[1] BISH D L. Rietveld refinement of the kaolinite structure at 1.5 K[J]. Clays and Clay Minerals, 1993, 41(6): 738-744.
[2] SPERINCK S, RAITERI P, MARKS N, et al. Dehydroxylation of kaolinite to metakaolin-a molecular dynamics study[J]. Journal of Materials Chemistry, 2011, 21(7): 2118-2125.
[3] OYEBANJO O, EKOSSE G-I, ODIYO J. Physico-chemical, mineralogical, and chemical characterisation of cretaceous–paleogene/neogene kaolins within eastern dahomey and niger delta basins from nigeria: Possible industrial applications[J]. 2020, 10(8): 670.
[4] ZEWDIE T M, PRIHATININGTYAS I, DUTTA A, et al. Characterization and beneficiation of Ethiopian kaolin for use in fabrication of ceramic membrane[J]. Materials Research Express, 2021, 8(11): 115201.
[5] RYU H W, CHO K S, CHANG Y K, et al. Refinement of low-grade clay by microbial removal of sulfur and iron compounds using Thiobacillus ferrooxidans[J]. Journal of Fermentation and Bioengineering, 1995, 80(1): 46-52.
[6] LIU P, ZHU W, XIAO X. Metabolic networks of electricigens Shewanella for anaerobic respiration[J]. Microbiology China, 2015, 42(11): 2238-2244.
[7] ROTARU A E, SHRESTHA P M, LIU F, et al. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri[J]. Applied and Environmental Microbiology, 2014, 80(15): 4599-4605.
[8] LUU Y S, RAMSAY J A. Review: microbial mechanisms of accessing insoluble Fe(III) as an energy source[J]. World Journal of Microbiology and Biotechnology, 2003, 19(2): 215-225.
[9] REGUERA G, MCCARTHY K D, MEHTA T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045): 1098-1101.
[10] BROWN J S, HOLDEN D W. Iron acquisition by Gram-positive bacterial pathogens[J]. Microbes and Infection, 2002, 4(11): 1149-1156.
[11] BEASLEY F C, HEINRICHS D E. Siderophore-mediated iron acquisition in the staphylococci[J]. Journal of Inorganic Biochemistry, 2010, 104(3): 282-288.
[12] DOYLE L E, MARSILI E. Weak electricigens: A new avenue for bioelectrochemical research[J]. Bioresource Technology, 2018, 258: 354-364.
[13] SHEAN B J, CILLIERS J J. A review of froth flotation control[J]. International Journal of Mineral Processing, 2011, 100(3): 57-71.
[14] CHEN P, ZHAI J, SUN W, et al. Adsorption mechanism of lead ions at ilmenite/water interface and its influence on ilmenite flotability[J]. Journal of Industrial and Engineering Chemistry, 2017, 53: 285-293.
[15] XU L, TIAN J, WU H, et al. The flotation and adsorption of mixed collectors on oxide and silicate minerals[J]. Advances in Colloid and Interface Science, 2017, 250: 1-14.
[16] XU L, TIAN J, WU H, et al. Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals[J]. Advances in Colloid and Interface Science, 2018, 256: 340-351.
[17] KOCABAĞ D, GüLER T. Two-liquid flotation of sulphides: An electrochemical approach[J]. Minerals Engineering, 2007, 20(13): 1246-1254.
[18] 张香亭, 刘晨宏, 郭东风. 双液浮选脱除煤系高岭土中的铁[J]. 煤炭学报, 2000, 25(S1): 186-192.
[19] OBERTEUFFER J. Magnetic separation: a review of principles, devices, and applications[J]. IEEE Transactions on Magnetics, 1974, 10(2): 223-238.
[20] IANNICELLI J. New developments in magnetic separation[J]. IEEE Transactions on Magnetics, 1976, 12(5): 436-443.
[21] 刁润丽, 张条兰. 高岭土除铁增白方法及研究进展[J]. 中国非金属矿工业导刊, 2016, 120(1): 9-12.
[22] 蔡丽娜, 胡德文, 李凯琦, et al. 高岭土除铁技术进展[J]. 矿冶, 2008, 17(4): 51-54.
[23] ARSLAN V, BAYAT O. Removal of Fe from kaolin by chemical leaching and bioleaching[J]. Clays and Clay Minerals, 2009, 57(6): 787-794.
[24] TUNCUK A, ÇIFTLIK S, GüNEŞ A, et al. Effects of different organic acids in iron removal from kaolin ore[J]. Madencilik, 2010, 49: 3-16.
[25] 侯太鹏. 高岭土除铁、增白试验研究[J]. 非金属矿, 2001, 24(4): 32-35+10.
[26] 胡流球. 高岭土漂白过程中铁溶出率实验研究[J]. 非金属矿, 2016, 39(5): 73-75.
[27] 吕宪俊. 高岭土中染色物质的赋存形式及其漂白工艺的选择[J]. 中国非金属矿工业导刊, 2004, (4): 8-12.
