[1] ESTES E R, POCKALNY R, D’HONDT S, et al. Persistent organic matter in oxic subseafloor sediment[J]. Nature Geoscience, 2019, 12(2): 126-131.
[2] ATWOOD T B, WITT A, MAYORGA J, et al. Global patterns in marine sediment carbon stocks[J]. Frontiers in Marine Science, 2020, 7: 1-7.
[3] BAUER J E, CAI W-J, RAYMOND P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature, 2013, 504(7478): 61-70.
[4] CANUEL E A, HARDISON A K. Sources, ages, and alteration of organic matter in estuaries[J]. Annual Review of Marine Science, 2016, 8: 409-434.
[5] WEI B, MOLLENHAUER G, HEFTER J, et al. Dispersal and aging of terrigenous organic matter in the Pearl River Estuary and the northern South China Sea Shelf[J]. Geochimica et Cosmochimica Acta, 2020, 282: 324-339.
[6] BIANCHI T S, CUI X Q, BLAIR N E, et al. Centers of organic carbon burial and oxidation at the land-ocean interface[J]. Organic Geochemistry, 2018, 115: 138-155.
[7] BREITHAUPT J L, SMOAK J M, BIANCHI T S, et al. Increasing rates of carbon burial in Southwest Florida coastal wetlands[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(2): 1-25.
[8] PEREZ L, GARCíA-RODRíGUEZ F, HANEBUTH T J J. Variability in terrigenous sediment supply offshore of the Río de la Plata (Uruguay) recording the continental climatic history over the past 1200 years[J]. Climate of the Past, 2016, 12(3): 623-634.
[9] LUO F, LI S, GAO Y, et al. The connection between the Atlantic Multidecadal Oscillation and the Indian Summer Monsoon since the Industrial Revolution is intrinsic to the climate system[J]. Environmental Research Letters, 2018, 13(9): 094020.
[10] QIAN C, YU J-Y, CHEN G. Decadal summer drought frequency in China: the increasing influence of the Atlantic Multi-decadal Oscillation[J]. Environmental Research Letters, 2014, 9(12): 124004.
[11] BIANCHI T S, GARCIA-TIGREROS F, YVON-LEWIS S A, et al. Enhanced transfer of terrestrially derived carbon to the atmosphere in a flooding event[J]. Geophysical Research Letters, 2013, 40(1): 116-122.
[12] SUN C, KUCHARSKI F, LI J, et al. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation[J]. Nature Communications, 2017, 8(1): 1-10.
[13] ZHENG J, WANG C. Influences of three oceans on record-breaking rainfall over the Yangtze River Valley in June 2020[J]. Science China Earth Sciences, 2021, 64(1674-7313): 1607-1618.
[14] WANG S, ZHUANG Q, LäHTEENOJA O, et al. Potential shift from a carbon sink to a source in Amazonian peatlands under a changing climate[J]. Proceedings of the National Academy of Sciences, 2018, 115(49): 12407-12412.
[15] YE Y, BO L, LI S, et al. A study on the response of carbon cycle system in the Pearl River Estuary to riverine input variations[J]. Journal of Marine Systems, 2021, 215: 103498.
[16] ZHANG L, YIN K D, WANG L, et al. The sources and accumulation rate of sedimentary organic matter in the Pearl River Estuary and adjacent coastal area, Southern China[J]. Estuarine Coastal and Shelf Science, 2009, 85(2): 190-196.
[17] WAI O W H, WANG C H, LI Y S, et al. The formation mechanisms of turbidity maximum in the Pearl River estuary, China[J]. Marine Pollution Bulletin, 2004, 48(5-6): 441-448.
[18] OGURI K, KAWAMURA K, SAKAGUCHI A, et al. Hadal disturbance in the Japan Trench induced by the 2011 Tohoku-Oki earthquake[J]. Scientific Reports, 2013, 3(1): 1915.
[19] BAO R, STRASSER M, MCNICHOL A P, et al. Tectonically-triggered sediment and carbon export to the Hadal zone[J]. Nature Communications, 2018, 9(1): 1-8.
[20] YAO Z Q, SHI X F, LIU Y G, et al. Sea-level and climate signatures recorded in orbitally-forced continental margin deposits over the last 1 Myr: New perspectives from the Bohai Sea[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2020, 550: 1-7.
[21] CHOU Y M, LEE T Q, SONG S R, et al. Magnetostratigraphy of marine sediment core MD01-2414 from Okhotsk Sea and its paleoenvironmental implications[J]. Marine Geology, 2011, 284(1-4): 149-157.
[22] CARTAPANIS O, BIANCHI D, JACCARD S L, et al. Global pulses of organic carbon burial in deep-sea sediments during glacial maxima[J]. Nature Communications, 2016, 7: 1-6.
[23] WANG Z H, FENG J, NIE X P. Recent environmental changes reflected by metals and biogenic elements in sediments from the Guishan Island, the Pearl River Estuary, China[J]. Estuarine Coastal and Shelf Science, 2015, 164: 493-505.
[24] YE Z, CHEN J, GAO L, et al. 210Pb dating to investigate the historical variations and identification of different sources of heavy metal pollution in sediments of the Pearl River Estuary, Southern China[J]. Marine Pollution Bulletin, 2020, 150: 1-5.
[25] BLACKWELL B A B, SKINNER A R, BLICKSTEIN J I B, et al. ESR in the 21st century: From buried valleys and deserts to the deep ocean and tectonic uplift[J]. Earth-Science Reviews, 2016, 158: 125-159.
[26] WALKER M. Quaternary dating methods[M]. New York: John Wiley and Sons, 2005.
[27] 田婷婷, 吴中海, 张克旗,等. 第四纪主要定年方法及其在新构造与活动构造研究中的应用综述[J]. 地质力学学报, 2013, 19(03): 242-266.
[28] PAPAGEORGIOU D, ELEFTHERIOU G, PATIRIS D L, et al. Recent sedimentation rates using 210Pb and 137Cs vertical profiles of core sediments at the Gulf of Corinth, Litochoro Coast and Marmara Sea[J]. HNPS Proceedings, 2020, 19: 92-97.
[29] LOUGHEED B C, ASCOUGH P, DOLMAN A M, et al. Re-evaluating 14C dating accuracy in deep-sea sediment archives[J]. Geochronology, 2020, 2(1): 17-31.
[30] DEMURO M, ARNOLD L J, ARANBURU A, et al. Single-grain OSL dating of the Middle Palaeolithic site of Galería de las Estatuas, Atapuerca (Burgos, Spain)[J]. Quaternary Geochronology, 2019, 49: 254-261.
[31] FAIRBANKS R G, MATTHEWS R K. The marine oxygen isotope record in Pleistocene coral, Barbados, west Indies[J]. Quaternary Research, 2017, 10(2): 181-196.
[32] JIANG Z, JIN C, WANG Z, et al. Chronostratigraphic framework of the East China Sea since MIS 6 from geomagnetic paleointensity and environmental magnetic records[J]. Global and Planetary Change, 2020, 185: 2-7.
[33] CHENG Q, WANG F, CHEN J, et al. Combined chronological and mineral magnetic approaches to reveal age variations and stratigraphic heterogeneity in the Yangtze River subaqueous delta[J]. Geomorphology, 2020, 359: 1-6.
