[1] EDWARD Y, STUART W, TOBY K. The Burden of Musculoskeletal Diseases in theUnited States[J]. Seminars in Arthritis and Rheumatism. 2016, 46(3): 259-260.
[2] AM WU, CATHERINE B, SPENCER L J, et al. GBD 2019 Fracture CollaboratorsGlobal, regional, and national burden of bone fractures in 204 countries andterritories, 1990 – 2019: a systematic analysis from the Global Burden of DiseaseStudy[J]. Lancet Healthy Longevity. 2021, 75(21): 580-592.
[3] BORGSTROM F. Fragility fractures in Europe: burden, management andopportunities[J]. Archives of Osteoporosis. 2020, 15(59): 203-210.
[4] TUCKERMANN J, ADAMS RH. The endothelium-bone axis in development, homeostasis and bone and joint disease[J]. Nature Reviews Rheumatology. 2021, 17(10): 608-620.
[5] WANG L, ZHOU F, ZHANG P, et al. Human type H vessels are a sensitive biomarkerof bone mass[J]. Cell Death & Disease. 2017, 8(5): 27-60.
[6] KUSUMBE AP, RAMASAMY SK, ADAMS RH. Coupling of angiogenesis andosteogenesis by a specific vessel subtype in bone[J]. Nature. 2014, 507(92): 323-328.
[7] SHEN Z, CHEN Z, LI Z, et al. Total flavonoids of Rhizoma Drynariae enhancesangiogenic-osteogenic coupling during distraction osteogenesis by promoting type Hvessel formation through PDGF-BB/PDGFR-β instead of HIF-1α/VEGF axis[J]. Frontiers in Pharmacology. 2020, 11(50): 35-24.
[8] ZHANG J, PAN J, JING W. Motivating role of type H vessels in bone regeneration[J]. Cell Proliferation. 2020, 53(9): 12-24.
[9] XIE H, CUI Z, WANG L, et al. PDGF-BB secreted by preosteoclasts inducesangiogenesis during coupling with osteogenesis[J]. Nature Medicine. 2014, 20(11):1270-1278.
[10] ZHAO C, IRIE N, TAKADA Y, et al. Bidirectional ephrinB2-EphB4 signalingcontrols bone homeostasis[J]. Cell Metabolism. 2006, 4(2): 111-121.
[11] SHIH YR, TSENG KF, LAI HY, et al. Matrix stiffness regulation of integrin- mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells[J]. Journal of Bone and Mineral Research. 2011, 26(4): 730- 738.
[12] ELEFTERIOU F, AHN JD, TAKEDA S, et al. Leptin regulation of bone resorptionby the sympathetic nervous system and CART[J]. Nature. 2005, 434(72): 514-520.
[13] LONG H, AHMED M, ACKERMANN P, et al. Neuropeptide Y innervation duringfracture healing and remodeling. A study of angulated tibial fractures in the rat[J]. Acta Orthopaedica. 2010, 81(12): 639-646.
[14] SOUSA DM. Neuropeptide Y modulates fracture healing through Y1 receptorsignaling[J]. Journal of Orthopaedic Research. 2013, 31(56): 1570-1578.
[15] NIEDERMAIR T, STRAUB RH, BROCHHAUSEN C. Impact of the sensory andsympathetic nervous system on fracture healing in ovariectomized mice[J]. International Journal of Molecular Sciences. 2020, 21(34): 405-410.
[16] SULLIVAN MP, TORRES SJ, MEHTA S. Heterotopic ossification after centralnervous system trauma: a current review[J]. Bone & Joint Research. 2013, 2(12): 51- 57.
[17] WANG XD. The neural system regulates bone homeostasis via mesenchymal stemcells: a translational approach[J]. Theranostics. 2020, 10(13): 4839-485
[18] TAKEDA S. Leptin regulates bone formation via the sympathetic nervous system[J]. Cell. 2002, 111(45): 305-317.
[19] ELEFTERIOUS F. Leptin regulation of bone resorption by the sympathetic nervoussystem and CART[J]. Nature. 2005, 434(67): 514-520.
[20] SIMS NA, MARTIN TJ. Coupling the activities of bone formation and resorption: amultitude of signals within the basic multicellular unit[J]. Bonekey Reports. 2014, 3(34): 481-487.
[21] PRISBY RD. Mechanical, hormonal, and metabolic influences on blood vessels, blood flow, and bone[J]. Journal of Endocrinology. 2017, 235(48): 77-100.
