[1] American Society for Testing Materials. Standard Terminology for AdditiveManufacturing Technologies: ISO/ASTM 52900:2021 [S]. PA: ASTMInternational, 2012: 1-2.
[2] Gu D, Shi X, Poprawe R, et al. Material-structure-performance integrated lasermetal additive manufacturing [J]. Science, 2021, 372(6545): eabg1487.
[3] 王华明. 高性能金属构件增材制造技术开启国防制造新篇章 [J]. 国防制造技术, 2013, (03): 5-7.
[4] Shamsaei N, Yadollahi A, Bian L, et al. An overview of Direct Laser Depositionfor additive manufacturing; Part II: Mechanical behavior, process parameteroptimization and control [J]. Additive Manufacturing, 2015, 8: 12-35.
[5] Thawari N, Gullipalli C, Vanmore H, et al. In-situ monitoring and modelling ofdistortion in multi-layer laser cladding of Stellite 6: Parametric and numericalapproach [J]. Materials Today Communications, 2022, 33: 104751.
[6] Li S-H, Kumar P, Chandra S, et al. Directed energy deposition of metals:processing, microstructures, and mechanical properties [J]. InternationalMaterials Reviews, 2022: 1-43.
[7] Indhu R, Vivek V, Sarathkumar L, et al. Overview of Laser AbsorptivityMeasurement Techniques for Material Processing [J]. Lasers in Manufacturingand Materials Processing, 2018, 5(4): 458-481.
[8] 徐磊. 同轴送粉激光熔覆粉末及熔池动态演变分析与熔覆质量研究 [D]. 镇江: 江苏大学, 2022: 36-39.
[9] Costa L, Vilar R, Reti T, et al. Rapid tooling by laser powder deposition: Processsimulation using finite element analysis [J]. Acta Materialia, 2005, 53(14): 3987-3999.
[10]Silveira A C D F, Fechte-Heinen R, Epp J. Microstructure evolution during LaserDirected Energy Deposition of tool steel by In situ Synchrotron X-ray diffraction[J]. Additive Manufacturing, 2023: 103408.
[11] Svetlizky D, Das M, Zheng B, et al. Directed energy deposition (DED) additivemanufacturing: Physical characteristics, defects, challenges and applications [J].Materials Today, 2021, 49: 271-295.
[12] Levy G N. The role and future of the Laser Technology in the AdditiveManufacturing environment [J]. Physics Procedia, 2010, 5: 65-80.
[13] Gao W, Zhang Y, Ramanujan D, et al. The status, challenges, and future ofadditive manufacturing in engineering [J]. Computer-Aided Design, 2015, 69:65-89.
[14] Lin X, Cao Y, Wu X, et al. Microstructure and mechanical properties of laserforming repaired 17-4PH stainless steel [J]. Materials Science and Engineering:A, 2012, 553: 80-88.
[15] Wei H L, Mukherjee T, Zhang W, et al. Mechanistic models for additivemanufacturing of metallic components [J]. Progress in Materials Science, 2021,116: 100703.
[16] Thompson S M, Bian L, Shamsaei N, et al. An overview of Direct LaserDeposition for additive manufacturing; Part I: Transport phenomena, modelingand diagnostics [J]. Additive Manufacturing, 2015, 8: 36-62.
[17] Singh A, Harimkar S P. Laser Surface Engineering of Magnesium Alloys: AReview [J]. Jom, 2012, 64(6): 716-733.
[18]樊宇, 江利, 刘阳, 等. 一种以薄板搭接代替粉末激光熔覆的激光焊接工艺:201510209152.7[P]. 2015-04-28.
[19] Syed W U H, Pinkerton A J, Li L. Combining wire and coaxial powder feedingin laser direct metal deposition for rapid prototyping [J]. Applied SurfaceScience, 2006, 252(13): 4803-4808.
[20] Wang F, Mei J, Wu X. Compositionally graded Ti6Al4V + TiC made by directlaser fabrication using powder and wire [J]. Materials & Design, 2007, 28(7):2040-2046.
[21] Heralić A, Christiansson A-K, Lennartson B. Height control of laser metal-wiredeposition based on iterative learning control and 3D scanning [J]. Optics andLasers in Engineering, 2012, 50(9): 1230-1241.