[34] EDELMAN-FURSTENBERG Y, KIDWELL S M, DE STIGTER H C. Mixing depths and sediment accumulation rates on an arid tropical shelf based on fine-fraction 210Pb analysis[J]. Marine Geology, 2020, 425: 1-6.
[35] VENUNATHAN N, NARAYANA Y. Activity of 210Po and 210Pb in the riverine environs of coastal Kerala on the southwest coast of India[J]. Journal of Radiation Research and Applied Sciences, 2016, 9(4): 392-399.
[36] LI X X, BIANCHI T S, YANG Z S, et al. Historical trends of hypoxia in Changjiang River estuary: Applications of chemical biomarkers and microfossils[J]. Journal of Marine Systems, 2011, 86(3-4): 57-68.
[37] ZIMMERMAN A R, CANUEL E A. Sediment geochemical records of eutrophication in the mesohaline Chesapeake Bay[J]. Limnology and Oceanography, 2002, 47(4): 1084-1093.
[38] TAIEB ERRAHMANI D, NOUREDDINE A, ABRIL-HERNáNDEZ J M, et al. Environmental radioactivity in a sediment core from Algiers Bay: Radioecological assessment, radiometric dating and pollution records[J]. Quaternary Geochronology, 2020, 56: 1-8.
[39] YAO Z, SHI X, LIU Q, et al. Paleomagnetic and astronomical dating of sediment core BH08 from the Bohai Sea, China: Implications for glacial–interglacial sedimentation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 393: 90-101.
[40] ABRIL J-M, GHARBI F. Radiometric dating of recent sediments: beyond the boundary conditions[J]. Journal of Paleolimnology, 2012, 48(2): 449-460.
[41] SCHOLTEN J C, BOTZ R, PAETSCH H, et al. High-resolution uranium-series dating of Norwegian-Greenland Sea sediments: 230Th vs. δ18O stratigraphy[J]. Marine Geology, 1994, 121(1-2): 77-85.
[42] DEZILEAU L, LEHU R, LALLEMAND S, et al. Historical Reconstruction of Submarine Earthquakes Using 210Pb, 137Cs, and 241Am Turbidite Chronology and Radiocarbon Reservoir Age Estimation off East Taiwan[J]. Radiocarbon, 2016, 58(1): 25-36.
[43] DíAZ-ASENCIO M, HERGUERA J C, SCHWING P T, et al. Sediment accumulation rates and vertical mixing of deep-sea sediments derived from 14C and 210Pb in the southern Gulf of Mexico[J]. Marine Geology, 2020, 429: 1-6.
[44] MABIT L, BENMANSOUR M, ABRIL J M, et al. Fallout 210Pb as a soil and sediment tracer in catchment sediment budget investigations: A review[J]. Earth-Science Reviews, 2014, 138: 335-351.
[45] ARIAS-ORTIZ A, MASQUé P, GARCIA-ORELLANA J, et al. Reviews and syntheses: 210Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems – setting the record straight[J]. Biogeosciences, 2018, 15(22): 6791-6818.
[46] KOIDE M, SOUTAR A, GOLDBERG E D. Marine geochronology with 210Pb[J]. Earth and Planetary Science Letters, 1972, 14(3): 442-446.
[47] PERSSON B R, HOLM E. Polonium-210 and lead-210 in the terrestrial environment: a historical review[J]. Journal of Environmental Radioactivity, 2011, 102(5): 420-429.
[48] LIU J P, KUEHL S A, PIERCE A C, et al. Fate of Ayeyarwady and Thanlwin Rivers sediments in the Andaman Sea and Bay of Bengal[J]. Marine Geology, 2020, 423: 2-7.
[49] SUN X, FAN D, LIAO H, et al. Variation in sedimentary 210Pb over the last 60 years in the Yangtze River Estuary: New insight to the sedimentary processes[J]. Marine Geology, 2020, 427: 1-6.
[50] MAHMOOD Z U Y W, MOHAMED C A R, ISHAK A K, et al. Vertical distribution of 210Pb and 226Ra and their activity ratio in marine sediment core of the East Malaysia coastal waters[J]. Journal of Radioanalytical and Nuclear Chemistry, 2011, 289(3): 953-959.
[51] RUIZ-FERNáNDEZ A C, SANCHEZ-CABEZA J-A, SERRATO DE LA PEñA J L, et al. Accretion rates in coastal wetlands of the southeastern Gulf of California and their relationship with sea-level rise[J]. The Holocene, 2016, 26(7): 1126-1137.
[52] SCHWING P T, BROOKS G R, LARSON R, et al. Constraining the spatial extent of Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA) following the Deepwater Horizon Event using an excess 210Pb flux approach[J]. Environmental Science & Technology, 2017, 51(11): 5962-5968.
[53] GLUD R N, WENZHOFER F, MIDDELBOE M, et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth[J]. Nature Geoscience, 2013, 6(4): 284-288.
[54] WENZHöFER F, OGURI K, MIDDELBOE M, et al. Benthic carbon mineralization in hadal trenches: Assessment by in situ O2 microprofile measurements[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 116: 276-286.
[55] LUO M, GIESKES J, CHEN L, et al. Sources, degradation, and transport of organic matter in the New Britain shelf‐trench continuum, Papua New Guinea[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(6): 1680-1695.
[56] RINK W J, THOMPSON J W. Encyclopedia of scientific dating methods[M]. Netherlands: Springer 2016.
[57] GARCIA-ORELLANA J, SANCHEZ-CABEZA J A, MASQUé P, et al. Atmospheric fluxes of 210Pb to the western Mediterranean Sea and the Saharan dust influence[J]. Journal of Geophysical Research, 2006, 111(D15): 2-7.
[58] NITTROUER C A, DEMASTER D J, MCKEE B A, et al. The effect of sediment mixing on Pb-210 accumulation rates for the Washington continental shelf[J]. Marine Geology, 1984, 54(3-4): 201-221.
[59] TURNER L J, DELORME L D. Assessment of 210Pb data from Canadian lakes using the CIC and CRS models[J]. Environmental Geology, 1996, 28(2): 78-87.
[60] SMITH J N, LEVY E M. Geochronology for polycyclic aromatic hydrocarbon contamination in sediments of the Saguenay Fjord[J]. Environmental Science & Technology, 1990, 24(6): 874-879.
[61] LI X X, BIANCHI T S, ALLISON M A, et al. Historical reconstruction of organic carbon decay and preservation in sediments on the East China Sea shelf[J]. Journal of Geophysical Research-Biogeosciences, 2013, 118(3): 1079-1093.
[62] JIA J, YANG Y, CAI T, et al. On the sediment age estimated by 210Pb dating: probably misleading “prolonging” and multiple-factor-caused “loss”[J]. Acta Oceanologica Sinica, 2018, 37(6): 30-39.
[63] GARCIA-TENORIO R, ROZMARIC M, HARMS A, et al. From radiometry to chronology of a marine sediment core: A 210Pb dating interlaboratory comparison exercise organised by the IAEA[J]. Marine Pollution Bulletin, 2020, 159: 1-6.
