中文版 | English
题名

高速钢激光沉积过程光-粉交互作用与固态相变研究

其他题名
STUDY ON THE LASER-POWDER INTERACTION AND SOLID-STATE PHASE TRANSFORMATION IN HIGH-SPEED STEEL LASER DEPOSITION PROCESS
姓名
姓名拼音
REN Ke
学号
11849531
学位类型
博士
学位专业
080201 机械制造及其自动化
学科门类/专业学位类别
08 工学
导师
融亦鸣
导师单位
机械与能源工程系
外机构导师
王罡
外机构导师单位
清华大学
论文答辩日期
2023-10-19
论文提交日期
2023-12-20
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

通过激光沉积技术对履带车辆主动轮齿圈进行表面改性,可以大幅提升其表面综合力学性能。精确的能量与质量控制是决定激光沉积构件质量和性能的关键,然而系统输入与能量/质量利用率间具有复杂的非线性关系,相关数值模型在能量和质量输入的确定上缺乏可靠的正向计算依据。能量和质量输入作用下的沉积固态相变历史是影响激光沉积构件质量与形变的重要因素之一,受限于原位测量实验条件的限制,目前仍然缺乏研究沉积过程相变的有效手段。

本文以T15高速钢异质材料激光沉积为研究对象,首先通过相变动力学试验建立了沉积材料冷却过程的扩散型相变及马氏体相变的动力学模型。在此基础上,通过Gleeble热模拟试验获得了不同温度下材料的单相本构。结果显示奥氏体态的T15高速钢在受力过程会产生连续动态再结晶而导致应变软化。温度对贝氏体T15高速钢的屈服强度影响最大,当温度从400 ℃降低到200 ℃时屈服强度σ0.15提高了48.1%

基于同轴送粉激光沉积的粉末-激光-熔池交互作用机理,提出了一个综合的激光吸收率(η)与质量利用率(e)的正向计算模型。详细描述了激光沉积的三个主要物理过程:粉末对能量的遮挡及其升温、基体能量吸收与熔池形成、粉末捕获与沉积道次形成。模型通过入射角的二次修正,解决了质量-能量耦合对计算的影响。与实验结果对比发现,入射角是影响能量利用率的关键因素,当模型将其考虑为受系统输入影响的变量时,模型精度从88.5%提高到了92.7%。当沉积层和基体为不同材料时,材料的熔点差异会导致熔池宽度变化和边界偏移,考虑异质材料熔点差异可以将计算误差从7.8%降至3.2%

在系统能量和质量输入确定的基础上,本文提出了一种通过比较-迭代模拟与实测变形曲线来识别相变物理特征的方法。设计了激光沉积 过程变形的DIC原位测量实验,通过变形曲线对比与微观组织表征,论证了碳化物(MCM6C等)析出使得参与体积型相变的碳含量比名义碳含量低了0.35%,由此导致马氏体相变温度提高了208 ℃。参与相变的碳含量降低导致马氏体相变产生的压应力提高,马氏体相变迁移 率降低了约73%。进一步考虑了表面氧化与自发回火的影响。基于上述分析,建立了全面的T15高速钢沉积热-力-相变耦合模型。

最后,本文应用上述研究成果,对主动轮齿圈试件进行了激光沉积强化,并通过专用台架试验模拟实际服役工况,对 齿圈抗冲击磨损性能进行了评价。台架试验结果显示,相比中频感应淬火工艺,在预张紧力为2 t19小时台架试验中齿面平均磨损量从0.32 mm降至0.17 mm,磨损量降低了46.9%。且在长时试车后表面无裂纹缺陷,强化层的抗冲击稳定性满足车辆服役技术要求。

其他摘要

Surface modification of a track vehicle drive gearwheel using laser deposition technology can significantly improve the comprehensive mechanical properties of the surface. Precise control of energy and mass is critical to the quality and performance of laser-deposited components. However, there is a complex nonlinear relationship between system input and energy/mass utilization efficiency. Relevant numerical models lack a reliable predictive basis for determining energy and mass input. The history of solid-state phase transformation under the influence of energy and mass inputs is one of the key factors affecting the quality and deformation of laser-deposited components. Due to limitations imposed by the experimental conditions of in-situ measurements, effective means to study the entire deposition phase transformation process are currently lacking.

This thesis focuses on the dissimilar material laser deposition of T15 high-speed steel. First, a diffusion-type phase transformation model and a martensitic phase transformation kinetic model for the cooling process of the deposited material were established through phase transformation kinetic tests. On this basis, the monophase constitutive behavior of the material at different temperatures was obtained through Gleeble thermal simulation tests. The results show that the austenitic state of the T15 high speed steel undergoes continuous dynamic recrystallization during the loading process, resulting in strain softening. Temperature has the greatest effect on the yield strength of bainitic T15 high speed steel, with a 48.1% increase in yield strength (σ0.15) when the temperature is lowered from 400 °C to 200 °C.