[22] PRISBY RD. Aging reduces skeletal blood flow, endothelium-dependent vasodilation, and NO bioavailability in rats[J]. Journal of Bone and Mineral Research. 2007, 22(88): 1280-1288.
[23] STABLEY JN, PRISBY RD, BEHNKE BJ, et al. Type 2 diabetes alters bone andmarrow blood flow and vascular control mechanisms in the ZDF rat[J]. Journal ofEndocrinology. 2015, 225(9): 47-58.
[24] DOMINGUEZ JM, PRISBY RD, DELP MD, et al. Increased nitric oxide-mediatedvasodilation of bone resistance arteries is associated with increased trabecular bonevolume after endurance training in rats[J]. Bone. 2010, 46(35): 813-819.
[25] GAUR T, LENGNER CJ, HOVHANNISYAN H, et al. Canonical WNT signalingpromotes osteogenesis by directly stimulating Runx2 gene expression[J]. Journal ofBiological Chemistry. 2005, 280(39): 33132-33140.
[26] KULKARNI NH, ONYIA JE, ZENG Q, et al. Orally bioavailable GSK-3α/β dualinhibitor increases markers of cellular differentiation in vitro and bone mass invivo[J]. Journal of Bone and Mineral Research. 2006, 21(6): 910-920.
[27] CHEN Y. Endothelial cells are progenitors of cardiac pericytes and vascular smoothmuscle cells[J]. Nature Communications. 2012, 3(34): 1247-1254.
[28] LI X. VEGF regulates the differentiation of osteoblasts and osteoclasts bymodulating the expression of Runx2 and RANKL[J]. Journal of Bone and Mineral Research. 2013, 28(3): 548-558.
[29] YANO K. IL-6 induces osteoclastogenesis by increasing RANKL expression inosteoblasts and suppressing osteoprotegerin expression in osteoblasts andosteocytes[J]. Journal of Biological Chemistry. 2004, 279(9): 48539-48546.
[30] ZHAO C, et al. Endothelin-1 promotes osteoblastic bone metastasis by induction ofosteoprotegerin[J]. International Journal of Cancer. 2004, 109(3): 368-376.
[31] 王兴文. LncRNA TUG1/miR-34a/FGFR1 轴在流体剪切应力调控成骨细胞生物学过程中的作用及机制研究[D]. 兰州:兰州大学. 2022:1-75.
[32] ANASTASIADOU E, JACOB LS, SLACK FJ. Non-coding RNA networks incancer[J]. Nature Reviews Cancer. 2018, 18(1): 5-18.
[33] HOMBACH S, KRETZ M. Non-coding RNAs: Classification, Biology, andFunctioning[J]. Advances in Experimental Medicine and Biology. 2016, 93(7): 3-17.
[34] ECKER JR, BICKEMORE WA, BARROSO I, et al. Genomics: ENCODEexplained[J]. Nature. 2012, 489(7414): 52-55.
[35] WANG Z, LI X. The role of noncoding RNA in hepatocellular carcinoma[J]. International Journal of Glandular Surgery. 2013, 2(1): 25-29.
[36] CABILI MN, TRAPNELL C, GOFF L, et al. Integrative Annotation of Human LargeIntergenic Noncoding RNAs Reveals Global Properties and Specific Subclasses[J]. Genes & Development. 2011, 25(18): 1915-1927.
[37] MATTICK JS, MAKUNIN IV. Non-coding RNA[J]. Human Molecular Genetics. 2006, 15(1): 17-29.
[38] GULINO-DEBRAC D. Mechanotransduction at the Basis of Endothelial BarrierFunction[J]. Tissue Barriers. 2013, 1(2): 24-30.
[39] ZHOU J, LI YS, NGUYEN P, et al. Regulation of Vascular Smooth Muscle CellTurnover by Endothelial Cell-Secreted microRNA-126: Role of Shear Stress[J]. Circulation Research. 2013, 113(5): 40-51.
[40] TZIMA E. Role of Small GTPases in Endothelial Cytoskeletal Dynamics and theShear Stress Response[J]. Circulation Research. 2006, 98(2): 176-185.
[41] TZIMA E, IRANI-TEHRANI M, SCHWARTZ MA, et al. A MechanosensoryComplex That Mediates the Endothelial Cell Response to Fluid Shear Stress[J]. Nature. 2005, 437(57): 426-431.
[42] CONWAY DE, SCHWARTZ MA. Mechanotransduction of Shear Stress OccursThrough Changes in VE-Cadherin and PECAM-1 Tension: Implications for CellMigration[J]. Cell Adhesion & Migration. 2014, 3(4): 1-5.