[64] LU X, MATSUMOTO E. Recent sedimentation rates derived from 210Pb and 137Cs methods in Ise Bay, Japan[J]. Estuarine, Coastal and Shelf Science, 2005, 65(1): 83-93.
[65] SUCKOW A, MORGENSTERN U, KUDRASS H. Absolute dating of recent sediments in the cyclone-influenced shelf area off Bangladesh: comparison of gamma spectrometric (137Cs, 210Pb, 228Ra), radiocarbon, and 32Si ages[J]. Radiocarbon, 2001, 43: 2-4.
[66] SARı E, ÇAĞATAY M N, ACAR D, et al. Geochronology and sources of heavy metal pollution in sediments of Istanbul Strait (Bosporus) outlet area, SW Black Sea, Turkey[J]. Chemosphere, 2018, 205: 387-395.
[67] HANCOCK G J, LESLIE C, EVERETT S E, et al. Plutonium as a chronomarker in Australian and New Zealand sediments: a comparison with 137Cs[J]. Journal of Environmental Radioactivity, 2011, 102(10): 919-929.
[68] JHA S K, CHAVAN S B, PANDIT G G, et al. Geochronology of Pb and Hg pollution in a coastal marine environment using global fallout 137Cs[J]. Journal of Environmental Radioactivity, 2003, 69(1-2): 145-157.
[69] EVRARD O, CHABOCHE P-A, RAMON R, et al. A global review of sediment source fingerprinting research incorporating fallout radiocesium (137Cs)[J]. Geomorphology, 2020, 362: 1-5.
[70] GOFF J R, CHAGUé-GOFF C. A late Holocene record of environmental changes from coastal wetlands: Abel Tasman National Park, New Zealand[J]. Quaternary International, 1999, 56(1): 39-51.
[71] FERREIRA P A D L, FIGUEIRA R C L, SIEGLE E, et al. Using a cesium-137 (137Cs) sedimentary fallout record in the South Atlantic Ocean as a supporting tool for defining the Anthropocene[J]. Anthropocene, 2016, 14: 34-45.
[72] BASKARAN M, BIANCHI T S, FILLEY T R. Inconsistencies between 14C and short-lived radionuclides-based sediment accumulation rates: Effects of long-term remineralization[J]. Journal of Environmental Radioactivity, 2016, 174: 10-16.
[73] DREXLER J Z, FULLER C C, ARCHFIELD S. The approaching obsolescence of 137Cs dating of wetland soils in North America[J]. Quaternary Science Reviews, 2018, 199: 83-96.
[74] AUSíN B, BRUNI E, HAGHIPOUR N, et al. Controls on the abundance, provenance and age of organic carbon buried in continental margin sediments[J]. Earth and Planetary Science Letters, 2021, 558: 1-10.
[75] HEDGES J I, KEIL R G, BENNER R. What happens to terrestrial organic matter in the ocean?[J]. Organic Geochemistry, 1997, 27(5-6): 195-212.
[76] 于广磊, 李斌, 李凡,等. 黄河口附近海域沉积物中碳氮元素地球化学特征及有机质来源研究[J]. 海洋环境科学, 2019, 38(06): 862-867.
[77] FALKOWSKI P, SCHOLES R J, BOYLE E, et al. The global carbon cycle: a test of our knowledge of earth as a system[J]. Science, 2000, 290(5490): 291-296.
[78] 雷菲, 李志阳, 张杰,等. 百余年来珠江口及邻近西部海域有机碳来源及其埋藏记录[J]. 热带海洋学报, 2012, 31(02): 62-66.
[79] BLATTMANN T M, ZHANG Y, ZHAO Y, et al. Contrasting fates of petrogenic and biospheric carbon in the South China Sea[J]. Geophysical Research Letters, 2018, 45(17): 9077-9086.
[80] DAS S, GHOSH T. Introduction: an overview of biogeochemical cycle of estuarine system[M]//DAS S, GHOSH T. Estuarine Biogeochemical Dynamics of the East Coast of India. Dordrecht; Springer International Publishing. 2021: 1-11.
[81] CUI X Q, BIANCHI T S, JAEGER J M, et al. Biospheric and petrogenic organic carbon flux along southeast Alaska[J]. Earth and Planetary Science Letters, 2016, 452: 238-246.
[82] GALY V, PEUCKER-EHRENBRINK B, EGLINTON T. Global carbon export from the terrestrial biosphere controlled by erosion[J]. Nature, 2015, 521(7551): 204-207.
[83] GALY V, BEYSSAC O, FRANCE-LANORD C, et al. Recycling of graphite during Himalayan erosion: a geological stabilization of carbon in the crust[J]. Science, 2008, 322(5903): 943-945.
[84] HARRIS P T, O'BRIEN P E, SEDWICK P, et al. Late Quaternary history of sedimentation on the Mac. Robertson shelf, East Antarctica: problems with 14C-dating of marine sediment cores[J]. Papers and Proceedings of the Royal Society of Tasmania, 1996, 130(2): 47-53.
[85] BAO R, ZHAO M, MCNICHOL A, et al. On the origin of aged sedimentary organic matter along a river‐shelf‐deep ocean transect[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(8): 2582-2594.
[86] DONEY S C, SCHIMEL D S. Carbon and climate system coupling on timescales from the precambrian to the Anthropocene[J]. Annual Review of Environment and Resources, 2007, 32(1): 31-66.
[87] BIANCHI T S, ALLISON M A. Large-river delta-front estuaries as natural "recorders" of global environmental change[J]. Proceedings of the National Academy of Sciences, 2009, 106(20): 8085-8092.
[88] ALLER R C, BLAIR N E. Carbon remineralization in the Amazon–Guianas tropical mobile mudbelt: A sedimentary incinerator[J]. Continental Shelf Research, 2006, 26(17-18): 2241-2259.
[89] PONDELL C R, CANUEL E A. Sterol, fatty acid, and lignin biomarkers identify the response of organic matter accumulation in Englebright Lake, California (USA) to climate and human impacts[J]. Organic Geochemistry, 2020, 142: 2-7.
[90] WHEATCROFT R A, GOñ I M A, HATTEN J A, et al. The role of effective discharge in the ocean delivery of particulate organic carbon by small, mountainous river systems[J]. Limnology and Oceanography, 2010, 55(1): 161-171.
[91] SWINDLES G T, GALLOWAY J M, MACUMBER A L, et al. Sedimentary records of coastal storm surges: Evidence of the 1953 North Sea event[J]. Marine Geology, 2018, 403: 262-270.
[92] GISSI E, MANEA E, MAZARIS A D, et al. A review of the combined effects of climate change and other local human stressors on the marine environment[J]. Science of the Total Environment, 2021, 755(Pt 1): 142564.
[93] NAIDU P D, GANESHRAM R, BOLLASINA M A, et al. Coherent response of the Indian Monsoon Rainfall to Atlantic Multi-decadal Variability over the last 2000 years[J]. Scientific Reports, 2020, 10(1): 1302.
[94] ZHANG R, SUTTON R, DANABASOGLU G, et al. A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and sssociated climate impacts[J]. Reviews of Geophysics, 2019, 57(2): 316-375.