[28] 林培喜, 揭永文, 邱宝渭. 亚硫酸氢钠-锌粉漂白高岭土工艺研究[J]. 茂名学院学报, 2009, 19(1): 1-3.
[29] 李云辉, 武子玉, 于德利, et al. 吉林省白山地区煤系高岭土煅烧增白实验研究 [J]. 长春理工大学学报, 2006, (1): 18-20.
[30] 周枚花, 赵启航, 肖燕云, et al. 基于氧化还原法高岭土去铁增白的研究[J]. 江西化工, 2016, (2): 53-55.
[31] DE MESQUITA L M S, RODRIGUES T, GOMES S S. Bleaching of Brazilian kaolins using organic acids and fermented medium[J]. Minerals Engineering, 1996, 9(9): 965-971.
[32] BURGSTALLER W, SCHINNER F. Leaching of metals with fungi[J]. Journal of Biotechnology, 1993, 27(2): 91-116.
[33] SAIKIA N J, BHARALI D J, SENGUPTA P, et al. Characterization, beneficiation and utilization of a kaolinite clay from Assam, India[J]. Applied Clay Science, 2003, 24(1): 93-103.
[34] HERNáNDEZ R A H, GARCíA F L, CRUZ L E H, et al. Iron removal from a kaolinitic clay by leaching to obtain high whiteness index[J]. IOP Conference Series: Materials Science and Engineering, 2013, 45(1): 012002.
[35] AMBIKADEVI V R, LALITHAMBIKA M. Effect of organic acids on ferric iron removal from iron-stained kaolinite[J]. Applied Clay Science, 2000, 16(3): 133-145.
[36] LOVLEY D R, HOLMES D E, NEVIN K P. Dissimilatory Fe(III) and Mn(IV) Reduction[M]//POOLE R K. Advances in Microbial Physiology. Academic Press. 2004: 219-286.
[37] MUSIAŁ I, CIBIS E, RYMOWICZ W. Designing a process of kaolin bleaching in an oxalic acid enriched medium by Aspergillus niger cultivated on biodieselderivederived waste composed of glycerol and fatty acids[J]. Applied Clay Science, 2011, 52(3): 277-284.
[38] CAMESELLE C, BOHLMANN J T, NúñEZ M J, et al. Oxalic acid production by Aspergillus niger[J]. Bioprocess Engineering, 1998, 19(4): 247-252.
[39] CAMESELLE C, JOSé NúñEZ M, LEMA J M, et al. Leaching of iron from kaolins by a spent fermentation liquor: Influence of temperature, pH, agitation and citric acid concentration[J]. Journal of Industrial Microbiology, 1995, 14(3): 288-292.
[40] CAMESELLE C, RICART M T, NúñEZ M J, et al. Iron removal from kaolin. Comparison between “in situ” and “two-stage” bioleaching processes[J]. Hydrometallurgy, 2003, 68(1): 97-105.
[41] MAURICE P A, VIERKORN M A, HERSMAN L E, et al. Enhancement of kaolinite dissolution by an aerobic Pseudomonas mendocina bacterium[J]. Geomicrobiology Journal, 2001, 18(1): 21-35.
[42] ZEGEYE A, YAHAYA S, FIALIPS C I, et al. Refinement of industrial kaolin by microbial removal of iron-bearing impurities[J]. Applied Clay Science, 2013, 86: 47-53.
[43] LEE E-Y, CHO K-S, RYU H W, et al. Microbial removal of Fe(III) impurities from clay using dissimilatory iron reducers[J]. Journal of Bioscience and Bioengineering, 1999, 87(3): 397-399.
[44] TORO L, PAPONETTI B, VEGLIò F, et al. Removal of iron from kaolin ores using different microorganisms. The role of the organic acids and ferric iron reductase[J]. Particulate Science and Technology, 1992, 10(3-4): 201-208.
[45] MOCKOVČIAKOVá A, IVETA Š, JIŘí Š, et al. Characterization of changes of low and high defect kaolinite after bioleaching[J]. Applied Clay Science, 2008, 39(3): 202-207.
[46] KOSTKA J E, HAEFELE E, VIEHWEGER R, et al. Respiration and dissolution of iron(III)-containing clay minerals by bacteria[J]. Environmental Science & Technology, 1999, 33(18): 3127-3133.
[47] KOSTKA J E, DALTON D D, SKELTON H, et al. Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms[J]. Applied and Environmental Microbiology, 2002, 68(12): 6256-6262.
[48] HE Q X, HUANG X C, CHEN Z L. Influence of organic acids, complexing agents and heavy metals on the bioleaching of iron from kaolin using Fe(III)-reducing bacteria[J]. Applied Clay Science, 2011, 51(4): 478-483.
[49] TSUNEDA S, AIKAWA H, HAYASHI H, et al. Extracellular polymeric substances responsible for bacterial adhesion onto solid surface[J]. FEMS Microbiology Letters, 2003, 223(2): 287-292.