Based on the powder-laser-molten pool interaction mechanism in powder-based laser-directed energy deposition, a comprehensive forward calculation model for laser absorptivity (η) and powder catchment efficiency (e) was proposed. The model elaborates on three main physical processes of laser deposition: powder shielding and heating, substrate energy absorption and molten pool formation, and powder captured and track formation. The model addresses the effect of mass-energy coupling on calculations through secondary corrections based on the incidence angle. A key factor affecting energy utilization efficiency was identified through a comparison with experimental results: the incidence angle. When the model considers the incidence angle as a variable affected by system inputs, the model accuracy increases from 88.5% to 92.7%. In cases where the deposition layer and substrate are made of different materials, the differences in melting points lead to variations in molten pool width and boundary displacement. By accounting for the dissimilar material melting point differences, the calculation error can be reduced from 7.8% to 3.2%.

Based on the identified energy and mass inputs to the deposition system, a methodology was proposed to understand and identify the physics of phase transformations by iteratively comparing the deformation histories of measurements and simulations. An in-situ measurement experiment using Digital Image Correlation technology was designed to capture the deformation during the laser deposition process. By comparing deformation curves and microscopic structure characterization, it was shown that the precipitation of carbides (MC, M6C, etc.) leads to a 0.35% reduction in carbon content participating in volume-type phase transformation compared to the nominal carbon content. As a result, the martensitic phase transformation temperature increased by 208 °C. The reduced carbon content participating in the phase transformation resulted in higher compressive stresses during martensitic transformation and a decrease in martensitic phase transformation mobility by approximately 73%. The effects of surface oxidation and spontaneous tempering were also considered. Based on the above analysis, a comprehensive thermal-mechanical-phase transformation coupling model of T15 high-speed steel deposition was established.

Finally, this thesis applied the above research results to the laser deposition reinforcement of the active gearwheel specimen, and evaluated the anti-impact wear performance of the gearwheel by simulating the actual service conditions through the special bench test. The results from the test rig demonstrated that, compared to the medium-frequency induction hardening process, the average gear surface wear reduced from 0.32 mm to 0.17 mm in a 19-hour test with a pre-tension force of 2 tons, leading to a reduction of 46.9% in wear. Furthermore, no surface crack defects were observed after extended test runs, and the impact resistance stability of the reinforced layer met the technical requirements for vehicle operation.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2023-12
参考文献列表

