WENCEL-DELORD J, PANOSSIAN A, LEROUX F, et al. Recent advances and new concepts for the synthesis of axially stereoenriched biaryls [J]. Chemical Society Reviews, 2015, 44(11): 3418-3430.

[46] GUSTAFSON J L, LIM D, MILLER S J. Dynamic kinetic resolution of biaryl atropisomers via peptide-catalyzed asymmetric bromination [J]. Science, 2010, 328(5983): 1251-1255.

[47] DIENER M E, METRANO A J, KUSANO S, et al. Enantioselective synthesis of 3-arylquinazolin-4 (3 H)-ones via peptide-catalyzed atroposelective bromination [J]. Journal of the American Chemical Society, 2015, 137(38): 12369-12377.

[48] METRANO A, ABASCAL N, MERCADO B, et al. Structural studies of β-turn-containing peptide catalysts for atroposelective quinazolinone bromination [J]. Chemical Communications, 2016, 52(26): 4816-4819.

[49] METRANO A J, ABASCAL N C, MERCADO B Q, et al. Diversity of secondary structure in catalytic peptides with β-turn-biased sequences [J]. Journal of the American Chemical Society, 2017, 139(1): 492-516.

[50] BARRETT K T, MILLER S J. Enantioselective synthesis of atropisomeric benzamides through peptide-catalyzed bromination [J]. Journal of the American Chemical Society, 2013, 135(8): 2963-2966.

[51] BARRETT K T, METRANO A J, RABLEN P R, et al. Spontaneous transfer of chirality in an atropisomerically enriched two-axis system [J]. Nature, 2014, 509(7498): 71-75.

[52] MIYAJI R, ASANO K, MATSUBARA S. Bifunctional organocatalysts for the enantioselective synthesis of axially chiral isoquinoline N-oxides [J]. Journal of the American Chemical Society, 2015, 137(21): 6766-6769.

[53] MIYAJI R, ASANO K, MATSUBARA S. Induction of Axial Chirality in 8‐Arylquinolines through Halogenation Reactions Using Bifunctional Organocatalysts [J]. Chemistry–A European Journal, 2017, 23(42): 9996-10000.

[54] YU C, HUANG H, LI X, et al. Dynamic kinetic resolution of biaryl lactones via a chiral bifunctional amine thiourea-catalyzed highly atropo-enantioselective transesterification [J]. Journal of the American Chemical Society, 2016, 138(22): 6956-6959.

[55] JIANG F, CHEN K W, WU P, et al. A strategy for synthesizing axially chiral naphthyl‐indoles: catalytic asymmetric addition reactions of racemic substrates [J]. Angewandte Chemie International Edition, 2019, 58(42): 15104-15110.

[56] WANG J, CHEN M-W, JI Y, et al. Kinetic resolution of axially chiral 5-or 8-substituted quinolines via asymmetric transfer hydrogenation [J]. Journal of the American Chemical Society, 2016, 138(33): 10413-10416.

[57] JOLLIFFE J D, ARMSTRONG R J, SMITH M D. Catalytic enantioselective synthesis of atropisomeric biaryls by a cation-directed O-alkylation [J]. Nature Chemistry, 2017, 9(6): 558-562.

[58] JONES B A, BALAN T, JOLLIFFE J D, et al. Practical and scalable kinetic resolution of BINOLs mediated by a chiral counterion [J]. Angewandte Chemie International Edition, 2019, 58(14): 4596-4600.

[59] WANG K, HU Y, WU M, et al. m-CPBA/TFA: an efficient nonmetallic reagent for oxidative coupling of 1, 2-diarylethylenes [J]. Tetrahedron, 2010, 66(47): 9135-9140.

[60] CHENG D J, YAN L, TIAN S K, et al. Highly enantioselective kinetic resolution of axially chiral BINAM derivatives catalyzed by a Brønsted acid [J]. Angewandte Chemie International Edition, 2014, 53(14): 3684-3687.

[61] MORI K, ITAKURA T, AKIYAMA T. Enantiodivergent atroposelective synthesis of chiral biaryls by asymmetric transfer hydrogenation: chiral phosphoric acid catalyzed dynamic kinetic resolution [J]. Angewandte Chemie International Edition, 2016, 55(38): 11642-11646.