[50] SELIM K A, ROSTOM M. Bioflocculation of (Iron oxide–Silica) system using Bacillus cereus bacteria isolated from Egyptian iron ore surface[J]. Egyptian Journal of Petroleum, 2018, 27(2): 235-240.
[51] HONG Z N, ZHAO G, CHEN W L, et al. Effects of solution chemistry on bacterial adhesion with phyllosilicates and goethite explained by the extended DLVO theory[J]. Geomicrobiology Journal, 2014, 31(5): 419-430.
[52] HONG Z N, RONG X M, CAI P, et al. Effects of temperature, pH and salt concentrations on the adsorption of Bacillus subtilis on soil clay minerals investigated by microcalorimetry[J]. Geomicrobiology Journal, 2011, 28(8): 686-691.
[53] JIA C V, WEI D Z, LI P J, et al. Selective adsorption of Mycobacterium Phlei on pyrite and sphalerite[J]. Colloids and Surfaces B-Biointerfaces, 2011, 83(2): 214-219.
[54] CAI P, HUANG Q Y, WALKER S L. Deposition and survival of Escherichia coli O157:H7 on clay minerals in a parallel plate flow system[J]. Environmental Science & Technology, 2013, 47(4): 1896-1903.
[55] CHANDRAPRABHA M N, NATARAJAN K A. Microbially induced mineral beneficiation[J]. Mineral Processing and Extractive Metallurgy Review, 2010, 31(1): 1-29.
[56] FONG J N C, YILDIZ F H. Biofilm matrix proteins[J]. Microbiology spectrum, 2015, 3(2): 3.2.28.
[57] WARR L N, PERDRIAL J N, LETT M C, et al. Clay mineral-enhanced bioremediation of marine oil pollution[J]. Applied Clay Science, 2009, 46(4): 337-345.
[58] PERDRIAL J N, WARR L N, PERDRIAL N, et al. Interaction between smectite and bacteria: implications for bentonite as backfill material in the disposal of nuclear waste[J]. Chemical Geology, 2009, 264(1-4): 281-294.
[59] NICHOLS C M, BOWMAN J P, GUEZENNEC J. Olleya marilimosa gen. nov., sp nov., an exopolysaccharide-producing marine bacterium from the family Flavobacteriaceae, isolated from the Southern Ocean[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55: 1557-1561.
[60] ZHU Y, LI Y, LU A H, et al. Study of the interaction between bentonite and a strain of Bacillus mucilaginosus[J]. Clays and Clay Minerals, 2011, 59(5): 538-545.
[61] STYRIAKOVA I, STYRIAK I, MALACHOVSKY P, et al. Bacterial clay release and iron dissolution during the quality improvement of quartz sands[J]. Hydrometallurgy, 2007, 89(1-2): 99-106.
[62] SAEID A, PROCHOWNIK E, DOBROWOLSKA-IWANEK J. Phosphorus solubilization by Bacillus species[J]. Molecules, 2018, 23(11): 2897.
[63] AGHAIE E, PAZOUKI M, HOSSEINI M R, et al. Response surface methodology (RSM) analysis of organic acid production for kaolin beneficiation by Aspergillus niger[J]. Chemical Engineering Journal, 2009, 147(2): 245-251.
[64] LEE E Y, CHO K-S, WOOK RYU H. Microbial refinement of kaolin by ironreducing bacteria[J]. Applied Clay Science, 2002, 22(1): 47-53.
[65] MOLS M, VAN KRANENBURG R, VAN MELIS C C J, et al. Analysis of acidstressed Bacillus cereus reveals a major oxidative response and inactivationassociated radical formation[J]. Environmental Microbiology, 2010, 12(4): 873-885.
[66] COTTER P D, GAHAN C G M, HILL C. A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid[J]. Molecular Microbiology, 2001, 40(2): 465-475.
[67] MOLS M, DE BEEN M, ZWIETERING M H, et al. Metabolic capacity of Bacillus cereus strains ATCC 14579 and ATCC 10987 interlinked with comparative genomics[J]. Environmental Microbiology, 2007, 9(12): 2933-2944.
[68] RYAN S, BEGLEY M, GAHAN C G M, et al. Molecular characterization of the arginine deiminase system in Listeria monocytogenes: regulation and role in acid tolerance[J]. Environmental Microbiology, 2009, 11(2): 432-445.
[69] VAN DER VOORT M, ABEE T. Transcriptional regulation of metabolic pathways, alternative respiration and enterotoxin genes in anaerobic growth of Bacillus cereus ATCC 14579[J]. Journal of Applied Microbiology, 2009, 107(3): 795-804.
[70] WRAY L V, PERSON A E, FISHER S H. Expression of the Bacillus subtilis ureABC operon is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and Spo0H[J]. Journal of Bacteriology, 1997, 179(17): 5494-5501.
[71] MOBLEY H L T, ISLAND M D, HAUSINGER R P. Molecular biology of microbial ureases[J]. Microbiological Reviews, 1995, 59(3): 451-480.
[72] MOLS M, ABEE T. Role of ureolytic activity in Bacillus cereus nitrogen metabolism and acid survival[J]. Applied and Environmental Microbiology, 2008, 74(8): 2370-2378.
