中文版 | English
题名

Transition between distribution patterns in human dynamics with high activity

作者
发表日期
2023-09-12
DOI
发表期刊
EISSN
2643-1564
卷号5期号:3
摘要
Complex interactions among a large number of individuals lead to multiple patterns of collective human behavior. However, the theoretical prediction of pattern transitions has not been empirically confirmed. This is because in previous empirical studies, different patterns were observed in different systems, and the coexistence of multiple patterns in the same system was rarely found. By investigating nearly 10 million messages in 252 QQ groups, we find rich distribution patterns of interevent time for human collective behavior, including the transitions between bimodal distribution, double-power-law distribution, and single-power-law distribution. The model developed in this paper suggests that human physiological rhythms and the high collective activity play key roles in the presentation of the single-power-law distribution. These results enhance the empirical research in the field of human dynamics, and are helpful for understanding many complex socioeconomic phenomena.
相关链接[来源记录]
收录类别
EI ; ESCI
语种
英语
学校署名
其他
资助项目
National Natural Sci- ence Foundation of China["12065002","12147211"] ; Innovation Project of Guangxi Graduate Ed- ucation[YCSW2022154] ; National Natural Science Foundation of China["12065002","12147211"] ; Innovation Project of Guangxi Graduate Education[YCSW2022154] ; Guangdong Provincial Department of Science and Technology[2020B1515020052] ; Young TopNotch Talents in Technological Innovation[2019TQ05X138]
WOS研究方向
Physics
WOS类目
Physics, Multidisciplinary
WOS记录号
WOS:001141090100002
出版者
EI入藏号
20234014828353
EI主题词
Behavioral research
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Social Sciences:971
来源库
人工提交
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/633357
专题理学院_统计与数据科学系
理学院
作者单位
1.College of Physical Science and Technology, Guangxi Normal University, Guilin 541004, People’s Republic of China
2.Department of Statistics and Data Science, College of Science, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
3.School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
推荐引用方式
GB/T 7714
Ming Zhao,Jiani Chen,Jiasheng Lao,et al. Transition between distribution patterns in human dynamics with high activity[J]. PHYSICAL REVIEW RESEARCH,2023,5(3).
APA
Ming Zhao,Jiani Chen,Jiasheng Lao,Yanqing Hu,&Jiarong Xie.(2023).Transition between distribution patterns in human dynamics with high activity.PHYSICAL REVIEW RESEARCH,5(3).
MLA
Ming Zhao,et al."Transition between distribution patterns in human dynamics with high activity".PHYSICAL REVIEW RESEARCH 5.3(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
2023PRRTransition be(1322KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ming Zhao]的文章
[Jiani Chen]的文章
[Jiasheng Lao]的文章
百度学术
百度学术中相似的文章
[Ming Zhao]的文章
[Jiani Chen]的文章
[Jiasheng Lao]的文章
必应学术
必应学术中相似的文章
[Ming Zhao]的文章
[Jiani Chen]的文章
[Jiasheng Lao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。