[62] CUI L, WANG Y, FAN Z, et al. Kinetic Resolution of Axially Chiral 2‐Nitrovinyl Biaryls Catalyzed by a Bifunctional Thiophosphinamide [J]. Advanced Synthesis & Catalysis, 2019, 361(15): 3575-3581.

[63] LU S, NG S V H, LOVATO K, et al. Practical access to axially chiral sulfonamides and biaryl amino phenols via organocatalytic atroposelective N-alkylation [J]. Nature Communications, 2019, 10(1): 3061.

[64] LU S, POH S B, ZHAO Y. Kinetic Resolution of 1, 1′‐Biaryl‐2, 2′‐Diols and Amino Alcohols through NHC‐Catalyzed Atroposelective Acylation [J]. Angewandte Chemie International Edition, 2014, 53(41): 11041-11045.

[65] MA G, DENG J, SIBI M P. Fluxionally chiral DMAP catalysts: kinetic resolution of axially chiral biaryl compounds [J]. Angewandte Chemie International Edition, 2014, 53(44): 11818-11821.

[66] JIANG P-Y, FAN K-F, LI S, et al. Metal-free oxidative cross-coupling enabled practical synthesis of atropisomeric QUINOL and its derivatives [J]. Nature Communications, 2021, 12(1): 2384.

[67] JIANG P-Y, WU S, WANG G-J, et al. Synthesis of Axially Chiral QUINAP Derivatives by Ketone‐Catalyzed Enantioselective Oxidation [J]. Angewandte Chemie International Edition, 2023, 62(40): e202309272.

[68] CHERNEY A H, KADUNCE N T, REISMAN S E. Enantioselective and Enantiospecific Transition-Metal-Catalyzed Cross-Coupling Reactions of Organometallic Reagents To Construct C-C Bonds [J]. Chemical Reviews, 2015, 115(17): 9587-9652.

[69] WENCEL-DELORD J, PANOSSIAN A, LEROUX F R, et al. Recent advances and new concepts for the synthesis of axially stereoenriched biaryls [J]. Chemical Society Reviews, 2015, 44(11): 3418-3430.

[70] KITAGAWA O. Chiral Pd-Catalyzed Enantioselective Syntheses of Various N-C Axially Chiral Compounds and Their Synthetic Applications [J]. Accounts of Chemical Research, 2021, 54(3): 719-730.

[71] ZHAO Q, PENG C, WANG Y-T, et al. Recent progress on the construction of axial chirality through transition-metal-catalyzed benzannulation [J]. Organic Chemistry Frontiers, 2021, 8(11): 2772-2785.

[72] SURGENOR R R, LIU X, KEENLYSIDE M J, et al. Enantioselective synthesis of atropisomeric indoles via iron-catalysed oxidative cross-coupling [J]. Nature Chemistry, 2023, 15(3): 357-365.

[73] LI G-Q, GAO H, KEENE C, et al. Organocatalytic aryl–aryl bond formation: an atroposelective

[3, 3]-rearrangement approach to BINAM derivatives [J]. Journal of the American Chemical Society, 2013, 135(20): 7414-7417.

[74] DE C K, PESCIAIOLI F, LIST B. Catalytic asymmetric benzidine rearrangement [J]. Angewandte Chemie International Edition, 2013, 52(35): 9293-9295.

[75] CHEN Y-H, CHENG D-J, ZHANG J, et al. Atroposelective synthesis of axially chiral biaryldiols via organocatalytic arylation of 2-naphthols [J]. Journal of the American Chemical Society, 2015, 137(48): 15062-15065.

[76] CHEN Y H, QI L W, FANG F, et al. Organocatalytic atroposelective arylation of 2‐naphthylamines as a practical approach to axially chiral biaryl amino alcohols [J]. Angewandte Chemie International Edition, 2017, 56(51): 16308-16312.

[77] ZHU S, CHEN Y-H, WANG Y-B, et al. Organocatalytic atroposelective construction of axially chiral arylquinones [J]. Nature Communications, 2019, 10(1): 4268.

[78] LU D-L, CHEN Y-H, XIANG S-H, et al. Atroposelective construction of arylindoles by chiral phosphoric acid-catalyzed cross-coupling of indoles and quinones [J]. Organic Letters, 2019, 21(15): 6000-6004.

[79] FAHEY D R. The coordination-catalyzed ortho-halogenation of azobenzene [J]. Journal of Organometallic Chemistry, 1971, 27(2): 283-292.