[73] KAZMIERCZAK M J, WIEDMANN M, BOOR K J. Alternative sigma factors and their roles in bacterial virulence[J]. Microbiology and Molecular Biology Reviews, 2005, 69(4): 527-543.
[74] VAN SCHAIK W, ZWIETERING M H, DE VOS W M, et al. Identification of sigma(B)-dependent genes in Bacillus cereus by proteome and in vitro transcription analysis[J]. Journal of Bacteriology, 2004, 186(13): 4100-4109.
[75] HECKER M, PANE-FARRE J, VOLKER U. SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria[J]. Annual Review of Microbiology, 2007, 61(1): 215-236.
[76] VAN SCHAIK W, TEMPELAARS M H, WOUTERS J A, et al. The alternative sigma factor sigma(B) of Bacillus cereus: Response to stress and role in heat adaptation[J]. Journal of Bacteriology, 2004, 186(2): 316-325.
[77] FAHMI T, PORT G C, CHO K H. c-di-AMP: An essential molecule in the signaling pathways that regulate the viability and virulence of gram-positive bacteria[J]. Genes, 2017, 8(8): 197.
[78] BOWMAN L, ZEDEN M S, SCHUSTER C F, et al. New insights into the cyclic di-adenosine monophosphate (c-di-AMP) degradation pathway and the requirement of the cyclic dinucleotide for acid stress resistance in Staphylococcus aureus[J]. Journal of Biological Chemistry, 2016, 291(53): 26970-26986.
[79] WEINRICK B, DUNMAN P M, MCALEESE F, et al. Effect of mild acid on gene expression in Staphylococcus aureus[J]. Journal of Bacteriology, 2004, 186(24): 8407-8423.
[80] JOHNSON L. Iron and siderophores in fungal–host interactions[J]. Mycological Research, 2008, 112(2): 170-183.
[81] NEILANDS J B. Siderophores: structure and function of microbial iron transport compounds[J]. Journal of Biological Chemistry, 1995, 270(45): 26723-26726.
[82] BAAKZA A, VALA A K, DAVE B P, et al. A comparative study of siderophore production by fungi from marine and terrestrial habitats[J]. Journal of Experimental Marine Biology and Ecology, 2004, 311(1): 1-9.
[83] OBEREGGER H, SCHOESER M, ZADRA I, et al. SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in Aspergillus nidulans[J]. Molecular Microbiology, 2001, 41(5): 1077-1089.
[84] SAHA M, SARKAR S, SARKAR B, et al. Microbial siderophores and their potential applications: a review[J]. Environmental Science and Pollution Research, 2016, 23(5): 3984-3999.
[85] WILSON B R, BOGDAN A R, MIYAZAWA M, et al. Siderophores in Iron Metabolism: From Mechanism to Therapy Potential[J]. Trends in Molecular Medicine, 2016, 22(12): 1077-1090.
[86] WINKELMANN G. Microbial siderophore-mediated transport[J]. Biochemical Society Transactions, 2002, 30(4): 691-696.
[87] LAMONT I L, MARTIN L W, SIMS T, et al. Characterization of a gene encoding an acetylase required for pyoverdine synthesis in Pseudomonas aeruginosa[J]. Journal of Bacteriology, 2006, 188(8): 3149-3152.
[88] MOSSIALOS D, OCHSNER U, BAYSSE C, et al. Identification of new, conserved, non-ribosomal peptide synthetases from fluorescent pseudomonads involved in the biosynthesis of the siderophore pyoverdine[J]. Molecular Microbiology, 2002, 45(6): 1673-1685.
[89] STINTZI A, CORNELIS P, HOHNADEL D, et al. Novel pyoverdine biosynthesis gene(s) of Pseudomonas aeruginosa PAO[J]. Microbiology-Sgm, 1996, 142(5): 1181-1190.
[90] WINTERBERG B, UHLMANN S, LINNE U, et al. Elucidation of the complete ferrichrome A biosynthetic pathway in Ustilago maydis[J]. Molecular Microbiology, 2010, 75(5): 1260-1271.
[91] GEHRING A M, BRADLEY K A, WALSH C T. Enterobactin biosynthesis in Escherichia coli: Isochorismate lyase (EntB) is a bifunctional enzyme that is phosphopantetheinylated by EntD and then acylated by EntE using ATP and 2,3-dihydroxybenzoate[J]. Biochemistry, 1997, 36(28): 8495-8503.
[92] KOHLI R M, TRAUGER J W, SCHWARZER D, et al. Generality of peptide cyclization catalyzed by isolated thioesterase domains of nonribosomal peptide synthetases[J]. Biochemistry, 2001, 40(24): 7099-7108.
[93] EHMANN D E, SHAW-REID C A, LOSEY H C, et al. The EntF and EntE adenylation domains of Escherichia coli enterobactin synthetase: sequestration and selectivity in acyl-AMP transfers to thiolation domain cosubstrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(6): 2509-2514.