[1] American Society for Testing Materials. Standard Terminology for AdditiveManufacturing Technologies: ISO/ASTM 52900:2021 [S]. PA: ASTMInternational, 2012: 1-2.
[2] Gu D, Shi X, Poprawe R, et al. Material-structure-performance integrated lasermetal additive manufacturing [J]. Science, 2021, 372(6545): eabg1487.
[3] 王华明. 高性能金属构件增材制造技术开启国防制造新篇章 [J]. 国防制造技术, 2013, (03): 5-7.
[4] Shamsaei N, Yadollahi A, Bian L, et al. An overview of Direct Laser Depositionfor additive manufacturing; Part II: Mechanical behavior, process parameteroptimization and control [J]. Additive Manufacturing, 2015, 8: 12-35.
[5] Thawari N, Gullipalli C, Vanmore H, et al. In-situ monitoring and modelling ofdistortion in multi-layer laser cladding of Stellite 6: Parametric and numericalapproach [J]. Materials Today Communications, 2022, 33: 104751.
[6] Li S-H, Kumar P, Chandra S, et al. Directed energy deposition of metals:processing, microstructures, and mechanical properties [J]. InternationalMaterials Reviews, 2022: 1-43.
[7] Indhu R, Vivek V, Sarathkumar L, et al. Overview of Laser AbsorptivityMeasurement Techniques for Material Processing [J]. Lasers in Manufacturingand Materials Processing, 2018, 5(4): 458-481.
[8] 徐磊. 同轴送粉激光熔覆粉末及熔池动态演变分析与熔覆质量研究 [D]. 镇江: 江苏大学, 2022: 36-39.
[9] Costa L, Vilar R, Reti T, et al. Rapid tooling by laser powder deposition: Processsimulation using finite element analysis [J]. Acta Materialia, 2005, 53(14): 3987-3999.
[10]Silveira A C D F, Fechte-Heinen R, Epp J. Microstructure evolution during LaserDirected Energy Deposition of tool steel by In situ Synchrotron X-ray diffraction[J]. Additive Manufacturing, 2023: 103408.
[11] Svetlizky D, Das M, Zheng B, et al. Directed energy deposition (DED) additivemanufacturing: Physical characteristics, defects, challenges and applications [J].Materials Today, 2021, 49: 271-295.
[12] Levy G N. The role and future of the Laser Technology in the AdditiveManufacturing environment [J]. Physics Procedia, 2010, 5: 65-80.
[13] Gao W, Zhang Y, Ramanujan D, et al. The status, challenges, and future ofadditive manufacturing in engineering [J]. Computer-Aided Design, 2015, 69:65-89.
[14] Lin X, Cao Y, Wu X, et al. Microstructure and mechanical properties of laserforming repaired 17-4PH stainless steel [J]. Materials Science and Engineering:A, 2012, 553: 80-88.
[15] Wei H L, Mukherjee T, Zhang W, et al. Mechanistic models for additivemanufacturing of metallic components [J]. Progress in Materials Science, 2021,116: 100703.
[16] Thompson S M, Bian L, Shamsaei N, et al. An overview of Direct LaserDeposition for additive manufacturing; Part I: Transport phenomena, modelingand diagnostics [J]. Additive Manufacturing, 2015, 8: 36-62.
[17] Singh A, Harimkar S P. Laser Surface Engineering of Magnesium Alloys: AReview [J]. Jom, 2012, 64(6): 716-733.
[18]樊宇, 江利, 刘阳, 等. 一种以薄板搭接代替粉末激光熔覆的激光焊接工艺:201510209152.7[P]. 2015-04-28.
[19] Syed W U H, Pinkerton A J, Li L. Combining wire and coaxial powder feedingin laser direct metal deposition for rapid prototyping [J]. Applied SurfaceScience, 2006, 252(13): 4803-4808.
[20] Wang F, Mei J, Wu X. Compositionally graded Ti6Al4V + TiC made by directlaser fabrication using powder and wire [J]. Materials & Design, 2007, 28(7):2040-2046.
[21] Heralić A, Christiansson A-K, Lennartson B. Height control of laser metal-wiredeposition based on iterative learning control and 3D scanning [J]. Optics andLasers in Engineering, 2012, 50(9): 1230-1241.
[22] 何云斌. 激光熔覆再制造高速钢轧辊摩擦磨损及热疲劳损伤研究 [D]. 合肥: 合肥工业大学, 2022: 8-9.
[23] 袁磊. 基于激光熔覆的船用柴油机气缸套再制造修复研究 [D]. 济南: 山东大学, 2018: 7-8.
[24] Liu S, Shin Y C. Additive manufacturing of Ti6Al4V alloy: A review [J].Materials & Design, 2019, 164: 107552.
[25] 杨权. 燃气轮机涡轮盘的激光熔覆修复研究 [D]. 武汉: 湖北工业大学,2020: 9-12.
[26] Gradl P R. Principles of Directed Energy Deposition for AerospaceApplications[C]. Proceedings of the Drive AM Industry Connect, 2021: 23-39.
[27] Traxel K D, Bandyopadhyay A. Diamond-reinforced cutting tools using laserbased additive manufacturing [J]. Additive Manufacturing, 2021, 37: 101602.
[28] 杜学芸, 田洪芳, 董仕营, 等. 大功率光纤激光内孔熔覆装备开发及应用[J]. 热喷涂技术, 2019, 11: 31-35.
[29] 朱明, 杨骞, 王博, 等. 激光参数对旁轴送粉激光熔覆粉末熔化行为的影响[J]. 激光与光电子学进展, 2023, 60: 294-302.
[30] Prasad Behera M, Gopinath M, Kumar Nath A. A study on geometrical aspectsin laser cladding by lateral powder injection technique [J]. Materials Today:Proceedings, 2023: 1-10.
[31] 陈茹, 虞钢, 何秀丽, 等. 宽带激光熔覆送粉喷嘴的结构设计与粉末流场研究 [J]. 中国科学院大学学报, 2019, 36: 614-619.
[32] Hu B, Han J, Wang J. Parameter Study and Economic Efficiency Optimizationfor Laser Cladding with Wide-Band Fiber Laser [J]. International Journal ofOptics, 2022, 2022: 6373772.
[33] Liu H, Qin X, Huang S, et al. Geometry modeling of single track claddingdeposited by high power diode laser with rectangular beam spot [J]. Optics andLasers in Engineering, 2018, 100: 38-46.