[80] LI H, LI P, WANG L. Direct access to acylated azobenzenes via Pd-catalyzed C–H functionalization and further transformation into an indazole backbone [J]. Organic Letters, 2013, 15(3): 620-623.

[81] RYU T, MIN J, CHOI W, et al. Synthesis of 2-aryl-2 H-benzotrizoles from azobenzenes and N-sulfonyl azides through sequential rhodium-catalyzed amidation and oxidation in one pot [J]. Organic Letters, 2014, 16(11): 2810-2813.

[82] WANGWEERAWONG A, BERGMAN R G, ELLMAN J A. Asymmetric synthesis of α-branched amines via Rh (III)-catalyzed C–H bond functionalization [J]. Journal of the American Chemical Society, 2014, 136(24): 8520-8523.

[83] GENG X, WANG C. Rhenium-catalyzed C–H aminocarbonylation of azobenzenes with isocyanates [J]. Organic & Biomolecular Chemistry, 2015, 13(28): 7619-7623.

[84] MIYAMURA S, TSURUGI H, SATOH T, et al. Rhodium-catalyzed regioselective arylation of phenylazoles and related compounds with arylboron reagents via C–H bond cleavage [J]. Journal of Organometallic Chemistry, 2008, 693(14): 2438-2442.

[85] ZHAO D, VáSQUEZ‐CéSPEDES S, GLORIUS F. Rhodium (III)‐catalyzed cyclative capture approach to diverse 1‐aminoindoline derivatives at room temperature [J]. Angewandte Chemie International Edition, 2015, 54(5): 1657-1661.

[86] QI L-W, MAO J-H, ZHANG J, et al. Organocatalytic asymmetric arylation of indoles enabled by azo groups [J]. Nature Chemistry, 2018, 10(1): 58-64.

[87] QI L-W, LI S, XIANG S-H, et al. Asymmetric construction of atropisomeric biaryls via a redox neutral cross-coupling strategy [J]. Nature Catalysis, 2019, 2(4): 314-323.

[88] YAN S, XIA W, LI S, et al. Michael reaction inspired atroposelective construction of axially chiral biaryls [J]. Journal of the American Chemical Society, 2020, 142(16): 7322-7327.

[89] DUAN L, QIAO J, SUN Y, et al. Strategies to design bipolar small molecules for OLEDs: donor‐acceptor structure and non‐donor‐acceptor structure [J]. Advanced Materials, 2011, 23(9): 1137-1144.

[90] KONIDENA R K, THOMAS K R J, PARK J W. Recent Advances in the Design of Multi-Substituted Carbazoles for Optoelectronics: Synthesis and Structure-Property Outlook [J]. Chemphotochem, 2022, 6(10): e202200059.

[91] KRUCAITE G, GRIGALEVICIUS S. 2, 7 (3, 6)-Diaryl (arylamino)-substituted Carbazoles as Components of OLEDs: A Review of the Last Decade [J]. Materials, 2021, 14(22): 6754.

[92] LEDWON P. Recent advances of donor-acceptor type carbazole-based molecules for light emitting applications [J]. Organic Electronics, 2019, 75: 105422.

[93] ONER S, BRYCE M R. A review of fused-ring carbazole derivatives as emitter and/or host materials in organic light emitting diode (OLED) applications [J]. Materials Chemistry Frontiers, 2023, 7: 4304-4338.

[94] WEX B, KAAFARANI B R. Perspective on carbazole-based organic compounds as emitters and hosts in TADF applications [J]. Journal of Materials Chemistry C, 2017, 5(34): 8622-8653.

[95] XIA W, AN Q J, XIANG S H, et al. Chiral phosphoric acid catalyzed atroposelective C−H amination of arenes [J]. Angewandte Chemie International Edition, 2020, 59(17): 6841-6845.

[96] YUAN H, LI Y, ZHAO H, et al. Asymmetric synthesis of atropisomeric pyrazole via an enantioselective reaction of azonaphthalene with pyrazolone [J]. Chemical Communications, 2019, 55(84): 12715-12718.

[97] ZHANG H H, WANG C S, LI C, et al. Design and enantioselective construction of axially chiral naphthyl‐indole skeletons [J]. Angewandte Chemie International Edition, 2017, 56(1): 116-121.

[98] ZHANG J Y, CHEN J Y, GAO C H, et al. Asymmetric (4+ n) Cycloadditions of Indolyldimethanols for the Synthesis of Enantioenriched Indole‐Fused Rings [J]. Angewandte Chemie International Edition, 2023: e202305450.