[43] FILOSA JA, YAO X, RATH G. TRPV4 and the Regulation of Vascular Tone[J]. Journal of Cardiovascular Pharmacology. 2013, 61(2): 113-119.
[44] LIN Z, et al. Kruppel-like Factor 2 (KLF2) Regulates Endothelial ThromboticFunction[J]. Circulation Research. 2015, 96(2): 48-57.
[45] ZAKKAR M, et al. Activation of Nrf2 in Endothelial Cells Protects Arteries FromExhibiting a Proinflammatory State[J]. Arteriosclerosis, Thrombosis, and VascularBiology. 2009, 29(10): 1851-1857.
[46] WANG L, et al. Integrin-YAP/TAZ-JNK Cascade Mediates Atheroprotective Effectof Unidirectional Shear Flow[J]. Nature. 2018, 540(71): 579-582.
[47] WANG KC, et al. Flow-Dependent YAP/TAZ Activities Regulate EndothelialPhenotypes and Atherosclerosis[J]. Proceedings of the National Academy of Sciencesof the United States of America. 2016, 113(41): 11525-11530.
[48] LI B, et al. c-Abl Regulates YAPY357 Phosphorylation to Activate EndothelialAtherogenic Responses to Disturbed Flow[J]. Journal of Clinical Investigation. 2019, 129(21): 1167-1179.
[49] ZHOU J, et al. Force-Specific Activation of Smad1/5 Regulates Vascular EndothelialCell Cycle Progression in Response to Disturbed Flow[J]. Proceedings of theNational Academy of Sciences of the United States of America. 2012, 109(47): 7770- 7775.
[50] KRISHNAN VENKATARAMAN, YONG-MOON LEE, JASON MICHAUD, et al. Vascular Endothelium As a Contributor of Plasma Sphingosine 1-Phosphate[J]. Circulation Research. 2008, 102(11): 1340-1342.
[51] BROWN TD. Techniques for Mechanical Stimulation of Cells In Vitro: A Review[J]. Journal of Biomechanics. 2000, 33(1): 3-14.
[52] SEDLAK JM, CLYNE AM. A modified parallel plate flow chamber to study localendothelial response to recirculating disturbed flow[J]. Journal of BiomechanicalEngineering. 2020, 142(4): 23-54.
[53] MAN HSJ, SUKUMAR AN, KU KH. Gene expression analysis of endothelial cellsexposed to shear stress using multiple parallel-plate flow chambers[J]. Journal ofVisualized Experiments. 2018, 140(2): 17-23.
[54] WONG AK, P LL, BORODA N. A parallel-plate flow chamber for mechanicalcharacterization of endothelial cells exposed to laminar shear stress[J]. Cellular andMolecular Bioengineering. 2016, 9(1): 127-138.
[55] VAN KOOTEN TG, SCHAKENRAAD JM, VAN DER MEI HC. Development anduse of a parallel-plate flow chamber for studying cellular adhesion to solidsurfaces[J]. Journal of Biomedical Materials Research. 1992, 26(6): 725-738.
[56] FRANZONI M, O'CONNOR DT, MARCAR L, et al. The presence of a high peakfeature within low-average shear stimuli induces quiescence in venous endothelialcells[J]. Annals of Biomedical Engineering. 2020, 48(2): 582-594.
[57] DEWEY JR CF, BUSSOLARI SR, GIMBRONE JR MA. The dynamic response ofvascular endothelial cells to fluid shear stress[J]. Journal of BiomechanicalEngineering. 1981, 103(3): 177-185.
[58] PAPADAKI M, MCINTIRE LV. Quantitative measurement of shear-stress effects onendothelial cells[J]. Methods in Molecular Medicine. 2009, 18(3): 577-613.
[59] GO YM, BOO YC, PARK H, et al. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress[J]. Journalof Applied Physiology. 1985, 91(4): 1974-2001.
[60] REINHART-KING CA, FUJIWARA K, BERK BC. Physiologic stress-mediatedsignaling in the endothelium[J]. Methods in Enzymology. 2018, 443(43): 25-44.
[61] SCHNITTLER HJ, FRANKE RP, AKBAY U. Improved in vitro rheological systemfor studying the effect of fluid shear stress on cultured cells[J]. American Journal ofPhysiology. 1993, 265(1): 289-298.
[62] WARBOYS CM, GHIM M, WEINBERG PD. Understanding mechanobiology incultured endothelium: a review of the orbital shaker method[J]. Atherosclerosis. 2019, 28(5): 170-176.