[22] 何云斌. 激光熔覆再制造高速钢轧辊摩擦磨损及热疲劳损伤研究 [D]. 合肥: 合肥工业大学, 2022: 8-9.
[23] 袁磊. 基于激光熔覆的船用柴油机气缸套再制造修复研究 [D]. 济南: 山东大学, 2018: 7-8.
[24] Liu S, Shin Y C. Additive manufacturing of Ti6Al4V alloy: A review [J].Materials & Design, 2019, 164: 107552.
[25] 杨权. 燃气轮机涡轮盘的激光熔覆修复研究 [D]. 武汉: 湖北工业大学,2020: 9-12.
[26] Gradl P R. Principles of Directed Energy Deposition for AerospaceApplications[C]. Proceedings of the Drive AM Industry Connect, 2021: 23-39.
[27] Traxel K D, Bandyopadhyay A. Diamond-reinforced cutting tools using laserbased additive manufacturing [J]. Additive Manufacturing, 2021, 37: 101602.
[28] 杜学芸, 田洪芳, 董仕营, 等. 大功率光纤激光内孔熔覆装备开发及应用[J]. 热喷涂技术, 2019, 11: 31-35.
[29] 朱明, 杨骞, 王博, 等. 激光参数对旁轴送粉激光熔覆粉末熔化行为的影响[J]. 激光与光电子学进展, 2023, 60: 294-302.
[30] Prasad Behera M, Gopinath M, Kumar Nath A. A study on geometrical aspectsin laser cladding by lateral powder injection technique [J]. Materials Today:Proceedings, 2023: 1-10.
[31] 陈茹, 虞钢, 何秀丽, 等. 宽带激光熔覆送粉喷嘴的结构设计与粉末流场研究 [J]. 中国科学院大学学报, 2019, 36: 614-619.
[32] Hu B, Han J, Wang J. Parameter Study and Economic Efficiency Optimizationfor Laser Cladding with Wide-Band Fiber Laser [J]. International Journal ofOptics, 2022, 2022: 6373772.
[33] Liu H, Qin X, Huang S, et al. Geometry modeling of single track claddingdeposited by high power diode laser with rectangular beam spot [J]. Optics andLasers in Engineering, 2018, 100: 38-46.
[34] 李云峰. 大型齿圈齿面激光熔覆高厚度耐磨耐冲击涂层技术研究 [D]. 长春: 长春理工大学, 2021: 35-57.
[35] Huang Z, Wang G, Wei S, et al. Process improvement in laser hot wire claddingfor martensitic stainless steel based on the Taguchi method [J]. Frontiers ofMechanical Engineering, 2016, 11(3): 242-249.
[36] 王翔宇. 高速钢单道激光熔覆的工艺设计与熔池模拟研究 [D]. 北京: 清华大学, 2019: 33-47.
[37] Mohammed S, Zhang Z, Kovacevic R. Optimization of processing parameters infiber laser cladding [J]. The International Journal of Advanced ManufacturingTechnology, 2020, 111(9): 2553-2568.
[38] Xiawei L E, Jingbin H a O, Qingdong M, et al. Prediction of 18Ni300 lasercladding topography based on back-propagation neural network and particleswarm optimization [J]. Journal of Physics: Conference Series, 2021, 1775(1):012009.
[39] Chen X, Xiao M, Kang D, et al. Prediction of Geometric Characteristics of MeltTrack Based on Direct Laser Deposition Using M-SVR Algorithm [J]. Materials(Basel), 2021, 14(23): 7221.
[40] Caiazzo F, Caggiano A. Laser Direct Metal Deposition of 2024 Al Alloy: TraceGeometry Prediction via Machine Learning [J]. Materials, 2018, 11(3): 444.
[41] Perani M, Baraldo S, Decker M, et al. Track geometry prediction for Laser MetalDeposition based on on-line artificial vision and deep neural networks [J].Robotics and Computer-Integrated Manufacturing, 2023, 79: 102445.
[42] Pant P, Chatterjee D. Prediction of clad characteristics using ANN and combinedPSO-ANN algorithms in laser metal deposition process [J]. Surfaces andInterfaces, 2020, 21: 100699.