[99] CHENG J K, XIANG S-H, TAN B. Organocatalytic enantioselective synthesis of axially chiral molecules: Development of strategies and skeletons [J]. Accounts of Chemical Research, 2022, 55(20): 2920-2937.

[100] MAO J-H, WANG Y-B, YANG L, et al. Organocatalyst-controlled site-selective arene C–H functionalization [J]. Nature Chemistry, 2021, 13(10): 982-991.

[101] BRUNEL J M. BINOL: A versatile chiral reagent [J]. Chemical Reviews, 2005, 105(3): 857-897.

[102] LOVE B E. Preparation and enantiomeric excess determination of optically active BINOL and BINOL derivatives [J]. Current Organic Synthesis, 2006, 3(2): 169-185.

[103] PARMAR D, SUGIONO E, RAJA S, et al. Complete Field Guide to Asymmetric BINOL-Phosphate Derived Bronsted Acid and Metal Catalysis: History and Classification by Mode of Activation; Bronsted Acidity, Hydrogen Bonding, Ion Pairing, and Metal Phosphates [J]. Chemical Reviews, 2014, 114(18): 9047-9153.

[104] DING K L, LI X, JI B M, et al. Ten years of research on NOBIN chemistry [J]. Current Organic Synthesis, 2005, 2(4): 499-545.

[105] SAELINGER D, BRUECKNER R. High-Yielding Large-Scale Syntheses of Enantiomerically Pure NOBIN and a NOBIN-Based Enantiomerically Pure NHC Precursor [J]. Synlett, 2009, (1): 109-111.

[106] LU S, POH S B, RONG Z-Q, et al. NHC-Catalyzed Atroposelective Acylation of Phenols: Access to Enantiopure NOBIN Analogs by Desymmetrization [J]. Organic Letters, 2019, 21(15): 6169-6172.

[107] DUAN W L, SHI M, RONG G B. Synthesis of novel axially chiral Rh-NHC complexes derived from BINAM and application in the enantioselective hydrosilylation of methyl ketones [J]. Chemical Communications, 2003, (23): 2916-2917.

[108] CHIANESE A R, CRABTREE R H. Axially chiral bidentate N-heterocyclic carbene ligands derived from BINAM: rhodium and iridium complexes in asymmetric ketone hydrosilylation [J]. Organometallics, 2005, 24(18): 4432-4436.

[109] CHENG D-J, YAN L, TIAN S-K, et al. Highly Enantioselective Kinetic Resolution of Axially Chiral BINAM Derivatives Catalyzed by a Bronsted Acid [J]. Angewandte Chemie International Edition, 2014, 53(14): 3684-3687.

[110] WATANABE M, SAKAI T, OKA M, et al. Non-Covalently Immobilized Chiral Imidazolidinone on Sulfated-Chitin: Reusable Heterogeneous Organocatalysts for Asymmetric Diels-Alder Reaction [J]. Advanced Synthesis & Catalysis, 2020, 362(1): 255-260.

[111] DEEPA, SINGH S. Recent Development of Recoverable MacMillan Catalyst in Asymmetric Organic Transformations [J]. Advanced Synthesis & Catalysis, 2021, 363(3): 629-656.

[112] PANAHI F, KHOSRAVI H, BAUER F, et al. Asymmetric hydroalkylation of alkynes and allenes with imidazolidinone derivatives: alpha-alkenylation of alpha-amino acids [J]. Chemical science, 2021, 12(21): 7388-7392.

[113] KASSEL V M, HANNEMAN C M, DELANEY C P, et al. Heteroaryl–Heteroaryl, Suzuki–Miyaura, Anhydrous Cross-Coupling Reactions Enabled by Trimethyl Borate [J]. Journal of the American Chemical Society, 2021, 143(34): 13845-13853.

[114] ZHANG Q, MáNDI A, LI S, et al. N–N‐Coupled indolo‐sesquiterpene atropo‐diastereomers from a marine‐derived Actinomycete [J]. European Journal of Organic Chemistry, 2012, 2012(27): 5256-5262.