[63] TAKUWA Y, Subtype-specific differential regulation of Rho family G proteins andcell migration by the Edg family sphingosine-1-phosphate receptors[J]. Biochimicaet Biophysica Acta. 2002, 1582(3): 112-120.
[64] TAK HLA. Physiological, pathological actions of sphingosine 1-phosphate[J]. Seminars in Cell & Developmental Biology. 2004, 15(5): 513-520.
[65] WINKLER MS, NIERHAUS A, HOLZMANN M, et al. Decreased serumconcentrations of sphingosine-1-phosphate in sepsis[J]. Critical Care. 2015, 19(38):372-381.
[66] LAI WQ, IRWAN AW, GOH H, et al. Anti-inflammatory effects of sphingosinekinase modulation in inflammatory arthritis[J]. Journal of Immunology. 2012, 181(6):8010-8017.
[67] MACEYKA M, SPIEGEL S. Sphingolipid metabolites in inflammatory disease[J]. Nature. 2014, 510(7503): 58-67.
[68] ANNABI B, THIBEAULT S, LEE YT, et al. Matrix metalloproteinase regulation ofsphingosine-1-phosphate-induced angiogenic properties of bone marrow stromalcells[J]. Experimental Hematology. 2003, 31(7): 640-649.
[69] LA, KY CHAN, WH NG, et al. Matrix metalloproteinase 1 is necessary for themigration of human bone marrow-derived mesenchymal stem cells toward humanglioma[J]. Stem Cells. 2009, 27(6): 1366-1375.
[70] MERIANE M, S DUHAMEL, L LEJEUNE, et al. Cooperation of matrixmetalloproteinases with the RhoA/Rho kinase and mitogen-activated protein kinasekinase-1/extracellular signal-regulated kinase signaling pathways is required for thesphingosine-1-phosphate-induced mobilization of marrow-derived stromal cells[J]. Stem Cells. 2006, 24(11): 2557-2565.
[71] HASHIMOTO Y, E MATSUZAKI, K HIGASHI, et al. Sphingosine-1-phosphate inhibits differentiation of C3H10T1/2 cells into adipocyte[J]. Molecular and CellularBiochemistry. 2015, 401(2): 39-47.
[72] HASHIMOTO Y, M KOBAYASHI, E MATSUZAKI, et al. Sphingosine-1-phosphate- enhanced Wnt5a promotes osteogenic differentiation in C3H10T1/2 cells[J]. International Journal of Cell Biology. 2016, 40(10): 1129-1136.
[73] MARYCZ K, J KRZAK, M MAREDZIAK, et al. The influence of metal-basedbiomaterials functionalized with sphingosine-1-phosphate on the cellular responseand osteogenic differentiation potential of human adipose-derived mesenchymal stemcells in vitro[J]. Journal of Biomaterials Applications. 2016, 30(10): 1517-1533.
[74] CARPIO LC, E STEPHAN, A KAMER. Sphingolipids stimulate cell growth viaMAP kinase activation in osteoblastic cells[J]. Prostaglandins, Leukotrienes andEssential Fatty Acids. 1999, 61(5): 267-273.
[75] LAMPASSO JD, A KAMER, J MARGARONE, et al. Sphingosine-1-phosphateeffects on PKC isoform expression in human osteoblastic cells[J]. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2001, 65(3): 139-146.
[76] GREY A, X XU, B HILL, et al. Osteoblastic cells express phospholipid receptorsand phosphatases and proliferate in response to sphingosine-1-phosphate[J]. Calcified Tissue International. 2004, 74(6): 542-550.
[77] DZIAK R, BM YANG, BW LEUNG, et al. Effects of sphingosine-1-phosphate andlysophosphatidic acid on human osteoblastic cells[J]. Prostaglandins, Leukotrienesand Essential Fatty Acids. 2003, 68(3): 239-249.
[78] GREY A, Q CHEN, K CALLON, X XU, et al. Cornish, The phospholipidssphingosine-1-phosphate and lysophosphatidic acid prevent apoptosis in osteoblasticcells via a signaling pathway involving G proteins and phosphatidylinositol-3kinase[J]. Endocrinology. 2002, 143(12): 4755-4763.
[79] L BRIZUELA, C MARTIN, P JEANNOT, I ADER, et al. Osteoblast-derivedsphingosine 1-phosphate to induce proliferation and confer resistance to therapeuticsto bone metastasis-derived prostate cancer cells[J]. Molecular Oncology. 2014, 8(7):1181-1195.