[95] DETTINGER M D, RALPH F M, DAS T, et al. Atmospheric Rivers, Floods and the Water Resources of California[J]. Water, 2011, 3(2): 445-478.
[96] TEEGAVARAPU R S V, GOLY A, OBEYSEKERA J. Influences of Atlantic multidecadal oscillation phases on spatial and temporal variability of regional precipitation extremes[J]. Journal of Hydrology, 2013, 495: 74-93.
[97] MOUNT J F. California rivers and streams: the conflict between fluvial process and land use[M]. California: University of California Press, 1995.
[98] DETTINGER M D, DIAZ H F. Global characteristics of stream flow seasonality and variability[J]. Journal of Hydrometeorology, 2000, 1(4): 289-310.
[99] WARD P J, BEETS W, BOUWER L M, et al. Sensitivity of river discharge to ENSO[J]. Geophysical Research Letters, 2010, 37(12): 1-5.
[100] MILLIMAN J D, FARNSWORTH K L. River discharge to the coastal ocean: a global synthesis[M]. Cambridge: Cambridge University Press, 2013.
[101] BENSON L, LINSLEY B, SMOOT J, et al. Influence of the Pacific Decadal Oscillation on the climate of the Sierra Nevada, California and Nevada[J]. Quaternary Research, 2003, 59(2): 151-159.
[102] LI D, YAO P, BIANCHI T S, et al. Historical reconstruction of organic carbon inputs to the East China Sea inner shelf: Implications for anthropogenic activities and regional climate variability[J]. The Holocene, 2015, 25(12): 1869-1881.
[103] YANG Q, MA Z, FAN X, et al. Decadal modulation of precipitation patterns over eastern China by sea surface temperature anomalies[J]. Journal of Climate, 2017, 30(17): 7017-7033.
[104] CHYLEK P, FOLLAND C K, LESINS G, et al. Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation[J]. Geophysical Research Letters, 2009, 36(14): 2-8.
[105] LI S, BATES G T. Influence of the Atlantic Multidecadal Oscillation on the winter climate of East China[J]. Advances in Atmospheric Sciences, 2007, 24(1): 126-135.
[106] DHILLON G S, INAMDAR S. Extreme storms and changes in particulate and dissolved organic carbon in runoff: entering uncharted waters?[J]. Geophysical Research Letters, 2013, 40(7): 1322-1327.
[107] THOM R M, BREITHAUPT S A, DIEFENDERFER H L, et al. Storm‐driven particulate organic matter flux connects a tidal tributary floodplain wetland, mainstem river, and estuary[J]. Ecological Applications, 2018, 28(6): 1420-1434.
[108] HOUNSHELL A G, RUDOLPH J C, VAN DAM B R, et al. Extreme weather events modulate processing and export of dissolved organic carbon in the Neuse River Estuary, NC[J]. Estuarine, Coastal and Shelf Science, 2019, 219: 189-200.
[109] CLARK K E, HILTON R G, WEST A J, et al. New views on “old” carbon in the Amazon River: Insight from the source of organic carbon eroded from the Peruvian Andes[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(5): 1644-1659.
[110] LI Z, WU Y, YANG L, et al. Carbon isotopes and lignin phenols for tracing the floods during the past 70 years in the middle reach of the Changjiang River[J]. Acta Oceanologica Sinica, 2020, 39(4): 33-41.
[111] DALZELL B J, FILLEY T R, HARBOR J M. Flood pulse influences on terrestrial organic matter export from an agricultural watershed[J]. Journal of Geophysical Research: Biogeosciences, 2005, 110(G2): 1-14.
[112] BéLANGER É, LUCOTTE M, MOINGT M, et al. Altered nature of terrestrial organic matter transferred to aquatic systems following deforestation in the Amazon[J]. Applied Geochemistry, 2017, 87: 136-145.
[113] BRANDINI N, DA COSTA MACHADO E, SANDERS C J, et al. Organic matter processing through an estuarine system: Evidence from stable isotopes (δ13C and δ15N) and molecular (lignin phenols) signatures[J]. Estuarine, Coastal and Shelf Science, 2022, 265: 1-6.
[114] NELLEMANN C, HAIN S, ALDER J. In dead water: merging of climate change with pollution, over-harvest, and infestations in the world's fishing grounds[M]. Cambridge: UNEP-WCMC, 2008.
[115] DIGNAC M F, GINESTET P, RYBACKI D, et al. Fate of wastewater organic pollution during activated sludge treatment: nature of residual organic matter[J]. Water Research, 2000, 34(17): 4185-4194.
[116] KUBO A, MAEDA Y, KANDA J. A significant net sink for CO2 in Tokyo Bay[J]. Scientific Reports, 2017, 7(1): 44355.
[117] MAAVARA T, LAUERWALD R, REGNIER P, et al. Global perturbation of organic carbon cycling by river damming[J]. Nature Communications, 2017, 8(1): 1-7.
[118] BIANCHI T S. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(49): 19473-19481.
[119] ZHANG J, YU Z G, WANG J T, et al. The subtropical Zhujiang (Pearl River) estuary: nutrient, trace species and their relationship to photosynthesis[J]. Estuarine, Coastal and Shelf Science, 1999, 49(3): 385-400.
[120] ZHOU H, PENG X, PAN J. Distribution, source and enrichment of some chemical elements in sediments of the Pearl River Estuary, China[J]. Continental Shelf Research, 2004, 24(16): 1857-1875.
[121] HU J, ZHANG G, LI K, et al. Increased eutrophication offshore Hong Kong, China during the past 75 years: Evidence from high-resolution sedimentary records[J]. Marine Chemistry, 2008, 110(1-2): 7-17.
[122] NI H-G, LU F-H, LUO X-L, et al. Riverine inputs of total organic carbon and suspended particulate matter from the Pearl River Delta to the coastal ocean off South China[J]. Marine Pollution Bulletin, 2008, 56(6): 1150-1157.
[123] XU S, ZHANG Z, JIA G, et al. Controlling factors and environmental significance of BIT and δ13C of sedimentary GDGTs from the Pearl River Estuary, China over recent decades[J]. Estuarine, Coastal and Shelf Science, 2020, 233: 1-10.
[124] KE S, ZHANG P, OU S, et al. Spatiotemporal nutrient patterns, composition, and implications for eutrophication mitigation in the Pearl River Estuary, China[J]. Estuarine, Coastal and Shelf Science, 2022, 266: 107749.
[125] LIN B, LIU Z, EGLINTON T I, et al. Perspectives on provenance and alteration of suspended and sedimentary organic matter in the subtropical Pearl River system, South China[J]. Geochimica et Cosmochimica Acta, 2019, 259: 270-287.
[126] LI X X, ZHANG Z R, WADE T L, et al. Sources and compositional distribution of organic carbon in surface sediments from the lower Pearl River to the coastal South China Sea[J]. Journal of Geophysical Research-Biogeosciences, 2017, 122(8): 2104-2117.
[127] LIAN Z, JIANG Z, HUANG X, et al. Labile and recalcitrant sediment organic carbon pools in the Pearl River Estuary, southern China[J]. Science of the Total Environment, 2018, 640: 1302-1311.