[115] BAUMANN T, BRüCKNER R. Atropselective Dibrominations of a 1, 1′‐Disubstituted 2, 2′‐Biindolyl with Diverging Point‐to‐Axial Asymmetric Inductions. Deriving 2, 2′‐Biindolyl‐3, 3′‐diphosphane Ligands for Asymmetric Catalysis [J]. Angewandte Chemie International Edition, 2019, 58(14): 4714-4719.

[116] ZHANG H-H, SHI F. Organocatalytic atroposelective synthesis of indole derivatives bearing axial chirality: Strategies and applications [J]. Accounts of Chemical Research, 2022, 55(18): 2562-2580.

[117] ZHANG Y-C, JIANG F, SHI F. Organocatalytic asymmetric synthesis of indole-based chiral heterocycles: strategies, reactions, and outreach [J]. Accounts of Chemical Research, 2019, 53(2): 425-446.

[118] TAPPE F M J, TREPOHL V T, OESTREICH M. Transition-Metal-Catalyzed C-P Cross-Coupling Reactions [J]. Synthesis, 2010, (18): 3037-3062.

[119] BANERJEE I, PANDA T K. Recent advances in the carbon-phosphorus (C-P) bond formation from unsaturated compounds by s- and p-block metals [J]. Organic & Biomolecular Chemistry, 2021, 19(30): 6571-6587.

[120] KANCHANA U S, DIANA E J, MATHEW T V, et al. Palladium- Catalyzed C-P Bond Forming Reactions: An Overview [J]. Chemistryselect, 2021, 6(7): 1579-1588.

[121] XU F, HUI Y. Recent Advances in Metal-Catalyzed Heterocyclic C-P Bond Formation [J]. Current Organic Synthesis, 2021, 18(4): 377-387.

[122] HORTON D A, BOURNE G T, SMYTHE M L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures [J]. Chemical Reviews, 2003, 103(3): 893-930.

[123] RICCI A. Amino group chemistry: from synthesis to the life sciences [M]. Wiley-VCH, Weinheim, 2008.

[124] GOUZMAN I, GROSSMAN E, VERKER R, et al. Advances in Polyimide-Based Materials for Space Applications [J]. Advanced Materials, 2019, 31(18): 1807738.

[125] LIU X-J, ZHENG M-S, CHEN G, et al. High-temperature polyimide dielectric materials for energy storage: theory, design, preparation and properties [J]. Energy & Environmental Science, 2022, 15(1): 56-81.

[126] ANTONCHICK A P, SAMANTA R, KULIKOV K, et al. Organocatalytic, Oxidative, Intramolecular C-H Bond Amination and Metal-free Cross-Amination of Unactivated Arenes at Ambient Temperature [J]. Angewandte Chemie International Edition, 2011, 50(37): 8605-8608.

[127] SHIN K, BAEK Y, CHANG S. Direct CH Amination of Arenes with Alkyl Azides under Rhodium Catalysis [J]. Angewandte Chemie International Edition, 2013, 52(31): 8031-8036.

[128] ALLEN L J, CABRERA P J, LEE M, et al. N-Acyloxyphthalimides as Nitrogen Radical Precursors in the Visible Light Photocatalyzed Room Temperature C-H Amination of Arenes and Heteroarenes [J]. Journal of the American Chemical Society, 2014, 136(15): 5607-5610.

[129] SHANG M, SUN S-Z, DAI H-X, et al. Cu(II)-Mediated C-H Amidation and Amination of Arenes: Exceptional Compatibility with Heterocycles [J]. Journal of the American Chemical Society, 2014, 136(9): 3354-3357.

[130] GAO X, WANG P, ZENG L, et al. Cobalt(II)-Catalyzed Electrooxidative C-H Amination of Arenes with Alkylamines [J]. Journal of the American Chemical Society, 2018, 140(12): 4195-4199.

[131] YANG Q-L, WANG X-Y, LU J-Y, et al. Copper-Catalyzed Electrochemical C-H Amination of Arenes with Secondary Amines [J]. Journal of the American Chemical Society, 2018, 140(36): 11487-11494.

[132] HASSAN J, SEVIGNON M, GOZZI C, et al. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction [J]. Chemical Reviews, 2002, 102(5): 1359-1469.

[133] SAMBIAGIO C, MARSDEN S P, BLACKER A J, et al. Copper catalysed Ullmann type chemistry: from mechanistic aspects to modern development [J]. Chemical Society Reviews, 2014, 43(10): 3525-3550.