[80] C SATO, T IWASAKI, S KITANO, et al. Sphingosine 1-phosphate receptoractivation enhances BMP-2-induced osteoblast differentiation[J]. Biochemical andBiophysical Research Communications. 2012, 423(1): 200-205.
[81] E MATSUZAKI, S HIRATSUKA, T HAMACHI, et al. Sphingosine-1-phosphatepromotes the nuclear translocation of beta-catenin and thereby inducesosteoprotegerin gene expression in osteoblast-like cell lines[J]. Bone. 2013, 55(2):315-324.
[82] K HIGASHI,E MATSUZAKI, Y HASHIMOTO, et al. Sphingosine-1- phosphate/S1PR2-mediated signaling triggers Smad1/5/8 phosphorylation andthereby induces Runx2 expression in osteoblasts[J]. Bone. 2016, 93(23): 1-11.
[83] J RYU, HJ KIM, EJ CHANG, et al. Sphingosine 1-phosphate as a regulator ofosteoclast differentiation and osteoclast-osteoblast coupling[J]. EMBO Journal. 2006, 25(24): 5840–5851.
[84] ROELOFSEN, TAKKERS, BEUMER W, et al. Sphingosine-1-Phosphate Acts as aDevelopmental Stage-Specific Inhibitor of Platelet-Derived Growth Factor-InducedChemotaxis of Osteoblasts[J]. Journal of Cell Biochemistry. 2008, 105(4): 1128-1138.
[85] LYONS JM, KARIN NJ. A Role for G Protein-Coupled Lysophospholipid Receptorsin Sphingolipid-Induced Ca2+ Signaling in MC3T3-E1 Osteoblastic Cells[J]. Journalof Bone and Mineral Research. 2001, 16(11): 2035-2042.
[86] LIU R, FARACH MC, KARIN NJ. Effects of Sphingosine Derivatives on MC3T3-E1Pre-Osteoblasts: Psychosine Elicits Release of Calcium from Intracellular Stores[J]. Biochemical and Biophysical Research Communications. 1995, 214(2): 676-684.
[87] JOHNSON R., HALDER, R. The Two Faces of Hippo: Targeting the Hippo Pathwayfor Regenerative Medicine and Cancer Treatment[J]. Nature Reviews Drug Discovery. 2013, 13(59): 63-79.
[88] SHARILI AS, CONNELLY J. Nucleocytoplasmic Shuttling: A Common Theme inMechanotransduction[J]. Biochemical Society Transactions. 2014, 42(78): 645-649.
[89] PARK JH, SHIN, JE, PARK HW. The Role of Hippo Pathway in Cancer Stem CellBiology[J]. Molecular Cells. 2018, 41(59): 83-92.
[90] VARELAS X, SAKUMA R, SAMAVARCHI-TEHRANI P, et al. TAZ Controls SmadNucleocytoplasmic Shuttling and Regulates Human Embryonic Stem Cell Self- Renewal[J]. Nature. 2008, 10(95): 837-848.
[91] PANCIERA T, AZZOLIN L, CORDENONSI M, et al. Mechanobiology of YAP andTAZ in Physiology and Disease[J]. Nature Reviews Molecular Cell Biology. 2017, 18(215): 758-770.
[92] VOGEL V, SHEETZ M. Local Force and Geometry Sensing Regulate CellFunctions[J]. Nature Reviews Molecular Cell Biology. 2006, 7(22): 265-275.
[93] DUFORT CC, PASZE MJ, WEAVER VM. Balancing Forces: Architectural Controlof Mechanotransduction[J]. Nature Reviews Molecular Cell Biology. 2011, 12(47):308-319.
[94] HUMPHREY JD, DUFRESNE ER, SCHWARTZ MA. Mechanotransduction andExtracellular Matrix Homeostasis[J]. Nature Reviews Molecular Cell Biology. 2014, 14(15): 802-812.
[95] DENG Y, WU A, LI P, et al. Yap1 Regulates Multiple Steps of ChondrocyteDifferentiation during Skeletal Development and Bone Repair[J]. Cell Reports. 2016, 14(69): 2224-2237.
[96] COELHO MJ, CABRAL AT, FERNANDES, MH. Human Bone Cell Cultures inBiocompatibility Testing. Part I: Osteoblastic Differentiation of Serially Passaged Human Bone Marrow Cells Cultured in α-MEM and in DMEM[J]. Biomaterials. 2000, 21(137): 1087-1094.