[43] Deng Z, Chen T, Wang H, et al. Process Parameter Optimization When PreparingTi(C, N) Ceramic Coatings Using Laser Cladding Based on a Neural Networkand Quantum-Behaved Particle Swarm Optimization Algorithm [J]. AppliedSciences, 2020, 10(18): 6331.
[44] Wang K, Liu W, Hong Y, et al. An Overview of Technological ParameterOptimization in the Case of Laser Cladding [J]. Coatings, 2023, 13(3): 496.
[45] De La Batut B, Fergani O, Brotan V, et al. Analytical and Numerical TemperaturePrediction in Direct Metal Deposition of Ti6Al4V [J]. Journal of Manufacturingand Materials Processing, 2017, 1(3): 1-14.
[46] 赵嘉欣. 激光熔覆熔池输运过程及晶粒生长的微观模型研究 [D]. 北京:清华大学, 2021: 6-8.
[47] Zhao J, Wang G, Wang X, et al. Multicomponent multiphase modeling ofdissimilar laser cladding process with high-speed steel on medium carbon steel[J]. International Journal of Heat and Mass Transfer, 2020, 148: 118990.
[48] Lu S, Fujii H, Nogi K. Marangoni convection and weld shape variations in He–CO2 shielded gas tungsten arc welding on SUS304 stainless steel [J]. Journal ofMaterials Science, 2008, 43(13): 4583-4591.
[49] Liu L, Wang G, Ren K, et al. Marangoni flow patterns of molten pools in multipass laser cladding with added nano-CeO2 [J]. Additive Manufacturing, 2022,59: 103156.
[50] Heiple C A, Roper J R. Mechanism for minor element effect on GTA fusion zonegeometry [J]. Welding, 1982, (1): 61-70.
[51] Wei S, Wang G, Shin Y C, et al. Comprehensive modeling of transportphenomena in laser hot-wire deposition process [J]. International Journal of Heatand Mass Transfer, 2018, 125: 1356-1368.
[52] 魏绍鹏. 马氏体时效钢激光再制造的界面行为与性能形成机理 [D]. 北京:清华大学, 2017: 64-93.
[53] Wirth F, Wegener K. A physical modeling and predictive simulation of the lasercladding process [J]. Additive Manufacturing, 2018, 22: 307-319.
[54] 王翔宇, 王罡, 罗升, 等. T15 高速钢异质材料激光熔覆过程的多相流模型[J]. 中国表面工程, 2019, 32: 117-123.
[55] Masaylo D, Igoshin S, Popovich A, et al. Effect of process parameters on defectsin large scale components manufactured by direct laser deposition [J]. MaterialsToday: Proceedings, 2020, 30: 665-671.
[56] 林超胤. 激光熔覆质量控制工艺试验研究 [D]. 厦门: 华侨大学, 2020: 39-42.
[57] Eisenbarth D, Borges Esteves P M, Wirth F, et al. Spatial powder flowmeasurement and efficiency prediction for laser direct metal deposition [J].Surface and Coatings Technology, 2019, 362: 397-408.
[58] Gabor T, Yun H, Akin S, et al. Continuous coaxial nozzle designs for improvedpowder focusing in direct laser metal deposition [J]. Journal of ManufacturingProcesses, 2022, 83: 116-128.
[59] 唐梦雨. 激光熔覆过程中粉末流场形态检测及其对熔覆质量影响研究 [D].镇江: 江苏大学, 2022: 48-58.
[60] 范启龙. 激光熔覆送粉器粉末流动特性研究 [D]. 大连: 大连海事大学,2022: 75-81.
[61] Parab N D, Zhao C, Cunningham R, et al. Ultrafast X-ray imaging of laser–metaladditive manufacturing processes [J]. Journal of Synchrotron Radiation, 2018,25(5): 1467-1477.
[62] Chen Y, Clark S J, Sinclair L, et al. Synchrotron X-ray imaging of directedenergy deposition additive manufacturing of titanium alloy Ti-6242 [J]. AdditiveManufacturing, 2021, 41: 101969.
[63] Hojjatzadeh S M H, Parab N D, Guo Q, et al. Direct observation of poreformation mechanisms during LPBF additive manufacturing process and highenergy density laser welding [J]. International Journal of Machine Tools andManufacture, 2020, 153: 103555.