[34] 李云峰. 大型齿圈齿面激光熔覆高厚度耐磨耐冲击涂层技术研究 [D]. 长春: 长春理工大学, 2021: 35-57.
[35] Huang Z, Wang G, Wei S, et al. Process improvement in laser hot wire claddingfor martensitic stainless steel based on the Taguchi method [J]. Frontiers ofMechanical Engineering, 2016, 11(3): 242-249.
[36] 王翔宇. 高速钢单道激光熔覆的工艺设计与熔池模拟研究 [D]. 北京: 清华大学, 2019: 33-47.
[37] Mohammed S, Zhang Z, Kovacevic R. Optimization of processing parameters infiber laser cladding [J]. The International Journal of Advanced ManufacturingTechnology, 2020, 111(9): 2553-2568.
[38] Xiawei L E, Jingbin H a O, Qingdong M, et al. Prediction of 18Ni300 lasercladding topography based on back-propagation neural network and particleswarm optimization [J]. Journal of Physics: Conference Series, 2021, 1775(1):012009.
[39] Chen X, Xiao M, Kang D, et al. Prediction of Geometric Characteristics of MeltTrack Based on Direct Laser Deposition Using M-SVR Algorithm [J]. Materials(Basel), 2021, 14(23): 7221.
[40] Caiazzo F, Caggiano A. Laser Direct Metal Deposition of 2024 Al Alloy: TraceGeometry Prediction via Machine Learning [J]. Materials, 2018, 11(3): 444.
[41] Perani M, Baraldo S, Decker M, et al. Track geometry prediction for Laser MetalDeposition based on on-line artificial vision and deep neural networks [J].Robotics and Computer-Integrated Manufacturing, 2023, 79: 102445.
[42] Pant P, Chatterjee D. Prediction of clad characteristics using ANN and combinedPSO-ANN algorithms in laser metal deposition process [J]. Surfaces andInterfaces, 2020, 21: 100699.
[43] Deng Z, Chen T, Wang H, et al. Process Parameter Optimization When PreparingTi(C, N) Ceramic Coatings Using Laser Cladding Based on a Neural Networkand Quantum-Behaved Particle Swarm Optimization Algorithm [J]. AppliedSciences, 2020, 10(18): 6331.
[44] Wang K, Liu W, Hong Y, et al. An Overview of Technological ParameterOptimization in the Case of Laser Cladding [J]. Coatings, 2023, 13(3): 496.
[45] De La Batut B, Fergani O, Brotan V, et al. Analytical and Numerical TemperaturePrediction in Direct Metal Deposition of Ti6Al4V [J]. Journal of Manufacturingand Materials Processing, 2017, 1(3): 1-14.
[46] 赵嘉欣. 激光熔覆熔池输运过程及晶粒生长的微观模型研究 [D]. 北京:清华大学, 2021: 6-8.
[47] Zhao J, Wang G, Wang X, et al. Multicomponent multiphase modeling ofdissimilar laser cladding process with high-speed steel on medium carbon steel[J]. International Journal of Heat and Mass Transfer, 2020, 148: 118990.
[48] Lu S, Fujii H, Nogi K. Marangoni convection and weld shape variations in He–CO2 shielded gas tungsten arc welding on SUS304 stainless steel [J]. Journal ofMaterials Science, 2008, 43(13): 4583-4591.
[49] Liu L, Wang G, Ren K, et al. Marangoni flow patterns of molten pools in multipass laser cladding with added nano-CeO2 [J]. Additive Manufacturing, 2022,59: 103156.
[50] Heiple C A, Roper J R. Mechanism for minor element effect on GTA fusion zonegeometry [J]. Welding, 1982, (1): 61-70.
[51] Wei S, Wang G, Shin Y C, et al. Comprehensive modeling of transportphenomena in laser hot-wire deposition process [J]. International Journal of Heatand Mass Transfer, 2018, 125: 1356-1368.
[52] 魏绍鹏. 马氏体时效钢激光再制造的界面行为与性能形成机理 [D]. 北京:清华大学, 2017: 64-93.
[53] Wirth F, Wegener K. A physical modeling and predictive simulation of the lasercladding process [J]. Additive Manufacturing, 2018, 22: 307-319.
[54] 王翔宇, 王罡, 罗升, 等. T15 高速钢异质材料激光熔覆过程的多相流模型[J]. 中国表面工程, 2019, 32: 117-123.
[55] Masaylo D, Igoshin S, Popovich A, et al. Effect of process parameters on defectsin large scale components manufactured by direct laser deposition [J]. MaterialsToday: Proceedings, 2020, 30: 665-671.
[56] 林超胤. 激光熔覆质量控制工艺试验研究 [D]. 厦门: 华侨大学, 2020: 39-42.
[57] Eisenbarth D, Borges Esteves P M, Wirth F, et al. Spatial powder flowmeasurement and efficiency prediction for laser direct metal deposition [J].Surface and Coatings Technology, 2019, 362: 397-408.
[58] Gabor T, Yun H, Akin S, et al. Continuous coaxial nozzle designs for improvedpowder focusing in direct laser metal deposition [J]. Journal of ManufacturingProcesses, 2022, 83: 116-128.
[59] 唐梦雨. 激光熔覆过程中粉末流场形态检测及其对熔覆质量影响研究 [D].镇江: 江苏大学, 2022: 48-58.
[60] 范启龙. 激光熔覆送粉器粉末流动特性研究 [D]. 大连: 大连海事大学,2022: 75-81.
[61] Parab N D, Zhao C, Cunningham R, et al. Ultrafast X-ray imaging of laser–metaladditive manufacturing processes [J]. Journal of Synchrotron Radiation, 2018,25(5): 1467-1477.
[62] Chen Y, Clark S J, Sinclair L, et al. Synchrotron X-ray imaging of directedenergy deposition additive manufacturing of titanium alloy Ti-6242 [J]. AdditiveManufacturing, 2021, 41: 101969.
[63] Hojjatzadeh S M H, Parab N D, Guo Q, et al. Direct observation of poreformation mechanisms during LPBF additive manufacturing process and highenergy density laser welding [J]. International Journal of Machine Tools andManufacture, 2020, 153: 103555.