[134] HERAVI M M, KHEILKORDI Z, ZADSIRJAN V, et al. Buchwald-Hartwig reaction: An overview [J]. Journal of Organometallic Chemistry, 2018, 861: 17-104.

[135] DOREL R, GRUGEL C P, HAYDL A M. The Buchwald-Hartwig Amination After 25 Years [J]. Angewandte Chemie International Edition, 2019, 58(48): 17118-17129.

[136] HERAVI M M, ZADSIRJAN V, MALMIR M, et al. Buchwald-Hartwig reaction: an update [J]. Monatshefte für Chemie-Chemical Monthly, 2021, 152(10): 1127-1171.

[137] LU C-J, XU Q, FENG J, et al. The Asymmetric Buchwald-Hartwig Amination Reaction [J]. Angewandte Chemie International Edition, 2023, 62(9): e202216863.

[138] WEST M J, FYFE J W B, VANTOUROUT J C, et al. Mechanistic Development and Recent Applications of the Chan-Lam Amination [J]. Chemical Reviews, 2019, 119(24): 12491-12523.

[139] CHEN J-Q, LI J-H, DONG Z-B. A Review on the Latest Progress of Chan-Lam Coupling Reaction [J]. Advanced Synthesis & Catalysis, 2020, 362(16): 3311-3331.

[140] CHO S H, KIM J Y, KWAK J, et al. Recent advances in the transition metal-catalyzed twofold oxidative C-H bond activation strategy for C-C and C-N bond formation [J]. Chemical Society Reviews, 2011, 40(10): 5068-5083.

[141] KIM H J, KIM J, CHO S H, et al. Intermolecular oxidative C–N bond formation under metal-free conditions: control of chemoselectivity between aryl sp2 and benzylic sp3 C–H bond imidation [J]. Journal of the American Chemical Society, 2011, 133(41): 16382-16385.

[142] SONG G, WANG F, LI X. C-C, C-O and C-N bond formation via rhodium(III)-catalyzed oxidative C-H activation [J]. Chemical Society Reviews, 2012, 41(9): 3651-3678.

[143] ROMERO N A, MARGREY K A, TAY N E, et al. Site-selective arene C-H amination via photoredox catalysis [J]. Science, 2015, 349(6254): 1326-1330.

[144] CORCORAN E B, PIRNOT M T, LIN S S, et al. Aryl amination using ligand-free Ni(II) salts and photoredox catalysis [J]. Science, 2016, 353(6296): 279-283.

[145] MARGREY K A, MCMANUS J B, BONAZZI S, et al. Predictive model for site-selective aryl and heteroaryl C–H functionalization via organic photoredox catalysis [J]. Journal of the American Chemical Society, 2017, 139(32): 11288-11299.

[146] NIU L, YI H, WANG S, et al. Photo-induced oxidant-free oxidative C–H/N–H cross-coupling between arenes and azoles [J]. Nature Communications, 2017, 8(1): 14226.

[147] RUFFONI A, JULIá F, SVEJSTRUP T D, et al. Practical and regioselective amination of arenes using alkyl amines [J]. Nature Chemistry, 2019, 11(5): 426-433.

[148] SAUERMANN N, MEI R, ACKERMANN L. Electrochemical C−H amination by cobalt catalysis in a renewable solvent [J]. Angewandte Chemie International Edition, 2018, 57(18): 5090-5094.

[149] YANG Q-L, WANG X-Y, LU J-Y, et al. Copper-catalyzed electrochemical C–H amination of arenes with secondary amines [J]. Journal of the American Chemical Society, 2018, 140(36): 11487-11494.

[150] FENG P, MA G, CHEN X, et al. Electrooxidative and Regioselective C− H Azolation of Phenol and Aniline Derivatives [J]. Angewandte Chemie International Edition, 2019, 58(25): 8400-8404.

[151] ZHANG L, LIARDET L, LUO J, et al. Photoelectrocatalytic arene C–H amination [J]. Nature Catalysis, 2019, 2(4): 366-373.

[152] HUANG H, LAMBERT T H. Electrophotocatalytic C-H Heterofunctionalization of Arenes [J]. Angewandte Chemie International Edition, 2021, 60(20): 11163-11167.

[153] MENG Z Y, FENG C T, XU K. Recent Advances in the Electrochemical Formation of Carbon-Nitrogen Bonds [J]. Chinese Journal of Organic Chemistry, 2021, 41(7): 2535-2570.