[94] WARNER P J, WILLIAMS P H, BINDEREIF A, et al. Colv plasmid-specified aerobactin synthesis by invasive strains of Escherichia coli[J]. Infection and Immunity, 1981, 33(2): 540-545.
[95] CHEUNG J, BEASLEY F C, LIU S Y, et al. Molecular characterization of staphyloferrin B biosynthesis in Staphylococcus aureus[J]. Molecular Microbiology, 2009, 74(3): 594-608.
[96] BARONA-GOMEZ F, WONG U, GIANNAKOPULOS A E, et al. Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145[J]. Journal of the American Chemical Society, 2004, 126(50): 16282-16283.
[97] FLEMING E J, LANGDON A E, MARTINEZ-GARCIA M, et al. What's new is old: resolving the identity of Leptothrix ochracea using single cell genomics, pyrosequencing and FISH[J]. PloS One, 2011, 6(3).
[98] FURRER J L, SANDERS D N, HOOK-BARNARD I G, et al. Export of the siderophore enterobactin in Escherichia coli: involvement of a 43 kDa membrane exporter[J]. Molecular Microbiology, 2002, 44(5): 1225-1234.
[99] BLEUEL C, GROSSE C, TAUDTE N, et al. TolC is involved in enterobactin efflux across the outer membrane of Escherichia coli[J]. Journal of Bacteriology, 2005, 187(19): 6701-6707.
[100] VETTORETTI L, PLESIAT P, MULLER C, et al. Efflux unbalance in Pseudomonas aeruginosa isolates from cystic fibrosis patients[J]. Antimicrobial Agents and Chemotherapy, 2009, 53(5): 1987-1997.
[101] POOLE K, NESHAT S, KREBES K, et al. Cloning and nucleotide sequence analysis of the ferripyoverdine receptor gene fpvA of Pseudomonas aeruginosa[J]. Journal of Bacteriology, 1993, 175(15): 4597-4604.
[102] GRIGG J C, COOPER J D, CHEUNG J, et al. The Staphylococcus aureus siderophore receptor HtsA undergoes localized conformational changes to enclose staphyloferrin A in an arginine-rich binding pocket[J]. Journal of Biological Chemistry, 2010, 285(15): 11162-11171.
[103] RODRIGUEZ G M, SMITH I. Identification of an ABC transporter required for iron acquisition and virulence in Mycobacterium tuberculosis[J]. Journal of Bacteriology, 2006, 188(2): 424-430.
[104] FARHANA A, KUMAR S, RATHORE S S, et al. Mechanistic insights into a novel exporter-importer system of Mycobacterium tuberculosis unravel its role in trafficking of iron[J]. PloS One, 2008, 3(5).
[105] KOSTER W, BRAUN V. Iron-hydroxamate transport into Escherichia coli K12 localization of FhuD in the periplasm and of FhuB in the cytoplasmic membrane[J]. Molecular and General Genetics, 1989, 217(2-3): 233-239.
[106] IMPERI F, TIBURZI F, VISCA P. Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(48): 20440-20445.
[107] YETERIAN E, MARTIN L W, LAMONT I L, et al. An efflux pump is required for siderophore recycling by Pseudomonas aeruginosa[J]. Environmental Microbiology Reports, 2010, 2(3): 412-418.
[108] GREENWALD J, HOEGY F, NADER M, et al. Real time fluorescent resonance energy transfer visualization of ferric pyoverdine uptake in Pseudomonas aeruginosa: a role for ferrous iron[J]. Journal of Biological Chemistry, 2007, 282(5): 2987-2995.
[109] MA L, KASERER W, ANNAMALAI R, et al. Evidence of ball-and-chain transport of ferric enterobactin through FepA[J]. Journal of Biological Chemistry, 2007, 282(1): 397-406.
[110] BRAUN V, BRAUN M. Iron transport and signaling in Escherichia coli[J]. FEBS Letters, 2002, 529(1): 78-85.
[111] NADER M, DOBBELAERE W, VINCENT M, et al. Identification of residues of FpvA involved in the different steps of Pvd-Fe uptake in Pseudomonas aeruginosa[J]. Biochemistry, 2007, 46(42): 11707-11717.
[112] NADER M, JOURNET L, MEKSEM A, et al. Mechanism of ferripyoverdine uptake by Pseudomonas aeruginosa outer membrane transporter FpvA: no diffusion channel formed at any time during ferrisiderophore uptake[J]. Biochemistry, 2011, 50(13): 2530-2540.
[113] GREENWALD J, ZEDER-LUTZ G, HAGEGE A, et al. The metal dependence of pyoverdine interactions with its outer membrane receptor FpvA[J]. Journal of Bacteriology, 2008, 190(20): 6548-6558.
[114] PAWELEK P D, CROTEAU N, NG-THOW-HING C, et al. Structure of TonB in complex with FhuA, E. coli outer membrane receptor[J]. Science, 2006, 312(5778): 1399-1402.