[64] Hojjatzadeh S M H, Parab N D, Yan W, et al. Pore elimination mechanismsduring 3D printing of metals [J]. Nature Communications, 2019, 10(1): 3088.
[65] Cunningham R, Zhao C, Parab N, et al. Keyhole threshold and morphology inlaser melting revealed by ultrahigh-speed x-ray imaging [J]. Science, 2019,363(6429): 849-852.
[66] Zhao C, Parab Niranjan D, Li X, et al. Critical instability at moving keyhole tipgenerates porosity in laser melting [J]. Science, 2020, 370(6520): 1080-1086.
[67] Leung C L A, Marussi S, Atwood R C, et al. In situ X-ray imaging of defect andmolten pool dynamics in laser additive manufacturing [J]. NatureCommunications, 2018, 9(1): 1355.
[68] Sun T. Probing Ultrafast Dynamics in Laser Powder Bed Fusion Using HighSpeed X-Ray Imaging: A Review of Research at the Advanced Photon Source[J]. Jom, 2020, 72(3): 999-1008.
[69] Wolff S J, Wang H, Gould B, et al. In situ X-ray imaging of pore formationmechanisms and dynamics in laser powder-blown directed energy depositionadditive manufacturing [J]. International Journal of Machine Tools andManufacture, 2021, 166: 103743.
[70] 戴浩, 江训焱, 王燕. 激光功率对熔覆 7075 铝合金气孔缺陷的影响 [J]. 焊接技术, 2022, 51(09): 5-7.
[71] Chen Y, Clark S J, Huang Y, et al. In situ X-ray quantification of melt poolbehaviour during directed energy deposition additive manufacturing of stainlesssteel [J]. Materials Letters, 2021, 286: 129205.
[72] Zheng M, Wei L, Chen J, et al. A novel method for the molten pool and porosityformation modelling in selective laser melting [J]. International Journal of Heatand Mass Transfer, 2019, 140: 1091-1105.
[73] Zhang D, Li Y, Wang H, et al. Ultrasonic vibration-assisted laser directed energydeposition in-situ synthesis of NiTi alloys: Effects on microstructure andmechanical properties [J]. Journal of Manufacturing Processes, 2020, 60: 328-339.
[74] Zhang P, Zhou X, Cheng X, et al. Elucidation of bubble evolution and defectformation in directed energy deposition based on direct observation [J]. AdditiveManufacturing, 2020, 32: 101026.
[75] Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strengthaluminium alloys [J]. Nature, 2017, 549(7672): 365-369.
[76] Cheng J, Xing Y, Dong E, et al. An overview of laser metal deposition forcladding: defect formation mechanisms, defect suppression methods andperformance improvements of laser-cladded layers [J]. Materials, 2022, 15(16):5522.
[77] Li M, Huang K, Yi X. Crack Formation Mechanisms and Control Methods ofLaser Cladding Coatings: A Review [J]. Coatings, 2023, 13(6): 1117.
[78] Wei Q, Xie Y, Teng Q, et al. Crack Types, Mechanisms, and SuppressionMethods during High-energy Beam Additive Manufacturing of Nickel-basedSuperalloys: A Review [J]. Chinese Journal of Mechanical Engineering:Additive Manufacturing Frontiers, 2022, 1(4): 100055.
[79] Chauvet E, Kontis P, Jägle E A, et al. Hot cracking mechanism affecting a nonweldable Ni-based superalloy produced by selective electron Beam Melting [J].Acta Materialia, 2018, 142: 82-94.
[80] Eo D-R, Chung S-G, Yang J, et al. Surface modification of high-Mn steel vialaser-DED: Microstructural characterization and hot crack susceptibility of cladlayer [J]. Materials & Design, 2022, 223: 111188.
[81] Del Guercio G, Mccartney D G, Aboulkhair N T, et al. Cracking behaviour ofhigh-strength AA2024 aluminium alloy produced by Laser Powder Bed Fusion[J]. Additive Manufacturing, 2022, 54: 102776.
[82] Garibaldi M, Ashcroft I, Simonelli M, et al. Metallurgy of high-silicon steel partsproduced using Selective Laser Melting [J]. Acta Materialia, 2016, 110: 207-216.
[83] Kou S. A criterion for cracking during solidification [J]. Acta Materialia, 2015,88: 366-374.
[84] Sheikhi M, Malek Ghaini F, Assadi H. Prediction of solidification cracking inpulsed laser welding of 2024 aluminum alloy [J]. Acta Materialia, 2015, 82: 491-502.
[85] Chen Y, Lu F, Zhang K, et al. Dendritic microstructure and hot cracking of laseradditive manufactured Inconel 718 under improved base cooling [J]. Journal ofAlloys and Compounds, 2016, 670: 312-321.
[86] Chen Y, Lu F, Zhang K, et al. Investigation of dendritic growth and liquationcracking in laser melting deposited Inconel 718 at different laser input angles [J].Materials & Design, 2016, 105: 133-141.
[87] Sahoo P, Debroy T, Mcnallan M. Surface tension of binary metal—surface activesolute systems under conditions relevant to welding metallurgy [J].Metallurgical Transactions B, 1988, 19: 483-491.
[88] Chen Y, Zhang K, Huang J, et al. Characterization of heat affected zone liquationcracking in laser additive manufacturing of Inconel 718 [J]. Materials & Design,2016, 90: 586-594.
[89] Kadoi K, Hiraoka M, Shinozaki K, et al. Ductility-dip cracking susceptibility indissimilar weld metals of alloy 690 filler metal and low alloy steel [J]. MaterialsScience and Engineering: A, 2019, 756: 92-97.