[154] SHEN T, LAMBERT T H. C-H Amination via Electrophotocatalytic Ritter-type Reaction [J]. Journal of the American Chemical Society, 2021, 143(23): 8597-8602.

[155] SHI L, LIU Z, DONG G, et al. Synthesis, Structure, Properties, and Application of a Carbazole-Based Diaza 7 helicene in a Deep-Blue-Emitting OLED [J]. Chemistry–A European Journal, 2012, 18(26): 8092-8099.

[156] TAVASLI M, MOORE T N, ZHENG Y, et al. Colour tuning from green to red by substituent effects in phosphorescent tris-cyclometalated iridium(III) complexes of carbazole-based ligands: synthetic, photophysical, computational and high efficiency OLED studies [J]. Journal of Materials Chemistry, 2012, 22(13): 6419-6428.

[157] HONG M, RAVVA M K, WINGET P, et al. Effect of Substituents on the Electronic Structure and Degradation Process in Carbazole Derivatives for Blue OLED Host Materials [J]. Chemistry of Materials, 2016, 28(16): 5791-5798.

[158] KUKHTA N A, MATULAITIS T, VOLYNIUK D, et al. Deep-Blue High-Efficiency TTA OLED Using Para- and Meta-Conjugated Cyanotriphenylbenzene and Carbazole Derivatives as Emitter and Host [J]. The journal of physical chemistry letters, 2017, 8(24): 6199-6205.

[159] HUMNE V T, NAYKODE M S, GHOM M H, et al. Total synthesis of diverse oxygenated carbazoles by modified aromatization using molecular iodine [J]. Tetrahedron Letters, 2016, 57(6): 688-691.

[160] YOUN S W, KIM Y H, JO Y H. Palladium‐Catalyzed Regioselective Synthesis of 1‐Hydroxycarbazoles Under Aerobic Conditions [J]. Advanced Synthesis & Catalysis, 2019, 361(3): 462-468.

[161] BERGMAN J, JOHNSON A L. A short synthesis of the carbazole alkaloid clausine E [J]. Organic preparations and procedures international, 2006, 38(6): 593-599.

[162] LIGER F, POPOWYCZ F, BESSON T, et al. Synthesis and antiproliferative activity of clausine E, mukonine, and koenoline bioisosteres [J]. Bioorganic & medicinal chemistry, 2007, 15(16): 5615-5619.

[163] KAMAT D P, PARSEKAR S B, KAMAT V P, et al. A Concise Synthesis of 1-Oxygenated Carbazole Alkaloids, Clausine E and Clausine F [J]. Synthesis, 2014, 46(20): 2789-2793.

[164] ABBAS Y, MANSHA M, ULLAH N. The first total synthesis of potent antitumoral (+/-)-mafaicheenamine A, unnatural 6-fluoromafaicheenamine A and expedient synthesis of clausine E [J]. RSC advances, 2016, 6(31): 26104-26110.

[165] LI C, CHEN J, FU G, et al. Highly enantioselective hydrogenation of N-unprotected indoles using (S)-C10–BridgePHOS as the chiral ligand [J]. Tetrahedron, 2013, 69(33): 6839-6844.

[166] DALVI B A, LOKHANDE P D. Copper (II) catalyzed aromatization of tetrahydrocarbazole: An unprecedented protocol and its utility towards the synthesis of carbazole alkaloids [J]. Tetrahedron Letters, 2018, 59(22): 2145-2149.

[167] KOETZNER L, WEBBER M J, MARTíNEZ A, et al. Asymmetric catalysis on the nanoscale: the organocatalytic approach to helicenes [J]. Angewandte Chemie International Edition, 2014, 53(20): 5202-5205.

[168] GRAYSON M N, GOODMAN J M. Understanding the mechanism of the asymmetric propargylation of aldehydes promoted by 1, 1′-Bi-2-naphthol-derived catalysts [J]. Journal of the American Chemical Society, 2013, 135(16): 6142-6148.

所在学位评定分委会
化学
国内图书分类号
O62
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/633344
专题理学院_化学系
推荐引用方式
GB/T 7714
笪秉超. 有机催化1-萘偶氮构建轴手性骨架的研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930704-笪秉超-化学系.pdf(15772KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[笪秉超]的文章
百度学术
百度学术中相似的文章
[笪秉超]的文章
必应学术
必应学术中相似的文章
[笪秉超]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。