[97] COELHO MJ, FERNANDES, MH. Human Bone Cell Cultures in BiocompatibilityTesting. Part II: Effect of Ascorbic Acid, Beta-Glycerophosphate, andDexamethasone on Osteoblastic Differentiation[J]. Biomaterials. 2000, 21(41): 1095- 1102.
[98] TORMOS KV, ANSO E, HAMANAKA R, et al. Mitochondrial Complex III ROSRegulate Adipocyte Differentiation[J]. Cell Metabolism. 2011, 14(77): 537-544.
[99] CHEN Q, SHOU P, ZHANG L, et al. An osteopontin-integrin interaction plays acritical role in directing adipogenesis and osteogenesis by mesenchymal stem cells[J]. Stem Cells. 2014, 32(22): 327-337.
[100] ENGLER AJ, SEN S, SWEENEY HL, et al. Matrix Elasticity Directs Stem CellLineage Specification[J]. Cell. 2006, 126(23): 677-689.
[101] HAN P, FRITH JE, GOMEZ, GA, et al. Five Piconewtons: The Difference betweenOsteogenic and Adipogenic Fate Choice in Human Mesenchymal Stem Cells[J]. ACSNano. 2019, 13(75): 11129-11143.
[102] MA J, HUANG K, MA Y, ZHOU, et al. The TAZ-miR-224-SMAD4 axis promotestumorigenesis in osteosarcoma[J]. Cell Death & Disease. 2017, 8(34): 25-39.
[103] HUSARI A, STEINBERG T, DIETERLE, MP, et al. On the relationship of YAP andFAK in hMSCs and osteosarcoma cells: Discrimination of FAK modulation bynuclear YAP depletion or YAP silencing[J]. Cellular Signalling. 2019, 63(10): 93-105.
[104] SABRA H, BRUNNER M, MANDATI V, et al. Beta1 Integrin-DependentRac/Group I Pak Signaling Mediates Yap Activation of Yes-Associated Protein 1(Yap1) Via Nf2/Merlin[J]. Journal of Biological Chemistry. 2017, 292(55): 19179- 19197.
[105] DAVIS CA, ZAMBRANO S, ANUMOLU P. Device-based in vitro techniques formechanical stimulation of vascular cells: a review[J]. Journal of BiomechanicalEngineering. 2015, 137(4): 40-80.
[106] CHIEN S. Mechanotransduction and endothelial cell homeostasis: the wisdom ofthe cell[J]. American Journal of Physiology. Heart and Circulatory Physiology. 2007, 292(3): 1209-1224.
[107] TARBELL, J M., SHI, Z. D., DUNN, J. Fluid mechanics, arterial disease, and geneexpression[J]. Annual Review of Fluid Mechanics. 2014, 4(6): 591-614.
[108] RODRIGUEZ I, GONZALEZ M. Physiological mechanisms of vascular responseinduced by shear stress and effect of exercise in systemic and placental circulation[J]. Frontiers in Pharmacology. 2014, 5(13): 209-210.
[109] GRAY KM, STROKA KM. Vascular endothelial cell mechanosensing: new insightsgained from biomimetic microfluidic models[J]. Seminars in Cell & Developmental Biology. 2017, 7(1): 106-107.
[110] AUGUSTIN HG, KOH GY. Organotypic vasculature: From descriptiveheterogeneity to functional pathophysiology. Science. 2017, 357(63): 23-79.
[111] VANDERBOGT KE. Human Umbilical Artery Endothelial Cells: A Novel CellSource for Endothelial Prostheses? Arteriosclerosis, Thrombosis, and VascularBiology. 2019, 39(3): 402-414.
[112] DEMEULE M. Identification and design of peptides as a new drug delivery systemfor the brain. Journal of Pharmacology and Experimental Therapeutics. 2008, 324(3):1064-1072.
[113] ZHANG, X. In vitro and in vivo evaluation of 3D-printed porous Ti6Al4V implantswith different pore sizes for bone ingrowth. ACS Biomaterials Science &Engineering. 2018, 4(5): 1803-1813.
[114] LIAN, Q. Development of clinical-grade human umbilical cord mesenchymal stemcells for bone tissue engineering. Chinese Journal of Reparative and ReconstructiveSurgery. 2017, 31(11): 1379-1385.
[115] KALAJZIC I. Osteoblastic response to the defective matrix in the osteogenesisimperfecta murine (oim) mouse. Endocrinology. 2004, 145(5): 2447-2455.