[115] BRAUN V. Energy-coupled transport and signal transduction through the Gramnegative outer membrane via TonB-ExbB-ExbD dependent receptor proteins[J]. FEMS Microbiology Reviews, 1995, 16(4): 295-307.
[116] LUBELSKI J, KONINGS W N, DRIESSEN A J M. Distribution and physiology of ABC-Type transporters contributing to multidrug resistance in bacteria[J]. Microbiology and Molecular Biology Reviews, 2007, 71(3): 463-+.
[117] DALE S E, DOHERTY-KIRBY A, LAJOIE G, et al. Role of siderophore biosynthesis in virulence of Staphylococcus aureus: identification and characterization of genes involved in production of a siderophore[J]. Infection and Immunity, 2004, 72(1): 29-37.
[118] WENCEWICZ T A, LONG T E, MOLLMANN U, et al. Trihydroxamate Siderophore-Fluoroquinolone Conjugates Are Selective Sideromycin Antibiotics that Target Staphylococcus aureus[J]. Bioconjugate Chemistry, 2013, 24(3): 473-486.
[119] LIN H, FISCCHBACH M A, LIU D R, et al. In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes[J]. Journal of the American Chemical Society, 2005, 127(31): 11075-11084.
[120] MATZANKE B F, ANEMULLER S, SCHUNEMANN V, et al. FhuF, part of a siderophore-reductase system[J]. Biochemistry, 2004, 43(5): 1386-1392.
[121] PIERRE J L, FONTECAVE M, CRICHTON R R. Chemistry for an essential biological process: the reduction of ferric iron[J]. BioMetals, 2002, 15(4): 341-346.
[122] BOYD P W, STRZEPEK R F, ELLWOOD M J, et al. Why are biotic iron pools uniform across high- and low-iron pelagic ecosystems?[J]. Global Biogeochemical Cycles, 2015, 29(7): 1028-1043.
[123] MAKITA H. Iron-oxidizing bacteria in marine environments: recent progresses and future directions[J]. World Journal of Microbiology and Biotechnology, 2018, 34(8): 110.
[124] MALDONADO M T, PRICE N M. Utilization of iron bound to strong organic ligands by plankton communities in the subarctic Pacific Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1999, 46(11): 2447-2473.
[125] ENZ S, BRAND H, ORELLANA C, et al. Sites of interaction between the FecA and FecR signal transduction proteins of ferric citrate transport in Escherichia coli K-12[J]. Journal of Bacteriology, 2003, 185(13): 3745-3752.
[126] CAO Y R, ZHANG X Y, DENG J Y, et al. Lead and cadmium-induced oxidative stress impacting mycelial growth of Oudemansiella radicata in liquid medium alleviated by microbial siderophores[J]. World Journal of Microbiology & Biotechnology, 2012, 28(4): 1727-1737.
[127] CROUCH M L V, CASTOR M, KARLINSEY J E, et al. Biosynthesis and IroCdependent export of the siderophore salmochelin are essential for virulence of Salmonella enterica serovar Typhimurium[J]. Molecular Microbiology, 2008, 67(5): 971-983.
[128] CHIM N, HABEL J E, JOHNSTON J M, et al. The TB structural genomics consortium: a decade of progress[J]. Tuberculosis, 2011, 91(2): 155-172.
[129] JIN B, NEWTON S M C, SHAO Y, et al. Iron acquisition systems for ferric hydroxamates, haemin and haemoglobin in Listeria monocytogenes[J]. Molecular Microbiology, 2006, 59(4): 1185-1198.
[130] DEMIR M, KALELI I. Production by Escherichia coli isolates of siderophore and other virulence factors and their pathogenic role in a cutaneous infection model[J]. Clinical Microbiology and Infection, 2004, 10(11): 1011-1014.
[131] CAZA M, LEPINE F, DOZOIS C M. Secretion, but not overall synthesis, of catecholate siderophores contributes to virulence of extraintestinal pathogenic Escherichia coli[J]. Molecular Microbiology, 2011, 80(1): 266-282.
[132] ABERGEL R J, MOORE E G, STRONG R K, et al. Microbial evasion of the immune system: structural modifications of enterobactin impair siderocalin recognition[J]. Journal of the American Chemical Society, 2006, 128(34): 10998-10999.
[133] LAWLOR M S, O'CONNOR C, MILLER V L. Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection[J]. Infection and Immunity, 2007, 75(3): 1463-1472.
[134] XIAO R, KISAALITA W S. Iron acquisition from transferrin and lactoferrin by Pseudomonas aeruginosa pyoverdin[J]. Microbiology-Uk, 1997, 143(7): 2509-2515.
[135] BEASLEY F C, MAROLDA C L, CHEUNG J, et al. Staphylococcus aureus transporters Hts, Sir, and Sst capture iron liberated from human transferrin by staphyloferrin A, staphyloferrin B, and catecholamine stress hormones, respectively, and contribute to virulence[J]. Infection and Immunity, 2011, 79(6): 2345-2355.