[128] RADOVIĆ J R, XIE W, SILVA R C, et al. Changes of organic matter composition in surface sediments from the Pearl River estuary to the coastal South China Sea revealed by rapid molecular screening using FTICR-MS[J]. Organic Geochemistry, 2022, 173: 104505.
[129] ZONG Y, YIM W W S, YU F, et al. Late Quaternary environmental changes in the Pearl River mouth region, China[J]. Quaternary International, 2009, 206(1-2): 35-45.
[130] HU D, CLIFT P D, BöNING P, et al. Holocene evolution in weathering and erosion patterns in the Pearl River delta[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(7): 2349-2368.
[131] CHEN H, WANG J, KHAN N S, et al. Early and late Holocene paleoenvironmental reconstruction of the Pearl River estuary, South China Sea using foraminiferal assemblages and stable carbon isotopes[J]. Estuarine, Coastal and Shelf Science, 2019, 222: 112-125.
[132] ZHANG X, HUAMEI H, PING W, et al. Change analysis of coastline and sea reclamation in Pearl River Estuary from 1973 to 2015[J]. Transactions of Oceanology & Limnology, 2016, 5: 9-15.
[133] LIU F, YUAN L, YANG Q, et al. Hydrological responses to the combined influence of diverse human activities in the Pearl River delta, China[J]. CATENA, 2014, 113: 41-55.
[134] LIU F, HU S, GUO X, et al. Recent changes in the sediment regime of the Pearl River (South China): Causes and implications for the Pearl River Delta[J]. Hydrological Processes, 2018, 32(12): 1771-1785.
[135] GAO L, LIN X, FAN J, et al. Identification of terrigenous and autochthonous organic carbon in sediment cores from cascade reservoirs in the upper stream of Pearl River and Wujiang River, southwest China: lignin phenol as a tracer[J]. Acta Geochimica, 2022, 41(5): 753-764.
[136] LIU Z, ZU T, GAN J. Dynamics of cross-shelf water exchanges off Pearl River Estuary in summer[J]. Progress in Oceanography, 2020, 189: 102465-102470.
[137] CHEN Y, CHEN L, ZHANG H, et al. Effects of wave-current interaction on the Pearl River Estuary during Typhoon Hato[J]. Estuarine, Coastal and Shelf Science, 2019, 228: 106364.
[138] LUO Z, HUANG B, CHEN X, et al. Effects of wave–current Interaction on storm surge in the Pearl River estuary: a case study of super typhoon Mangkhut[J]. Frontiers in Marine Science, 2021, 8: 2-8.
[139] OWEN R B, LEE R. Human impacts on organic matter sedimentation in a proximal shelf setting, Hong Kong[J]. Continental Shelf Research, 2004, 24(4): 583-602.
[140] LIU Q, LIANG Y, CAI W-J, et al. Changing riverine organic C:N ratios along the Pearl River: Implications for estuarine and coastal carbon cycles[J]. Science of the Total Environment, 2020, 709: 2-7.
[141] WU Z Y, MILLIMAN J D, ZHAO D N, et al. Geomorphologic changes in the lower Pearl River Delta, 1850-2015, largely due to human activity[J]. Geomorphology, 2018, 314: 42-54.
[142] WU Y, FAN D, WANG D, et al. Increasing hypoxia in the Changjiang Estuary during the last three decades deciphered from sedimentary redox-sensitive elements[J]. Marine Geology, 2020, 419: 1-6.
[143] CHEN S, LUO X, MAI B, et al. Distribution and mass inventories of polycyclic aromatic hydrocarbons and organochlorine psticides in sdiments of the Pearl River etuary and the nrthern South China Sea[J]. Environmental Science & Technology, 2006, 40(3): 709-714.
[144] AMARAL-ZETTLER L A, ZETTLER E R, MINCER T J, et al. Biofouling impacts on polyethylene density and sinking in coastal waters: A macro/micro tipping point?[J]. Water Research, 2021, 201: 117289.
[145] LIU J, HE W, CAO L, et al. Staged fine-grained sediment supply from the Himalayas to the Bengal Fan in response to climate change over the past 50,000 years[J]. Quaternary Science Reviews, 2019, 212: 164-177.
[146] PATERSON G A, HESLOP D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12): 4494-4506.
[147] JIANG H, WAN S, MA X, et al. End-member modeling of the grain-size record of Sikouzi fine sediments in Ningxia (China) and implications for temperature control of Neogene evolution of East Asian winter monsoon[J]. PLoS ONE, 2017, 12(10): 2-7.
[148] EMERSON S, HEDGES J. Chemical oceanography and the marine carbon cycle[M]. Cambridge: Cambridge University Press, 2008.
[149] ZEWAIL A H. Four-dimensional electron microscopy[J]. Science, 2010, 328(5975): 187-193.
[150] BIANCHI T S, MITRA S, MCKEE B A. Sources of terrestrially-derived organic carbon in lower Mississippi River and Louisiana shelf sediments: implications for differential sedimentation and transport at the coastal margin[J]. Marine Chemistry, 2002, 77(2-3): 211-223.
[151] HEDGES J I, ERTEL J R. Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products[J]. Analytical Chemistry, 1982, 54(2): 174-178.
[152] HEDGES J I, MANN D C. The characterization of plant tissues by their lignin oxidation products[J]. Geochimica et Cosmochimica Acta, 1979, 43(11): 1803-1807.
[153] GOñI M A, HEDGES J I. Sources and reactivities of marine-derived organic matter in coastal sediments as determined by alkaline CuO oxidation[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2965-2981.
[154] HEDGES J I, PARKER P L. Land-derived organic matter in surface sediments from the Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 1976, 40(9): 1019-1029.
[155] HEDGES J I, BLANCHETTE R A, WELIKY K, et al. Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory study[J]. Geochimica et Cosmochimica Acta, 1988, 52(11): 2717-2726.
[156] TAREQ S M, TANAKA N, OHTA K. Biomarker signature in tropical wetland: lignin phenol vegetation index (LPVI) and its implications for reconstructing the paleoenvironment[J]. Science of the Total Environment, 2004, 324(1-3): 91-103.
[157] SáNCHEZ-GARCíA L, DE ANDRéS J R, MARTíN-RUBí J A, et al. Diagenetic state and source characterization of marine sediments from the inner continental shelf of the Gulf of Cádiz (SW Spain), constrained by terrigenous biomarkers[J]. Organic Geochemistry, 2009, 40(2): 184-194.
[158] HOUEL S, LOUCHOUARN P, LUCOTTE M, et al. Translocation of soil organic matter following reservoir impoundment in boreal systems: Implications for in situ productivity[J]. Limnology and Oceanography, 2006, 51(3): 1497-1513.
[159] OKTAY S D, SANTSCHI P H, MORAN J E, et al. The 129iodine bomb pulse recorded in Mississippi River Delta sediments: results from isotopes of I, Pu, Cs, Pb, and C[J]. Geochimica et Cosmochimica Acta, 2000, 64(6): 989-996.
[160] JEX C N, PATE G H, BLYTH A J, et al. Lignin biogeochemistry: from modern processes to Quaternary archives[J]. Quaternary Science Reviews, 2014, 87: 46-59.