[64] Hojjatzadeh S M H, Parab N D, Yan W, et al. Pore elimination mechanismsduring 3D printing of metals [J]. Nature Communications, 2019, 10(1): 3088.
[65] Cunningham R, Zhao C, Parab N, et al. Keyhole threshold and morphology inlaser melting revealed by ultrahigh-speed x-ray imaging [J]. Science, 2019,363(6429): 849-852.
[66] Zhao C, Parab Niranjan D, Li X, et al. Critical instability at moving keyhole tipgenerates porosity in laser melting [J]. Science, 2020, 370(6520): 1080-1086.
[67] Leung C L A, Marussi S, Atwood R C, et al. In situ X-ray imaging of defect andmolten pool dynamics in laser additive manufacturing [J]. NatureCommunications, 2018, 9(1): 1355.
[68] Sun T. Probing Ultrafast Dynamics in Laser Powder Bed Fusion Using HighSpeed X-Ray Imaging: A Review of Research at the Advanced Photon Source[J]. Jom, 2020, 72(3): 999-1008.
[69] Wolff S J, Wang H, Gould B, et al. In situ X-ray imaging of pore formationmechanisms and dynamics in laser powder-blown directed energy depositionadditive manufacturing [J]. International Journal of Machine Tools andManufacture, 2021, 166: 103743.
[70] 戴浩, 江训焱, 王燕. 激光功率对熔覆 7075 铝合金气孔缺陷的影响 [J]. 焊接技术, 2022, 51(09): 5-7.
[71] Chen Y, Clark S J, Huang Y, et al. In situ X-ray quantification of melt poolbehaviour during directed energy deposition additive manufacturing of stainlesssteel [J]. Materials Letters, 2021, 286: 129205.
[72] Zheng M, Wei L, Chen J, et al. A novel method for the molten pool and porosityformation modelling in selective laser melting [J]. International Journal of Heatand Mass Transfer, 2019, 140: 1091-1105.
[73] Zhang D, Li Y, Wang H, et al. Ultrasonic vibration-assisted laser directed energydeposition in-situ synthesis of NiTi alloys: Effects on microstructure andmechanical properties [J]. Journal of Manufacturing Processes, 2020, 60: 328-339.
[74] Zhang P, Zhou X, Cheng X, et al. Elucidation of bubble evolution and defectformation in directed energy deposition based on direct observation [J]. AdditiveManufacturing, 2020, 32: 101026.
[75] Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strengthaluminium alloys [J]. Nature, 2017, 549(7672): 365-369.
[76] Cheng J, Xing Y, Dong E, et al. An overview of laser metal deposition forcladding: defect formation mechanisms, defect suppression methods andperformance improvements of laser-cladded layers [J]. Materials, 2022, 15(16):5522.
[77] Li M, Huang K, Yi X. Crack Formation Mechanisms and Control Methods ofLaser Cladding Coatings: A Review [J]. Coatings, 2023, 13(6): 1117.
[78] Wei Q, Xie Y, Teng Q, et al. Crack Types, Mechanisms, and SuppressionMethods during High-energy Beam Additive Manufacturing of Nickel-basedSuperalloys: A Review [J]. Chinese Journal of Mechanical Engineering:Additive Manufacturing Frontiers, 2022, 1(4): 100055.
[79] Chauvet E, Kontis P, Jägle E A, et al. Hot cracking mechanism affecting a nonweldable Ni-based superalloy produced by selective electron Beam Melting [J].Acta Materialia, 2018, 142: 82-94.
[80] Eo D-R, Chung S-G, Yang J, et al. Surface modification of high-Mn steel vialaser-DED: Microstructural characterization and hot crack susceptibility of cladlayer [J]. Materials & Design, 2022, 223: 111188.
[81] Del Guercio G, Mccartney D G, Aboulkhair N T, et al. Cracking behaviour ofhigh-strength AA2024 aluminium alloy produced by Laser Powder Bed Fusion[J]. Additive Manufacturing, 2022, 54: 102776.
[82] Garibaldi M, Ashcroft I, Simonelli M, et al. Metallurgy of high-silicon steel partsproduced using Selective Laser Melting [J]. Acta Materialia, 2016, 110: 207-216.