[116] WANG, DS, MIRUA M, DEMURA H, et al. Anabolic effects of 1,25- dihydroxyvitamin D3 on osteoblasts are enhanced by vascular endothelial growthfactor produced by osteoblasts and by growth factors produced by endothelial cells[J]. Endocrinology. 1997, 138(7): 2953-2962.
[117] WANG DS, YAMAZAKI K, SHIZUME K, et al. Increase of vascular endothelialgrowth factor mRNA expression by 1,25-dihydroxyvitamin D3 in human osteoblastlike cells[J]. Journal of Bone and Mineral Research. 1996, 11(4): 472-479.
[118] ZHU WN, YANG ZM, LI XQ, et al. In vitro study of indirect co-culture betweenrabbit periosteal osteoblasts and renal vascular endothelial cells[J]. Chinese Journalof Reparative and Reconstructive Surgery. 2002, 16(5): 307-310.
[119] SHEETZ M. A tale of two states: Normal and transformed, with and withoutrigidity sensing[J]. Annual Review of Cell and Developmental Biology. 2019, 35(5):169-190.
[120] ZHANG J, HU M, ZHANG WY. Mutual functional effects of osteoblasts andvascular endothelial cells in co-culture[J]. Journal of Stomatology. 2006, 109(206):1-3.
[121] XIONG J, ALMEIDA M, OBRIEN CA. The YAP/TAZ transcriptional co-activatorshave opposing effects at different stages of osteoblast differentiation[J]. Bone. 2014, 13(57): 267-298.
[122] HAN AX, LI ZH. The relationship between endothelial cells and bonemetabolism[J]. Chinese Journal of Tissue Engineering Research. 2015, 19(46): 7405-7410.
[123] XING L, BOYCE BF. Regulation of apoptosis in osteoclasts and osteoblasticcells[J]. Biochemical and Biophysical Research Communications. 2005, 328(3): 709- 720.
[124] GY BI, LINA M, SA L. DLP printed β-tricalcium phosphate functionalized ceramicscaffolds promoted angiogenesis and osteogenesis in long bone defects[J]. CeramicsInternational. 2022, 37(12): 26274-26286.
[125] CAO YX, XIAO L, FAN Y. 3D printed β-TCP scaffold with sphingosine 1- phosphate coating promotes osteogenesis and inhibits inflammation[J]. Biochemicaland Biophysical Research Communications. 2019, 137(25): 888-895.
[126] LIN C, ZHANG YT, DONG YR. Sphingosine-1-phosphate (S1P) receptors:Promising drug targets for treating bone-related diseases[J]. Journal of Cellular andMolecular Medicine. 2020, 24(8): 4389-4401.
[127] KATHRYN F, AMY JN, HELEN M. The Ying and Yang of Sphingosine-1- Phosphate Signalling within the Bone[J]. International Journal of Molecular Sciences. 2023, 24(8): 69-75.
[128] ACIKAN I, YAMAN F, DUNDAR S. Protective effects of caffeic acid phenethylester (CAPE) and thymoquinone against cigarette smoke in experimental bonefracture healing[J]. Journal of Oral Biology and Craniofacial Research. 2022, 12(7):610-616.
[129] GOEL K, SCHWEITZER KS, SERBAN KA, et al. Pharmacological sphingosine-1- phosphate receptor 1 targeting in cigarette smoke-induced emphysema in mice[J]. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2022, 322(4): 794-803.
[130] DECUNTO G, BRANCALEONE V, RIEMMA MA, et al. Functional contribution ofsphingosine-1-phosphate to airway pathology in cigarette smoke-exposed mice[J]. British Journal of Pharmacology. 2020, 177(65): 267-281.
[131] NAGATA Y, MIYAGAWA K, OHATA Y. Increased S1P expression in osteoclastsenhances bone formation in an animal model of Paget's disease[J]. Journal ofCellular Biochemistry. 2021, 122(26): 33-51.
[132] SONG HE, LEE SH, KIM SJ. Association of circulating levels of total and protein- bound sphingosine 1-phosphate with osteoporotic fracture[J]. Journal of InvestigativeMedicine. 2020, 68(12): 1295-1299.
[133] LEE SH, LEE JY, LIM KH. Associations of circulating levels of sphingosine 1- phosphate with the trabecular bone score and bone mineral density inpostmenopausal women[J]. Plastic and Reconstructive Surgery. 2021, 2(4): 414-421.
[134] WU C, WANG W, TIAN B, et al. Sphingosine 1-phosphate stimulates osteoblastdifferentiation via Wnt/β-catenin signaling pathway in human bone marrowmesenchymal stem cells[J]. Prostaglandins & Other Lipid Mediators. 2018, 138(2):58-66.