[90] Divya V D, Muñoz-Moreno R, Messé O M D M, et al. Microstructure of selectivelaser melted CM247LC nickel-based superalloy and its evolution through heattreatment [J]. Materials Characterization, 2016, 114: 62-74.
[91] Young G, Capobianco T, Penik M, et al. The mechanism of ductility dip crackingin nickel-chromium alloys [J]. Welding Journal-New York, 2008, 87(2): 31.
[92] Carter L N, Martin C, Withers P J, et al. The influence of the laser scan strategyon grain structure and cracking behaviour in SLM powder-bed fabricated nickelsuperalloy [J]. Journal of Alloys and Compounds, 2014, 615: 338-347.
[93] Chang B, Yang S, Liu G, et al. Influences of Cooling Conditions on the LiquationCracking in Laser Metal Deposition of a Directionally Solidified Superalloy [J].Metals, 2020, 10(4): 466.
[94] Hoadley A F A, Rappaz M. A thermal model of laser cladding by powderinjection [J]. Metallurgical Transactions B, 1992, 23(5): 631-642.
[95] 王狮凌. 大功率激光器光束整形系统设计与研究 [D]. 天津: 天津大学,2017: 19-31.
[96] Parent A, Morin M, Lavigne P. Propagation of super-Gaussian field distributions[J]. Optical and Quantum Electronics, 1992, 24(9): S1071-S1079.
[97] Tadamalle A P, Reddy Y P, Ramjee E. Influence of laser welding processparameters on weld pool geometry and duty cycle [J]. Advances in ProductionEngineering & Management, 2013, 8(1): 52-60.
[98] Lia F, Park J, Tressler J, et al. Partitioning of laser energy during directed energydeposition [J]. Additive Manufacturing, 2017, 18: 31-39.
[99] Carpene E, Höche D, Schaaf P. Laser Processing of Materials [M]. Berlin,Heidelberg: Springer, 2010: 196-197.
[100] Pinkerton A J. An analytical model of beam attenuation and powder heatingduring coaxial laser direct metal deposition [J]. Journal of Physics D: AppliedPhysics, 2007, 40(23): 7323-7334.
[101] Mackwood A P, Crafer R C. Thermal modelling of laser welding and relatedprocesses: a literature review [J]. Optics & Laser Technology, 2005, 37(2): 99-115.
[102] Wang C, Zhou J, Zhang T, et al. Numerical simulation and solidificationcharacteristics for laser cladding of Inconel 718 [J]. Optics & Laser Technology,2022, 149: 107843.
[103] Wang L, Zhang D, Chen C, et al. Multi-physics field coupling andmicrostructure numerical simulation of laser cladding for engine crankshaftbased on CA-FE method and experimental study [J]. Surface and CoatingsTechnology, 2022, 438: 128396.
[104] Ge H, Xu H, Wang J, et al. Investigation on composition distribution ofdissimilar laser cladding process using a three-phase model [J]. InternationalJournal of Heat and Mass Transfer, 2021, 170: 120975.
[105] Chen L, Zhao Y, Song B, et al. Modeling and simulation of 3D geometryprediction and dynamic solidification behavior of Fe-based coatings by lasercladding [J]. Optics & Laser Technology, 2021, 139: 107009.
[106] Gao J, Wu C, Hao Y, et al. Numerical simulation and experimental investigationon three-dimensional modelling of single-track geometry and temperatureevolution by laser cladding [J]. Optics & Laser Technology, 2020, 129: 106287.
[107] Wirth F, Wegener K. Simulation of the multi-component process gas flow forthe explanation of oxidation during laser cladding [J]. Additive Manufacturing,2018, 24: 249-256.
[108] Ya W, Pathiraj B, Liu S. 2D modelling of clad geometry and resulting thermalcycles during laser cladding [J]. Journal of Materials Processing Technology,2016, 230: 217-232.
[109] Shin Y C, Bailey N, Katinas C, et al. Predictive modeling capabilities fromincident powder and laser to mechanical properties for laser directed energydeposition [J]. Computational Mechanics, 2018, 61(5): 617-636.
[110] Kundakcioglu E, Lazoglu I, Rawal S. Transient thermal modeling of laser-basedadditive manufacturing for 3D freeform structures [J]. The International Journalof Advanced Manufacturing Technology, 2015, 85(1-4): 493-501.
[111] Jayanath S, Achuthan A. A Computationally Efficient Finite ElementFramework to Simulate Additive Manufacturing Processes [J]. Journal ofManufacturing Science and Engineering, 2018, 140(4): 1-24.
[112] Wirth F, Eisenbarth D, Wegener K. Absorptivity Measurements and HeatSource Modeling to Simulate Laser Cladding [J]. Physics Procedia, 2016, 83:1424-1434.
[113] Huang Y, Khamesee M B, Toyserkani E. A comprehensive analytical model forlaser powder-fed additive manufacturing [J]. Additive Manufacturing, 2016, 12:90-99.
[114] Nie Z, Wang G, Mcguffin-Cawley J D, et al. Experimental study and modelingof H13 steel deposition using laser hot-wire additive manufacturing [J]. Journalof Materials Processing Technology, 2016, 235: 171-186.
[115] Martukanitz R, Melnychuk R, Stefanski M, et al. Dynamic absorption of apowder layer[C]. Proceedings of the Pacific International Conference onApplications of Lasers and Optics, AIP Publishing, 2004: 1404-1411.