[83] Kou S. A criterion for cracking during solidification [J]. Acta Materialia, 2015,88: 366-374.
[84] Sheikhi M, Malek Ghaini F, Assadi H. Prediction of solidification cracking inpulsed laser welding of 2024 aluminum alloy [J]. Acta Materialia, 2015, 82: 491-502.
[85] Chen Y, Lu F, Zhang K, et al. Dendritic microstructure and hot cracking of laseradditive manufactured Inconel 718 under improved base cooling [J]. Journal ofAlloys and Compounds, 2016, 670: 312-321.
[86] Chen Y, Lu F, Zhang K, et al. Investigation of dendritic growth and liquationcracking in laser melting deposited Inconel 718 at different laser input angles [J].Materials & Design, 2016, 105: 133-141.
[87] Sahoo P, Debroy T, Mcnallan M. Surface tension of binary metal—surface activesolute systems under conditions relevant to welding metallurgy [J].Metallurgical Transactions B, 1988, 19: 483-491.
[88] Chen Y, Zhang K, Huang J, et al. Characterization of heat affected zone liquationcracking in laser additive manufacturing of Inconel 718 [J]. Materials & Design,2016, 90: 586-594.
[89] Kadoi K, Hiraoka M, Shinozaki K, et al. Ductility-dip cracking susceptibility indissimilar weld metals of alloy 690 filler metal and low alloy steel [J]. MaterialsScience and Engineering: A, 2019, 756: 92-97.
[90] Divya V D, Muñoz-Moreno R, Messé O M D M, et al. Microstructure of selectivelaser melted CM247LC nickel-based superalloy and its evolution through heattreatment [J]. Materials Characterization, 2016, 114: 62-74.
[91] Young G, Capobianco T, Penik M, et al. The mechanism of ductility dip crackingin nickel-chromium alloys [J]. Welding Journal-New York, 2008, 87(2): 31.
[92] Carter L N, Martin C, Withers P J, et al. The influence of the laser scan strategyon grain structure and cracking behaviour in SLM powder-bed fabricated nickelsuperalloy [J]. Journal of Alloys and Compounds, 2014, 615: 338-347.
[93] Chang B, Yang S, Liu G, et al. Influences of Cooling Conditions on the LiquationCracking in Laser Metal Deposition of a Directionally Solidified Superalloy [J].Metals, 2020, 10(4): 466.
[94] Hoadley A F A, Rappaz M. A thermal model of laser cladding by powderinjection [J]. Metallurgical Transactions B, 1992, 23(5): 631-642.
[95] 王狮凌. 大功率激光器光束整形系统设计与研究 [D]. 天津: 天津大学,2017: 19-31.
[96] Parent A, Morin M, Lavigne P. Propagation of super-Gaussian field distributions[J]. Optical and Quantum Electronics, 1992, 24(9): S1071-S1079.
[97] Tadamalle A P, Reddy Y P, Ramjee E. Influence of laser welding processparameters on weld pool geometry and duty cycle [J]. Advances in ProductionEngineering & Management, 2013, 8(1): 52-60.
[98] Lia F, Park J, Tressler J, et al. Partitioning of laser energy during directed energydeposition [J]. Additive Manufacturing, 2017, 18: 31-39.
[99] Carpene E, Höche D, Schaaf P. Laser Processing of Materials [M]. Berlin,Heidelberg: Springer, 2010: 196-197.
[100] Pinkerton A J. An analytical model of beam attenuation and powder heatingduring coaxial laser direct metal deposition [J]. Journal of Physics D: AppliedPhysics, 2007, 40(23): 7323-7334.
[101] Mackwood A P, Crafer R C. Thermal modelling of laser welding and relatedprocesses: a literature review [J]. Optics & Laser Technology, 2005, 37(2): 99-115.
[102] Wang C, Zhou J, Zhang T, et al. Numerical simulation and solidificationcharacteristics for laser cladding of Inconel 718 [J]. Optics & Laser Technology,2022, 149: 107843.
[103] Wang L, Zhang D, Chen C, et al. Multi-physics field coupling andmicrostructure numerical simulation of laser cladding for engine crankshaftbased on CA-FE method and experimental study [J]. Surface and CoatingsTechnology, 2022, 438: 128396.