[161] YU F, ZONG Y, LLOYD J M, et al. Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China[J]. Estuarine, Coastal and Shelf Science, 2010, 87(4): 618-630.
[162] MEYERS P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114(3-4): 289-302.
[163] CLOERN J E, CANUEL E A, HARRIS D. Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system[J]. Limnology and Oceanography, 2002, 47(3): 713-729.
[164] CHEN F, ZHANG L, YANG Y, et al. Chemical and isotopic alteration of organic matter during early diagenesis: Evidence from the coastal area off-shore the Pearl River estuary, south China[J]. Journal of Marine Systems, 2008, 74(1-2): 372-380.
[165] HE B, DAI M, HUANG W, et al. Sources and accumulation of organic carbon in the Pearl River Estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions[J]. Biogeosciences, 2010, 7(10): 3343-3362.
[166] CHEN J, WANG D, LI Y, et al. The carbon stock and sequestration rate in tidal flats from coastal China[J]. Global Biogeochemical Cycles, 2020, 34(11): 2-8.
[167] SEIDEL M, YAGER P L, WARD N D, et al. Molecular-level changes of dissolved organic matter along the Amazon River-to-ocean continuum[J]. Marine Chemistry, 2015, 177: 218-231.
[168] DITTMAR T, LARA R J. Molecular evidence for lignin degradation in sulfate-reducing mangrove sediments (Amazônia, Brazil)[J]. Geochimica et Cosmochimica Acta, 2001, 65(9): 1417-1428.
[169] THEVENOT M, DIGNAC M-F, RUMPEL C. Fate of lignins in soils: A review[J]. Soil Biology and Biochemistry, 2010, 42(8): 1200-1211.
[170] CHU M, ZHAO M, EGLINTON T I, et al. Differentiating the Causes of Aged Organic Carbon in Marine Sediments[J]. Geophysical Research Letters, 2022, 49(5): 2-11.
[171] YUAN X Q, YANG Q S, LUO X X, et al. Distribution of grain size and organic elemental composition of the surficial sediments in Lingding Bay in the Pearl River Delta, China: A record of recent human activity[J]. Ocean & Coastal Management, 2019, 178: 1-11.
[172] JIA G-D, PENG P-A. Temporal and spatial variations in signatures of sedimented organic matter in Lingding Bay (Pearl estuary), southern China[J]. Marine Chemistry, 2003, 82(1-2): 47-54.
[173] HARDISON A K, CANUEL E A, ANDERSON I C, et al. Microphytobenthos and benthic macroalgae determine sediment organic matter composition in shallow photic sediments[J]. Biogeosciences, 2013, 10(8): 5571-5588.
[174] ZHANG H, MA W-C, WANG X-R. Rapid urbanization and implications for flood risk management in hinterland of the Pearl River Delta, China: the foshan study[J]. Sensors, 2008, 8(4): 2223-2239.
[175] HEDGES J I, COWIE G L, ERTEL J R, et al. Degradation of carbohydrates and lignins in buried woods[J]. Geochimica et Cosmochimica Acta, 1985, 49(3): 701-711.
[176] FARELLA N, LUCOTTE M, LOUCHOUARN P, et al. Deforestation modifying terrestrial organic transport in the Rio Tapajós, Brazilian Amazon[J]. Organic Geochemistry, 2001, 32(12): 1443-1458.
[177] WEI X, YI W, SHEN C, et al. 14C as a tool for evaluating riverine POC sources and erosion of the Zhujiang (Pearl River) drainage basin, South China[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(7-8): 1094-1097.
[178] BAO R, UCHIDA M, ZHAO M, et al. Organic carbon aging during across‐shelf transport[J]. Geophysical Research Letters, 2018, 45(16): 8425-8434.
[179] ZHAO B, YAO P, BIANCHI T S, et al. The role of reactive iron in the preservation of terrestrial organic carbon in estuarine sediments[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(12): 3556-3569.
[180] ZHAO B, YAO P, BIANCHI T S, et al. Controls on organic carbon burial in the eastern China marginal seas: A regional synthesis[J]. Global Biogeochemical Cycles, 2021, 35(4): 1-27.
[181] ELIASSEN S. Soil erosion and river regulation with special reference to the Yellow River[M]. Environmental Geomorphology and Landscape Conservation. Oxfordshire; Routledge. 2020: 325-344.
[182] WU W, QU S, NEL W, et al. The impact of natural weathering and mining on heavy metal accumulation in the karst areas of the Pearl River Basin, China[J]. Science of the Total Environment, 2020, 734: 1-5.
[183] DAI S B, YANG S L, CAI A M. Impacts of dams on the sediment flux of the Pearl River, southern China[J]. CATENA, 2008, 76(1): 36-43.
[184] MEYBECK M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science, 1987, 287(5): 401-428.
[185] LIU Z, ZHAO M, SUN H, et al. “Old” carbon entering the South China Sea from the carbonate-rich Pearl River Basin: Coupled action of carbonate weathering and aquatic photosynthesis[J]. Applied Geochemistry, 2017, 78: 96-104.
[186] HILTON R G, GALY V, GAILLARDET J, et al. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink[J]. Nature, 2015, 524(7563): 84-87.
[187] WALINSKY S E, PRAHL F G, MIX A C, et al. Distribution and composition of organic matter in surface sediments of coastal Southeast Alaska[J]. Continental Shelf Research, 2009, 29(13): 1565-1579.
[188] SMITTENBERG R H, HOPMANS E C, SCHOUTEN S, et al. Compound-specific radiocarbon dating of the varved Holocene sedimentary record of Saanich Inlet, Canada[J]. Paleoceanography, 2004, 19(2): 1-16.
[189] BAO R, VAN DER VOORT T S, ZHAO M, et al. Influence of hydrodynamic processes on the fate of sedimentary organic matter on continental margins[J]. Global Biogeochemical Cycles, 2018, 32(9): 1420-1432.
[190] KAO S J, HILTON R G, SELVARAJ K, et al. Preservation of terrestrial organic carbon in marine sediments offshore Taiwan: mountain building and atmospheric carbon dioxide sequestration[J]. Earth Surface Dynamics, 2014, 2(1): 127-139.
[191] WU Y, EGLINTON T, YANG L, et al. Spatial variability in the abundance, composition, and age of organic matter in surficial sediments of the East China Sea[J]. Journal of Geophysical Research: Biogeosciences, 2013, 118(4): 1495-1507.
[192] LI X X, BIANCHI T S, ALLISON M A, et al. Composition, abundance and age of total organic carbon in surface sediments from the inner shelf of the East China Sea[J]. Marine Chemistry, 2012, 145: 37-52.
[193] KAO S J, LIN F J, LIU K K. Organic carbon and nitrogen contents and their isotopic compositions in surficial sediments from the East China Sea shelf and the southern Okinawa Trough[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(6-7): 1203-1217.
[194] TAO S, EGLINTON T I, MONTLUçON D B, et al. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: Regional significance and global relevance[J]. Earth and Planetary Science Letters, 2015, 414: 77-86.
[195] SMITH R W, BIANCHI T S, ALLISON M, et al. High rates of organic carbon burial in fjord sediments globally[J]. Nature Geoscience, 2015, 8(6): 450-453.