[136] WILDERMAN P J, VASIL A I, JOHNSON Z, et al. Characterization of an endoprotease (PrpL) encoded by a PvdS-regulated gene in Pseudomonas aeruginosa[J]. Infection and Immunity, 2001, 69(9): 5385-5394.
[137] BANIN E, VASIL M L, GREENBERG E P. Iron and Pseudomonas aeruginosa biofilm formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(31): 11076-11081.
[138] BRAUD A, HOEGY F, JEZEQUEL K, et al. New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway[J]. Environmental Microbiology, 2009, 11(5): 1079-1091.
[139] DIMKPA C O, SVATOS A, DABROWSKA P, et al. Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp.[J]. Chemosphere, 2008, 74(1): 19-25.
[140] LAMONT I L, MARTIN L W. Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa[J]. Microbiology-Sgm, 2003, 149(4): 833-842.
[141] REDLY G A, POOLE K. FpvIR control of fpvA ferric pyoverdine receptor gene expression in Pseudomonas aeruginosa: demonstration of an interaction between FpvI and FpvR and identification of mutations in each compromising this interaction[J]. Journal of Bacteriology, 2005, 187(16): 5648-5657.
[142] BRAUD A, HANNAUER M, MISLIN G L A, et al. The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity[J]. Journal of Bacteriology, 2009, 191(11): 3517-3525.
[143] DUHME A K, HIDER R C, NALDRETT M J, et al. The stability of the molybdenum-azotochelin complex and its effect on siderophore production in Azotobacter vinelandii[J]. Journal of Biological Inorganic Chemistry, 1998, 3(5): 520-526.
[144] HU X C, BOYER G L. Siderophore-mediated aluminum uptake by Bacillus megaterium ATCC 19213[J]. Applied and Environmental Microbiology, 1996, 62(11): 4044-4048.
[145] SINGH P K, PARSEK M R, GREENBERG E P, et al. A component of innate immunity prevents bacterial biofilm development[J]. Nature, 2002, 417(6888): 552-555.
[146] FERNANDEZ L, MARQUEZ I, GUIJARRO J A. Identification of specific in vivo-induced (ivi) genes in Yersinia ruckeri and analysis of ruckerbactin, a catecholate siderophore iron acquisition system[J]. Applied and Environmental Microbiology, 2004, 70(9): 5199-5207.
[147] CHIADO A, VARANI L, BOSCO F, et al. Opening study on the development of a new biosensor for metal toxicity based on Pseudomonas fluorescens pyoverdine[J]. Biosensors, 2013, 3(4): 385-399.
[148] BACHHAWAT A K, GHOSH S. Temperature inhibition of siderophore production in Azospirillum brasilense[J]. Journal of Bacteriology, 1989, 171(7): 4092-4094.
[149] WORSHAM P L, KONISKY J. Effect of growth temperature on the acquisition of iron by Salmonella typhimurium and Escherichia coli[J]. Journal of Bacteriology, 1984, 158(1): 163-168.
[150] MEYER J M, NEELY A, STINTZI A, et al. Pyoverdin is essential for virulence of Pseudomonas aeruginosa[J]. Infection and Immunity, 1996, 64(2): 518-523.
[151] TUTTOBENE M R, CRIBB P, MUSSI M A. BlsA integrates light and temperature signals into iron metabolism through Fur in the human pathogen Acinetobacter baumannii[J]. Scientific Reports, 2018, 8(1): 7728.
[152] BALADO M, LAGES M A, FUENTES-MONTEVERDE J C, et al. The siderophore piscibactin is a relevant virulence factor for Vibrio anguillarum favored at low temperatures[J]. Frontiers in Microbiology, 2018, 9: 1766.
[153] MENDONCA C M, YOSHITAKE S, WEI H, et al. Hierarchical routing in carbon metabolism favors iron-scavenging strategy in iron-deficient soil Pseudomonas species[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(51): 32358-32369.
[154] VINDEIRINHO J M, SOARES H, SOARES E V. Modulation of siderophore production by Pseudomonas fluorescens through the manipulation of the culture medium composition[J]. Applied Biochemistry and Biotechnology, 2021, 193(3): 607-618.
[155] VALDEBENITO M, CRUMBLISS A L, WINKELMANN G, et al. Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917[J]. International Journal of Medical Microbiology, 2006, 296(8): 513-520.
[156] SANTOS S, NETO I F F, MACHADO M D, et al. Siderophore production by Bacillus megaterium: effect of growth phase and cultural conditions[J]. Applied Biochemistry and Biotechnology, 2014, 172(1): 549-560.
[157] YU S M, TENG C Y, BAI X, et al. Optimization of siderophore production by Bacillus sp. PZ-1 and its potential enhancement of phytoextration of Pb from soil[J]. Journal of Microbiology and Biotechnology, 2017, 27(8): 1500-1512.
[158] BARBHAIYA H B, RAO K K. Production of pyoverdine, the fluorescent pigment of Pseudomonas aeruginosa PAO1[J]. FEMS Microbiology Letters, 1985, 27(2): 233-235.
[159] SASIREKHA B, SRIVIDYA S. Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli[J]. Agriculture and Natural Resources, 2016, 50(4): 250-256.