[104] Ge H, Xu H, Wang J, et al. Investigation on composition distribution ofdissimilar laser cladding process using a three-phase model [J]. InternationalJournal of Heat and Mass Transfer, 2021, 170: 120975.
[105] Chen L, Zhao Y, Song B, et al. Modeling and simulation of 3D geometryprediction and dynamic solidification behavior of Fe-based coatings by lasercladding [J]. Optics & Laser Technology, 2021, 139: 107009.
[106] Gao J, Wu C, Hao Y, et al. Numerical simulation and experimental investigationon three-dimensional modelling of single-track geometry and temperatureevolution by laser cladding [J]. Optics & Laser Technology, 2020, 129: 106287.
[107] Wirth F, Wegener K. Simulation of the multi-component process gas flow forthe explanation of oxidation during laser cladding [J]. Additive Manufacturing,2018, 24: 249-256.
[108] Ya W, Pathiraj B, Liu S. 2D modelling of clad geometry and resulting thermalcycles during laser cladding [J]. Journal of Materials Processing Technology,2016, 230: 217-232.
[109] Shin Y C, Bailey N, Katinas C, et al. Predictive modeling capabilities fromincident powder and laser to mechanical properties for laser directed energydeposition [J]. Computational Mechanics, 2018, 61(5): 617-636.
[110] Kundakcioglu E, Lazoglu I, Rawal S. Transient thermal modeling of laser-basedadditive manufacturing for 3D freeform structures [J]. The International Journalof Advanced Manufacturing Technology, 2015, 85(1-4): 493-501.
[111] Jayanath S, Achuthan A. A Computationally Efficient Finite ElementFramework to Simulate Additive Manufacturing Processes [J]. Journal ofManufacturing Science and Engineering, 2018, 140(4): 1-24.
[112] Wirth F, Eisenbarth D, Wegener K. Absorptivity Measurements and HeatSource Modeling to Simulate Laser Cladding [J]. Physics Procedia, 2016, 83:1424-1434.
[113] Huang Y, Khamesee M B, Toyserkani E. A comprehensive analytical model forlaser powder-fed additive manufacturing [J]. Additive Manufacturing, 2016, 12:90-99.
[114] Nie Z, Wang G, Mcguffin-Cawley J D, et al. Experimental study and modelingof H13 steel deposition using laser hot-wire additive manufacturing [J]. Journalof Materials Processing Technology, 2016, 235: 171-186.
[115] Martukanitz R, Melnychuk R, Stefanski M, et al. Dynamic absorption of apowder layer[C]. Proceedings of the Pacific International Conference onApplications of Lasers and Optics, AIP Publishing, 2004: 1404-1411.
[116] Wen S Y, Shin Y C, Murthy J Y, et al. Modeling of coaxial powder flow for thelaser direct deposition process [J]. International Journal of Heat and MassTransfer, 2009, 52(25-26): 5867-5877.
[117] Tabernero I, Lamikiz A, Ukar E, et al. Numerical simulation and experimentalvalidation of powder flux distribution in coaxial laser cladding [J]. Journal ofMaterials Processing Technology, 2010, 210(15): 2125-2134.
[118] Govekar E, Jeromen A, Kuznetsov A, et al. Annular laser beam based directmetal deposition [J]. Procedia CIRP, 2018, 74: 222-227.
[119] Ansari M, Martinez-Marchese A, Huang Y, et al. A mathematical model of laserdirected energy deposition for process mapping and geometry prediction of Ti-5553 single-tracks [J]. Materialia, 2020, 12: 100710.
[120] Pirch N, Linnenbrink S, Gasser A, et al. Analysis of track formation during lasermetal deposition [J]. Journal of Laser Applications, 2017, 29(2): 022506.
[121] Bedenko D V, Kovalev O B, Smurov I, et al. Numerical simulation of transportphenomena, formation the bead and thermal behavior in application toindustrial DMD technology [J]. International Journal of Heat and Mass Transfer,2016, 95: 902-912.
[122] Kovaleva I, Kovalev O, Zaitsev A, et al. Modeling and numerical study of lightpropulsion phenomena of particles acceleration in coaxial laser powdercladding [J]. Physics Procedia, 2014, 56: 439-449.