[196] BLAIR N E, LEITHOLD E L, FORD S T, et al. The persistence of memory: the fate of ancient sedimentary organic carbon in a modern sedimentary system[J]. Geochimica et Cosmochimica Acta, 2003, 67(1): 63-73.
[197] KOMADA T, DRUFFEL E R M, HWANG J. Sedimentary rocks as sources of ancient organic carbon to the ocean: An investigation through Δ14C and δ13C signatures of organic compound classes[J]. Global Biogeochemical Cycles, 2005, 19(2): 1-10.
[198] WHITE H K. Isotopic constraints on the sources and associations of organic compounds in marine sediments[D]. Massachusetts Institute of Technology, 2006.
[199] MOLLENHAUER G, EGLINTON T I. Diagenetic and sedimentological controls on the composition of organic matter preserved in California Borderland Basin sediments[J]. Limnology and Oceanography, 2007, 52(2): 558-576.
[200] DRENZEK N J, HUGHEN K A, MONTLUçON D B, et al. A new look at old carbon in active margin sediments[J]. Geology, 2009, 37(3): 239-242.
[201] WAKEHAM S G, CANUEL E A, LERBERG E J, et al. Partitioning of organic matter in continental margin sediments among density fractions[J]. Marine Chemistry, 2009, 115(3-4): 211-225.
[202] GRIFFITH D R, MARTIN W R, EGLINTON T I. The radiocarbon age of organic carbon in marine surface sediments[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6788-6800.
[203] GOñI M A, YUNKER M B, MACDONALD R W, et al. The supply and preservation of ancient and modern components of organic carbon in the Canadian Beaufort Shelf of the Arctic Ocean[J]. Marine Chemistry, 2005, 93(1): 53-73.
[204] DRENZEK N J, MONTLUçON D B, YUNKER M B, et al. Constraints on the origin of sedimentary organic carbon in the Beaufort Sea from coupled molecular 13C and 14C measurements[J]. Marine Chemistry, 2007, 103(1-2): 146-162.
[205] GOñI M A, RUTTENBERG K C, EGLINTON T I. A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 1998, 62(18): 3055-3075.
[206] GORDON E S, GOñI M A. Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 2003, 67(13): 2359-2375.
[207] GORDON E S, GOñI M A. Controls on the distribution and accumulation of terrigenous organic matter in sediments from the Mississippi and Atchafalaya river margin[J]. Marine Chemistry, 2004, 92(1-4): 331-352.
[208] WILLIAMS E K, ROSENHEIM B E, ALLISON M, et al. Quantification of refractory organic material in Amazon mudbanks of the French Guiana Coast[J]. Marine Geology, 2015, 363: 93-101.
[209] 曹青, 陈玺, 张越关. ENSO对珠江流域雨季降雨的影响[J]. 水文, 2023, 43(02): 97-102.
[210] CERDA M, EVANGELISTA H, VALDéS J, et al. A new 20th century lake sedimentary record from the Atacama Desert/Chile reveals persistent PDO (Pacific Decadal Oscillation) impact[J]. Journal of South American Earth Sciences, 2019, 95: 1-5.
[211] HU P, LI F, SUN X, et al. Assessment of land-use/cover changes and its ecological effect in rapidly urbanized areas—Taking Pearl River Delta urban agglomeration as a case[J]. Sustainability, 2021, 13(9): 5075.
[212] XU F, ZHOU Y, ZHAO L. Spatial and temporal variability in extreme precipitation in the Pearl River Basin, China from 1960 to 2018[J]. International Journal of Climatology, 2022, 42(2): 797-816.
[213] ALEXANDER L V, ZHANG X, PETERSON T C, et al. Global observed changes in daily climate extremes of temperature and precipitation[J]. Journal of Geophysical Research, 2006, 111(D5): 2-7.
[214] YANG L, SCHEFFRAN J, QIN H, et al. Climate-related flood risks and urban responses in the Pearl River Delta, China[J]. Regional Environmental Change, 2015, 15(2): 379-391.
[215] WEI X, CAI S, NI P, et al. Impacts of climate change and human activities on the water discharge and sediment load of the Pearl River, southern China[J]. Scientific Reports, 2020, 10(1): 1-11.
[216] WANG H, RAN X, BOUWMAN A F, et al. Damming alters the particulate organic carbon sources, burial, export and estuarine biogeochemistry of rivers[J]. Journal of Hydrology, 2022, 607: 127525.
[217] ZHOU L, WU R. Respective impacts of the East Asian winter monsoon and ENSO on winter rainfall in China[J]. Journal of Geophysical Research, 2010, 115: 1-6.
[218] OUYANG R, LIU W, FU G, et al. Linkages between ENSO/PDO signals and precipitation, streamflow in China during the last 100 years[J]. Hydrology and Earth System Sciences, 2014, 18(9): 3651-3661.
[219] CHAN J C L, ZHOU W. PDO, ENSO and the early summer monsoon rainfall over south China[J]. Geophysical Research Letters, 2005, 32(8): 1-5.
[220] 黄翀, 张强, 肖名忠. ENSO、NAO、IOD和PDO对珠江流域降水的影响研究[J]. 中山大学学报(自然科学版), 2016, 55(02): 134-142.
[221] 郑江禹, 张强, 史培军,等. 珠江流域多尺度极端降水时空特征及影响因子研究[J]. 地理科学, 2017, 37(02): 283-291.
[222] LUO Z, YAO C, LI Q, et al. Terrestrial water storage changes over the Pearl River Basin from GRACE and connections with Pacific climate variability[J]. Geodesy and Geodynamics, 2016, 7(3): 171-179.
[223] MAEDA E E, PELLIKKA P K E, SILJANDER M, et al. Potential impacts of agricultural expansion and climate change on soil erosion in the Eastern Arc Mountains of Kenya[J]. Geomorphology, 2010, 123(3-4): 279-289.
[224] HAO Y, LU J. Teleconnection between climate oscillations and riverine nutrient dynamics in Southeast China based on wavelet analysis[J]. Environmental Science and Pollution Research, 2021, 28(31): 41807–41820.
[225] STARKLOFF T, STOLTE J. Applied comparison of the erosion risk models EROSION 3D and LISEM for a small catchment in Norway[J]. CATENA, 2014, 118: 154-167.
[226] LI Z, FANG H. Impacts of climate change on water erosion: A review[J]. Earth-Science Reviews, 2016, 163: 94-117.
[227] ZHANG F, LI S, SUN C, et al. Human Impacts overwhelmed hydroclimate control of soil erosion in China 5,000 years ago[J]. Geophysical Research Letters, 2022, 49(5): 1-10.
[228] CHEN Q, SUN Y, SHEN C, et al. Organic matter turnover rates and CO2 flux from organic matter decomposition of mountain soil profiles in the subtropical area, south China[J]. CATENA, 2002, 49(3): 217-229.
[229] BLAIR N E, ALLER R C. The fate of terrestrial organic carbon in the marine environment[J]. Annual Review of Marine Science, 2012, 4: 401-423.
[230] WU X F, MAO J Y. Interdecadal variability of early summer monsoon rainfall over South China in association with the Pacific Decadal Oscillation[J]. International Journal of Climatology, 2017, 37(2): 706-721.