[116] Wen S Y, Shin Y C, Murthy J Y, et al. Modeling of coaxial powder flow for thelaser direct deposition process [J]. International Journal of Heat and MassTransfer, 2009, 52(25-26): 5867-5877.
[117] Tabernero I, Lamikiz A, Ukar E, et al. Numerical simulation and experimentalvalidation of powder flux distribution in coaxial laser cladding [J]. Journal ofMaterials Processing Technology, 2010, 210(15): 2125-2134.
[118] Govekar E, Jeromen A, Kuznetsov A, et al. Annular laser beam based directmetal deposition [J]. Procedia CIRP, 2018, 74: 222-227.
[119] Ansari M, Martinez-Marchese A, Huang Y, et al. A mathematical model of laserdirected energy deposition for process mapping and geometry prediction of Ti-5553 single-tracks [J]. Materialia, 2020, 12: 100710.
[120] Pirch N, Linnenbrink S, Gasser A, et al. Analysis of track formation during lasermetal deposition [J]. Journal of Laser Applications, 2017, 29(2): 022506.
[121] Bedenko D V, Kovalev O B, Smurov I, et al. Numerical simulation of transportphenomena, formation the bead and thermal behavior in application toindustrial DMD technology [J]. International Journal of Heat and Mass Transfer,2016, 95: 902-912.
[122] Kovaleva I, Kovalev O, Zaitsev A, et al. Modeling and numerical study of lightpropulsion phenomena of particles acceleration in coaxial laser powdercladding [J]. Physics Procedia, 2014, 56: 439-449.
[123] Zheng B, Zhou Y, Smugeresky J E, et al. Thermal Behavior and MicrostructuralEvolution during Laser Deposition with Laser-Engineered Net Shaping: Part I.Numerical Calculations [J]. Metallurgical and Materials Transactions A, 2008,39(9): 2228-2236.
[124] Lundbäck A, Lindgren L-E. Modelling of metal deposition [J]. Finite Elementsin Analysis and Design, 2011, 47(10): 1169-1177.
[125] Wang L, Felicelli S D, Pratt P. Residual stresses in LENS-deposited AISI 410stainless steel plates [J]. Materials Science and Engineering: A, 2008, 496(1-2):234-241.
[126] Dai K, Shaw L. Distortion minimization of laser ‐ processed componentsthrough control of laser scanning patterns [J]. Rapid Prototyping Journal, 2002,8(5): 270-276.
[127] Heigel J C, Michaleris P, Reutzel E W. Thermo-mechanical model developmentand validation of directed energy deposition additive manufacturing of Ti–6Al–4V [J]. Additive Manufacturing, 2015, 5: 9-19.
[128] Withers P J, Bhadeshia H K D H. Residual stress. Part 2 – Nature and origins[J]. Materials Science and Technology, 2013, 17(4): 366-375.
[129] Hodge N E, Ferencz R M, Vignes R M. Experimental comparison of residualstresses for a thermomechanical model for the simulation of selective lasermelting [J]. Additive Manufacturing, 2016, 12: 159-168.
[130] Denlinger E R, Irwin J, Michaleris P. Thermomechanical Modeling of AdditiveManufacturing Large Parts [J]. Journal of Manufacturing Science andEngineering, 2014, 136(6): 061007.
[131] Deng D, Murakawa H, Liang W. Numerical simulation of welding distortion inlarge structures [J]. Computer Methods in Applied Mechanics and Engineering,2007, 196(45-48): 4613-4627.
[132] Deng D, Murakawa H. Prediction of welding distortion and residual stress in athin plate butt-welded joint [J]. Computational Materials Science, 2008, 43(2):353-365.
[133] Yin H, Wang L, Felicelli S D. Comparison of Two-Dimensional and ThreeDimensional Thermal Models of the LENS® Process [J]. Journal of HeatTransfer, 2008, 130(10): 102101.
[134] Peyre P, Aubry P, Fabbro R, et al. Analytical and numerical modelling of thedirect metal deposition laser process [J]. Journal of Physics D: Applied Physics,2008, 41(2): 025403.
[135] Alimardani M, Toyserkani E, Huissoon J P. Three-dimensional numericalapproach for geometrical prediction of multilayer laser solid freeformfabrication process [J]. Journal of Laser Applications, 2007, 19(1): 14-25.
[136] Wen S, Shin Y C. Comprehensive predictive modeling and parametric analysisof multitrack direct laser deposition processes [J]. Journal of Laser Applications,2011, 23(2): 022003.
[137] Mukherjee T, Manvatkar V, De A, et al. Mitigation of thermal distortion duringadditive manufacturing [J]. Scripta Materialia, 2017, 127: 79-83.
[138] Parry L, Ashcroft I A, Wildman R D. Understanding the effect of laser scanstrategy on residual stress in selective laser melting through thermo-mechanicalsimulation [J]. Additive Manufacturing, 2016, 12: 1-15.
[139] Cheng B, Shrestha S, Chou K. Stress and deformation evaluations of scanningstrategy effect in selective laser melting [J]. Additive Manufacturing, 2016, 12:240-251.
[140] Alimardani M, Toyserkani E, Huissoon J P, et al. On the delamination and crackformation in a thin wall fabricated using laser solid freeform fabrication process:An experimental–numerical investigation [J]. Optics and Lasers in Engineering,2009, 47(11): 1160-1168.