[123] Zheng B, Zhou Y, Smugeresky J E, et al. Thermal Behavior and MicrostructuralEvolution during Laser Deposition with Laser-Engineered Net Shaping: Part I.Numerical Calculations [J]. Metallurgical and Materials Transactions A, 2008,39(9): 2228-2236.
[124] Lundbäck A, Lindgren L-E. Modelling of metal deposition [J]. Finite Elementsin Analysis and Design, 2011, 47(10): 1169-1177.
[125] Wang L, Felicelli S D, Pratt P. Residual stresses in LENS-deposited AISI 410stainless steel plates [J]. Materials Science and Engineering: A, 2008, 496(1-2):234-241.
[126] Dai K, Shaw L. Distortion minimization of laser ‐ processed componentsthrough control of laser scanning patterns [J]. Rapid Prototyping Journal, 2002,8(5): 270-276.
[127] Heigel J C, Michaleris P, Reutzel E W. Thermo-mechanical model developmentand validation of directed energy deposition additive manufacturing of Ti–6Al–4V [J]. Additive Manufacturing, 2015, 5: 9-19.
[128] Withers P J, Bhadeshia H K D H. Residual stress. Part 2 – Nature and origins[J]. Materials Science and Technology, 2013, 17(4): 366-375.
[129] Hodge N E, Ferencz R M, Vignes R M. Experimental comparison of residualstresses for a thermomechanical model for the simulation of selective lasermelting [J]. Additive Manufacturing, 2016, 12: 159-168.
[130] Denlinger E R, Irwin J, Michaleris P. Thermomechanical Modeling of AdditiveManufacturing Large Parts [J]. Journal of Manufacturing Science andEngineering, 2014, 136(6): 061007.
[131] Deng D, Murakawa H, Liang W. Numerical simulation of welding distortion inlarge structures [J]. Computer Methods in Applied Mechanics and Engineering,2007, 196(45-48): 4613-4627.
[132] Deng D, Murakawa H. Prediction of welding distortion and residual stress in athin plate butt-welded joint [J]. Computational Materials Science, 2008, 43(2):353-365.
[133] Yin H, Wang L, Felicelli S D. Comparison of Two-Dimensional and ThreeDimensional Thermal Models of the LENS® Process [J]. Journal of HeatTransfer, 2008, 130(10): 102101.
[134] Peyre P, Aubry P, Fabbro R, et al. Analytical and numerical modelling of thedirect metal deposition laser process [J]. Journal of Physics D: Applied Physics,2008, 41(2): 025403.
[135] Alimardani M, Toyserkani E, Huissoon J P. Three-dimensional numericalapproach for geometrical prediction of multilayer laser solid freeformfabrication process [J]. Journal of Laser Applications, 2007, 19(1): 14-25.
[136] Wen S, Shin Y C. Comprehensive predictive modeling and parametric analysisof multitrack direct laser deposition processes [J]. Journal of Laser Applications,2011, 23(2): 022003.
[137] Mukherjee T, Manvatkar V, De A, et al. Mitigation of thermal distortion duringadditive manufacturing [J]. Scripta Materialia, 2017, 127: 79-83.
[138] Parry L, Ashcroft I A, Wildman R D. Understanding the effect of laser scanstrategy on residual stress in selective laser melting through thermo-mechanicalsimulation [J]. Additive Manufacturing, 2016, 12: 1-15.
[139] Cheng B, Shrestha S, Chou K. Stress and deformation evaluations of scanningstrategy effect in selective laser melting [J]. Additive Manufacturing, 2016, 12:240-251.
[140] Alimardani M, Toyserkani E, Huissoon J P, et al. On the delamination and crackformation in a thin wall fabricated using laser solid freeform fabrication process:An experimental–numerical investigation [J]. Optics and Lasers in Engineering,2009, 47(11): 1160-1168.
[141] Labudovic M, Hu D, Kovacevic R. A three dimensional model for direct lasermetal powder deposition and rapid prototyping [J]. Journal of Materials Science,2003, 38(1): 35-49.
[142] Alimardani M, Toyserkani E, Huissoon J P. A 3D dynamic numerical approachfor temperature and thermal stress distributions in multilayer laser solidfreeform fabrication process [J]. Optics and Lasers in Engineering, 2007,45(12): 1115-1130.