[135] BOULETREAU PJ, WARREN SM, SPECTOR JA, et al. Hypoxia and VEGF upregulate BMP-2 mRNA and protein expression in microvascular endothelial cells:implications for fracture healing[J]. Plastic and Reconstructive Surgery. 2017, 675(1):16-27.
[136] XIE H, FENG X, RUAN J, et al. Sphingosine-1-phosphate promotes osteoblastdifferentiation by increasing matrix mineralization and bone morphogenetic protein-2expression[J]. Cellular Physiology and Biochemistry. 2015, 36(3): 1175-1185.
[137] MA X. Sphingosine-1-phosphate promotes osteoblast differentiation throughCXCL12/CXCR4 pathway[J]. Journal of Cellular Physiology. 2014, 229(12): 2055- 2063.
[138] XIE D, YANG L, ZHENG S. S1P promotes osteoblast differentiation by stimulatingCbfa1 expression via the S1P2-Gi-ERK1/2 pathway[J]. Biochemical and BiophysicalResearch Communications. 2019, 478(2): 873-878.
[139] WU S, LIU S, LIU Q. S1P/S1PR1 signaling in osteoblasts regulates bone formationin a rat model of glucorticoid-induced osteoporosis[J]. Biochemical and BiophysicalResearch Communications. 2020, 524(4): 915-921.
[140] KRANENBURG HJ, BOUTAHAR N, VAN EIJDEN. Sphingosine-1-phosphateenhances osteogenic differentiation of human mesenchymal stem cells[J]. Journal ofTissue Engineering and Regenerative Medicine. 2021, 11(2): 437-445.
[141] LI J, YU S, HAN G, et al. Sphingosine-1-phosphate promotes osteoclastdifferentiation through the ERK signaling pathway and CXCL10 in bloodcirculation[J]. Molecular Medicine Reports. 2018, 17(2): 3235-3241.
[142] YANG M, LI CJ, SUN X, et al. Yap promotes osteogenesis by regulating BMPsignaling[J]. Biochemical and Biophysical Research Communications. 2018, 495(1):1647-1654.
[143] HUANG J, CHEN S, LU D, et al. S1P-Yap1 signaling regulates endosteal osteoclastactivity and bone remodeling[J]. Journal of Dental Research. 2022, 673(3): 1435- 1476.
[144] WU C, XU Y, LU X, et al. S1P inhibits osteoclastic bone resorption throughregulating YAP/TAZ activity[J]. Biochemical and Biophysical ResearchCommunications. 2019, 519(4): 816-821.
[145] WANG L, ZHANG T, WANG L, et al. Sphingosine-1-phosphate stimulatesosteogenic differentiation of mesenchymal stem cells through YAP signalingpathway[J]. Biochemical and Biophysical Research Communications. 2019, 508(3):902-907.
[146] GAO Y, LI D, LI M, et al. Sphingosine 1-phosphate receptor 2 mediates endothelialcell differentiation through YAP1 and interacts with BMPRII in pulmonary arterialhypertension[J]. Experimental Cell Research. 2019, 381(2): 215-223.
[147] WANG J, WANG X, SUN Y, et al. Sphingosine-1-Phosphate Receptor 2 RegulatesOsteoblast Migration, Proliferation, and Differentiation via the Hippo Pathway[J]. Calcified Tissue International. 2020, 106(4): 379-389.
[148] PEI T, SU G, YANG J, et al. Fluid Shear Stress Regulates OsteogenicDifferentiation via AnnexinA6-Mediated Autophagy in MC3T3-E1 Cells[J]. International Journal of Molecular Sciences. 2022, 23(17): 15-70.
[149] LIU C, CUI X, TOMAS XA, et al. Osteoblast-derived paracrine factors regulateangiogenesis in response to mechanical stimulation[J]. Integrative Biology. 2016, 57(8): 74-85.
[150] WOOTTON D, KU DN. Fluid mechanics of vascular systems, diseases, and thrombosis[J]. Annual Review of Biomedical Engineering. 2019, 1(1): 299-329.
[151] GLAGOV S. Hemodynamics and atherosclerosis. Insights and perspectives gainedfrom studies of human arteries[J]. Archives of Pathology & Laboratory Medicine. 1988, 112(10): 1018-1031.
[152] YANG CY, LIU Y, LIU C. Controlled mechanical loading improves bone regeneration by regulating type H vessels in a S1Pr1-dependent manner[J]. FASEB Journal. 2022, 36(4): 25-53.
修改评论