[141] Labudovic M, Hu D, Kovacevic R. A three dimensional model for direct lasermetal powder deposition and rapid prototyping [J]. Journal of Materials Science,2003, 38(1): 35-49.
[142] Alimardani M, Toyserkani E, Huissoon J P. A 3D dynamic numerical approachfor temperature and thermal stress distributions in multilayer laser solidfreeform fabrication process [J]. Optics and Lasers in Engineering, 2007,45(12): 1115-1130.
[143] Bhadeshia H K D H, Svensson L E, Gretoft B. A model for the development ofmicrostructure in low-alloy steel (Fe-Mn-Si-C) weld deposits [J]. ActaMetallurgica, 1985, 33(7): 1271-1283.
[144] Papazoglou V J, Masubuchi K. Numerical Analysis of Thermal Stresses DuringWelding Including Phase Transformation Effects [J]. Journal of Pressure VesselTechnology, 1982, 104(3): 198-203.
[145] Bhadeshia H, Svensson L. Modelling the evolution of microstructure in steelweld metal [J]. Mathematical modelling of weld phenomena, 1993, 1: 109-182.
[146] Taljat B, Radhakrishnan B, Zacharia T. Numerical analysis of GTA weldingprocess with emphasis on post-solidification phase transformation effects onresidual stresses [J]. Materials Science and Engineering: A, 1998, 246(1-2): 45-54.
[147] Elmer J W, Palmer T A, Zhang W, et al. Kinetic modeling of phasetransformations occurring in the HAZ of C-Mn steel welds based on directobservations [J]. Acta Materialia, 2003, 51(12): 3333-3349.
[148] Deng D. FEM prediction of welding residual stress and distortion in carbonsteel considering phase transformation effects [J]. Materials & Design, 2009,30(2): 359-366.
[149] Lee C-H, Chang K-H. Prediction of residual stresses in high strength carbonsteel pipe weld considering solid-state phase transformation effects [J].Computers & Structures, 2011, 89(1-2): 256-265.
[150] Ferro P, Porzner H, Tiziani A, et al. The influence of phase transformations onresidual stresses induced by the welding process—3D and 2D numerical models[J]. Modelling and Simulation in Materials Science and Engineering, 2006,14(2): 117-136.
[151] Santhanakrishnan S, Kong F, Kovacevic R. An experimentally based thermokinetic hardening model for high power direct diode laser cladding [J]. Journalof Materials Processing Technology, 2011, 211(7): 1247-1259.
[152] Farahmand P, Kovacevic R. An experimental–numerical investigation of heatdistribution and stress field in single- and multi-track laser cladding by a highpower direct diode laser [J]. Optics & Laser Technology, 2014, 63: 154-168.
[153] Weisz-Patrault D. Fast simulation of temperature and phase transitions indirected energy deposition additive manufacturing [J]. Additive Manufacturing,2020, 31: 100990.
[154] Bailey N S, Katinas C, Shin Y C. Laser direct deposition of AISI H13 tool steelpowder with numerical modeling of solid phase transformation, hardness, andresidual stresses [J]. Journal of Materials Processing Technology, 2017, 247:223-233.
[155] Zhang Y, Wang G, Shi W, et al. Modeling and Analysis of Deformation forSpiral Bevel Gear in Die Quenching Based on the Hardenability Variation [J].Journal of Materials Engineering and Performance, 2017, 26: 3034-3047.
[156] Li Z. Innovative induction hardening process with pre-heating for improvedfatigue performance of gear component [J]. Gear Technol J Gear Manuf, 2014:62-68.
[157] Wang J-H, Han F-Z, Chen S-F, et al. A novel model of laser energy attenuationby powder particles for laser solid forming [J]. International Journal of MachineTools and Manufacture, 2019, 145: 103440.
[158] Montes J, Cuevas F, Cintas J. Electrical resistivity of metal powder aggregates[J]. Metallurgical and Materials Transactions B, 2007, 38: 957-964.
[159]Bramson M A. Infrared Radiation: A Handbook for Applications [M]. New York:Plenum Press, 1968: 127-128.
[160] Qu M, Guo Q, Escano L I, et al. Controlling process instability for defect leanmetal additive manufacturing [J]. Nature Communications, 2022, 13(1): 1079.
[161] Doubenskaia M, Kulish A, Sova A, et al. Experimental and numerical study ofgas-powder flux in coaxial laser cladding nozzles of Precitec [J]. Surface andCoatings Technology, 2021, 406: 126672.
[162] Fedina T, Sundqvist J, Powell J, et al. A comparative study of water and gasatomized low alloy steel powders for additive manufacturing [J]. AdditiveManufacturing, 2020, 36: 101675.

所在学位评定分委会
机械
国内图书分类号
TG401
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/633346
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
任珂. 高速钢激光沉积过程光-粉交互作用与固态相变研究[D]. 哈尔滨. 哈尔滨工业大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849531-任珂-机械与能源工程系(12509KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[任珂]的文章
百度学术
百度学术中相似的文章
[任珂]的文章
必应学术
必应学术中相似的文章
[任珂]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。