[143] Bhadeshia H K D H, Svensson L E, Gretoft B. A model for the development ofmicrostructure in low-alloy steel (Fe-Mn-Si-C) weld deposits [J]. ActaMetallurgica, 1985, 33(7): 1271-1283.
[144] Papazoglou V J, Masubuchi K. Numerical Analysis of Thermal Stresses DuringWelding Including Phase Transformation Effects [J]. Journal of Pressure VesselTechnology, 1982, 104(3): 198-203.
[145] Bhadeshia H, Svensson L. Modelling the evolution of microstructure in steelweld metal [J]. Mathematical modelling of weld phenomena, 1993, 1: 109-182.
[146] Taljat B, Radhakrishnan B, Zacharia T. Numerical analysis of GTA weldingprocess with emphasis on post-solidification phase transformation effects onresidual stresses [J]. Materials Science and Engineering: A, 1998, 246(1-2): 45-54.
[147] Elmer J W, Palmer T A, Zhang W, et al. Kinetic modeling of phasetransformations occurring in the HAZ of C-Mn steel welds based on directobservations [J]. Acta Materialia, 2003, 51(12): 3333-3349.
[148] Deng D. FEM prediction of welding residual stress and distortion in carbonsteel considering phase transformation effects [J]. Materials & Design, 2009,30(2): 359-366.
[149] Lee C-H, Chang K-H. Prediction of residual stresses in high strength carbonsteel pipe weld considering solid-state phase transformation effects [J].Computers & Structures, 2011, 89(1-2): 256-265.
[150] Ferro P, Porzner H, Tiziani A, et al. The influence of phase transformations onresidual stresses induced by the welding process—3D and 2D numerical models[J]. Modelling and Simulation in Materials Science and Engineering, 2006,14(2): 117-136.
[151] Santhanakrishnan S, Kong F, Kovacevic R. An experimentally based thermokinetic hardening model for high power direct diode laser cladding [J]. Journalof Materials Processing Technology, 2011, 211(7): 1247-1259.
[152] Farahmand P, Kovacevic R. An experimental–numerical investigation of heatdistribution and stress field in single- and multi-track laser cladding by a highpower direct diode laser [J]. Optics & Laser Technology, 2014, 63: 154-168.
[153] Weisz-Patrault D. Fast simulation of temperature and phase transitions indirected energy deposition additive manufacturing [J]. Additive Manufacturing,2020, 31: 100990.
[154] Bailey N S, Katinas C, Shin Y C. Laser direct deposition of AISI H13 tool steelpowder with numerical modeling of solid phase transformation, hardness, andresidual stresses [J]. Journal of Materials Processing Technology, 2017, 247:223-233.
[155] Zhang Y, Wang G, Shi W, et al. Modeling and Analysis of Deformation forSpiral Bevel Gear in Die Quenching Based on the Hardenability Variation [J].Journal of Materials Engineering and Performance, 2017, 26: 3034-3047.
[156] Li Z. Innovative induction hardening process with pre-heating for improvedfatigue performance of gear component [J]. Gear Technol J Gear Manuf, 2014:62-68.
[157] Wang J-H, Han F-Z, Chen S-F, et al. A novel model of laser energy attenuationby powder particles for laser solid forming [J]. International Journal of MachineTools and Manufacture, 2019, 145: 103440.
[158] Montes J, Cuevas F, Cintas J. Electrical resistivity of metal powder aggregates[J]. Metallurgical and Materials Transactions B, 2007, 38: 957-964.
[159]Bramson M A. Infrared Radiation: A Handbook for Applications [M]. New York:Plenum Press, 1968: 127-128.
[160] Qu M, Guo Q, Escano L I, et al. Controlling process instability for defect leanmetal additive manufacturing [J]. Nature Communications, 2022, 13(1): 1079.
[161] Doubenskaia M, Kulish A, Sova A, et al. Experimental and numerical study ofgas-powder flux in coaxial laser cladding nozzles of Precitec [J]. Surface andCoatings Technology, 2021, 406: 126672.
[162] Fedina T, Sundqvist J, Powell J, et al. A comparative study of water and gasatomized low alloy steel powders for additive manufacturing [J]. AdditiveManufacturing, 2020, 36: 101675.
修改评论