题名 | METREE: Max-Entropy Exploration with Random Encoding for Efficient RL with Human Preferences |
作者 | |
通讯作者 | Isabel Y.N Guan, Xin Liu, Dingyuan Zhang, Estella Zhao, Zhenzhong Jia* |
DOI | |
发表日期 | 2023-12-04
|
会议名称 | International Conference on Robotics and Biomimetics
|
ISBN | 979-8-3503-2571-3
|
会议录名称 | |
页码 | 1-8
|
会议日期 | 2023-12-4--2023-12-9
|
会议地点 | 泰国
|
摘要 | In recent years, reinforcement learning has achieved significant advances in practical domains such as robotics. However, conveying intricate objectives to agents in reinforcement learning (RL) remains challenging, often necessitating detailed reward function design. In this study, we introduce an innovative approach, MEETRE, which integrates max-entropy exploration strategies with random encoders. This offers a streamlined and efficient solution for human-involved preference-based RL without the need for meticulously designed reward functions. Furthermore, MEETRE sidesteps the need for additional models or representation learning, leveraging the power of randomly initialized encoders for effective exploration. |
关键词 | |
学校署名 | 其他
|
相关链接 | [IEEE记录] |
收录类别 | |
EI入藏号 | 20240315404335
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10355039 |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/633351 |
专题 | 南方科技大学 工学院_机械与能源工程系 |
作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Isabel Y.N Guan, Xin Liu, Dingyuan Zhang, Estella Zhao, Zhenzhong Jia*. METREE: Max-Entropy Exploration with Random Encoding for Efficient RL with Human Preferences[C],2023:1-8.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
METREE Max-Entropy E(3189KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论