[231] FENG X, ZHANG W, ZHU Z, et al. Variability and changes in Pearl River Delta water level: oceanic and atmospheric forcing perspectives[J]. Journal of Hydrometeorology, 2021, 22(9): 2407-2422.
[232] RICHARD, JOHN. Statistics for strontium isotope stratigraphy: a Robust Lowess fit to the marine Sr‐isotope curve for 0 to 206 Ma, with look‐up table for derivation of numeric Age[J]. The Journal of Geology, 1997, 105(4): 441-456.
[233] LI M, HINNOV L, KUMP L. Acycle: Time-series analysis software for paleoclimate research and education[J]. Computers & Geosciences, 2019, 127: 12-22.
[234] CHEN Z, NIE T, ZHAO X, et al. Organic carbon remineralization rate in global marine sediments: A review[J]. Regional Studies in Marine Science, 2022, 49: 102112.
[235] LUFF R, WALLMANN K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances[J]. Geochimica et Cosmochimica Acta, 2003, 67(18): 3403-3421.
[236] BERNER R A. An idealized model of dissolved sulfate distribution in recent sediments[J]. Geochimica et Cosmochimica Acta, 1964, 28(9): 1497-1503.
[237] ALLISON M A, BIANCHI T S, MCKEE B A, et al. Carbon burial on river-dominated continental shelves: Impact of historical changes in sediment loading adjacent to the Mississippi River[J]. Geophysical Research Letters, 2007, 34(1): 2-7.
[238] ARNDT S, JøRGENSEN B B, LAROWE D E, et al. Quantifying the degradation of organic matter in marine sediments: A review and synthesis[J]. Earth-Science Reviews, 2013, 123: 53-86.
[239] 唐洁. 功率谱分析方法在周期分析中的应用[J]. 陕西理工学院学报(自然科学版), 2013, 29(05): 71-74.
[240] WEEDON G P. Time series analysis for cyclostratigraphy[M]. Rock Magnetic Cyclostratigraphy. 2014: 52-89.
[241] MEYERS S R. Cyclostratigraphy and the problem of astrochronologic testing[J]. Earth-Science Reviews, 2019, 190: 190-223.
[242] ZHANG Z. Wavelet analysis of red noise and Its application in climate diagnosis[J]. Mathematical Problems in Engineering, 2021, 2021: 1-14.
[243] MANN M E, LEES J M. Robust estimation of background noise and signal detection in climatic time series[J]. Climatic Change, 1996, 33(3): 409-445.
[244] TORRENCE C, COMPO G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1): 61-78.
[245] 常耀文, 吴一晗, 刘霞,等. 基于小波分析的荒漠草原土壤湿度周期变化特征[J]. 中国草地学报, 2023, 45(09): 87-97.
[246] DAI J, SUN M, CULP R A, et al. A laboratory study on biochemical degradation and microbial utilization of organic matter comprising a marine diatom, land grass, and salt marsh plant in estuarine ecosystems[J]. Aquatic Ecology, 2009, 43(4): 825-841.
[247] HUANG C, ZHANG Q, SINGH V P, et al. Spatio-temporal variation of dryness/wetness across the Pearl River basin, China, and relation to climate indices[J]. International Journal of Climatology, 2017, 37: 318-332.
[248] ZHANG R, DELWORTH T L. Impact of the Atlantic Multidecadal Oscillation on North Pacific climate variability[J]. Geophysical Research Letters, 2007, 34(23): 1-3.
[249] SUN C, LIU Y, XUE J, et al. The importance of inter‐basin atmospheric teleconnection in the SST footprint of Atlantic multidecadal oscillation over western Pacific[J]. Climate Dynamics, 2021, 57(1-2): 239-252.
[250] BATTISTI D S, VIMONT D J, KIRTMAN B P. 100 years of progress in understanding the dynamics of coupled atmosphere–ocean variability[J]. Meteorological Monographs, 2019, 59: 8.1-8.57.
[251] QIN M, DAI A, HUA W. Aerosol-forced multidecadal variations across all ocean basins in models and observations since 1920[J]. Science Advances, 2020, 6(29): 425.
[252] CAI W, WU L, LENGAIGNE M, et al. Pantropical climate interactions[J]. Science, 2019, 363(6430): 4236.
[253] KUCHARSKI F, IKRAM F, MOLTENI F, et al. Atlantic forcing of Pacific decadal variability[J]. Climate Dynamics, 2016, 46(7-8): 2337-2351.
[254] 杜佳玉, 陶丽, 许承宇. 中国降水的年代际变化及全球变暖、太平洋年代际振荡、大西洋多年代际振荡对其的相对贡献[J]. 气象学报, 2022, 80(05): 685-700.
[255] 丁一汇, 李怡, 王遵娅,等. 亚非夏季风的年代际变化:大西洋多年代际振荡与太平洋年代际振荡的协同作用[J]. 大气科学学报, 2020, 43(01): 20-32.
[256] FANG M, LI X, CHEN H W, et al. Arctic amplification modulated by Atlantic Multidecadal Oscillation and greenhouse forcing on multidecadal to century scales[J]. Nature Communications, 2022, 13(1): 1-6.
[257] CHEN N, BIANCHI T S, MCKEE B A. Early diagenesis of chloropigment biomarkers in the lower Mississippi River and Louisiana shelf: implications for carbon cycling in a river-dominated margin[J]. Marine Chemistry, 2005, 93(2): 159-177.
[258] STEPHENS M P, KADKO D C, SMITH C R, et al. Chlorophyll-a and pheopigments as tracers of labile organic carbon at the central equatorial Pacific seafloor[J]. Geochimica et Cosmochimica Acta, 1997, 61(21): 4605-4619.
[259] XU Y, LI X, LUO M, et al. Distribution, Source, and Burial of Sedimentary Organic Carbon in Kermadec and Atacama Trenches[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(5): 1-10.
[260] HOU P, EGLINTON T I, YU M, et al. Degradation and aging of terrestrial organic carbon within estuaries: biogeochemical and environmental implications[J]. Environmental Science & Technology, 2021, 55(15): 10852-10861.
[261] ZIMMERMAN A R, CANUEL E A. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition[J]. Marine Chemistry, 2000, 69(1): 117-137.
[262] WALLMANN K, ALOISI G, HAECKEL M, et al. Kinetics of organic matter degradation, microbial methane generation, and gas hydrate formation in anoxic marine sediments[J]. Geochimica et Cosmochimica Acta, 2006, 70(15): 3905-3927.
[263] DALE A W, REGNIER P, KNAB N J, et al. Anaerobic oxidation of methane (AOM) in marine sediments from the Skagerrak (Denmark): II. Reaction-transport modeling[J]. Geochimica et Cosmochimica Acta, 2008, 72(12): 2880-2894.
[264] 蒋宇轩, 邢磊, 张海龙,等. 海洋沉积有机物质的降解及其模式[J]. 海洋地质与第四纪地质, 2014, 34(04): 173-180.
[265] XIANG D, WANG G, TIAN J, et al. Global patterns and edaphic-climatic controls of soil carbon decomposition kinetics predicted from incubation experiments[J]. Nature Communications, 2023, 14(1): 1-7.
修改评论