[160] ALBESA I, BARBERIS L I, PAJARO M C, et al. Pyoverdine production by Pseudomonas fluorescens in synthetic media with various sources of nitrogen[J]. Journal of General Microbiology, 1985, 131(12): 3251-3254.
[161] SINGH A, MISHRA A K. Influence of various levels of iron and other abiotic factors on siderophorogenesis in paddy field cyanobacterium Anabaena oryzae[J]. Applied Biochemistry and Biotechnology, 2015, 176(2): 372-386.
[162] S V K, MENON S, AGARWAL H, et al. Characterization and optimization of bacterium isolated from soil samples for the production of siderophores[J]. Resource-Efficient Technologies, 2017, 3(4): 434-439.
[163] ESSEN S A, JOHNSSON A, BYLUND D, et al. Siderophore production by Pseudomonas stutzeri under aerobic and anaerobic conditions[J]. Applied and Environmental Microbiology, 2007, 73(18): 5857-5864.
[164] MEIWES J, FIEDLER H P, ZAHNER H, et al. Production of desferrioxamine E and new analogs by directed fermentation and feeding fermentation[J]. Applied Microbiology and Biotechnology, 1990, 32(5): 505-510.
[165] ROTARU A E, SHRESTHA P M, LIU F H, et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy & Environmental Science, 2014, 7(1): 408-415.
[166] KUMAR A, HSU L H-H, KAVANAGH P, et al. The ins and outs of microorganism–electrode electron transfer reactions[J]. Nature Reviews Chemistry, 2017, 1(3): 0024.
[167] RATASUK N, NANNY M A. Characterization and quantification of reversible redox sites in humic substances[J]. Environmental Science & Technology, 2007, 41(22): 7844-7850.
[168] AESCHBACHER M, SANDER M, SCHWARZENBACH R P. Novel electrochemical approach to assess the redox properties of humic substances[J]. Environmental Science & Technology, 2010, 44(1): 87-93.
[169] HOBBIE S N, LI X, BASEN M, et al. Humic substance-mediated Fe(III) reduction by a fermenting Bacillus strain from the alkaline gut of a humusfeeding scarab beetle larva[J]. Systematic and Applied Microbiology, 2012, 35(4): 226-232.
[170] BHUSHAN B, HALASZ A, HAWARI J. Effect of iron(III), humic acids and anthraquinone ‐ 2,6 ‐ disulfonate on biodegradation of cyclic nitramines by Clostridium sp. EDB2[J]. Journal of Applied Microbiology, 2006, 100(3): 555-563.
[171] DOONG R-A, CHIANG H-C. Transformation of carbon tetrachloride by thiol reductants in the presence of quinone compounds[J]. Environmental Science & Technology, 2005, 39(19): 7460-7468.
[172] MIURA R. Versatility and specificity in flavoenzymes: Control mechanisms of flavin reactivity[J]. Chemical Record, 2001, 1(3): 183-194.
[173] MASSEY V. The chemical and biological versatility of riboflavin[J]. Biochemical Society Transactions, 2000, 28(4): 283-296.
[174] SCHLEIFER K H, KANDLER O. Peptidoglycan types of bacterial cell walls and their taxonomic implications[J]. Bacteriological Reviews, 1972, 36(4): 407-477.
[175] LIU Y, QIN R, ZAAT S A J, et al. Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections[J]. Journal of clinical and translational research, 2015, 1(3): 140-167.
[176] CENDROWSKI S, MACARTHUR W, HANNA P. Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence[J]. Molecular Microbiology, 2004, 51(2): 407-417.
[177] ZAWADZKA A M, ABERGEL R J, NICHIPORUK R, et al. Siderophoremediated iron acquisition systems in Bacillus cereus: Identification of receptors for anthrax virulence-associated petrobactin[J]. Biochemistry, 2009, 48(16): 3645-3657.
[178] ZAWADZKA A M, KIM Y, MALTSEVA N, et al. Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21854-21859.
[179] CARLSON P E, DIXON S D, JANES B K, et al. Genetic analysis of petrobactin transport in Bacillus anthracis[J]. Molecular Microbiology, 2010, 75(4): 900-909.
[180] BEASLEY F C, VINES E D, GRIGG J C, et al. Characterization of staphyloferrin A biosynthetic and transport mutants in Staphylococcus aureus[J]. Molecular Microbiology, 2009, 72(4): 947-963.
[181] SHELDON J R, MAROLDA C L, HEINRICHS D E. TCA cycle activity in Staphylococcus aureus is essential for iron-regulated synthesis of staphyloferrin A, but not staphyloferrin B: the benefit of a second citrate synthase[J]. Molecular Microbiology, 2014, 92(4): 824-839.
[182] KOBYLARZ M J, GRIGG J C, TAKAYAMA S J, et al. Synthesis of L-2,3-diaminopropionic acid, a siderophore and antibiotic precursor[J]. Chemistry & Biology, 2014, 21(3): 379-388.
[183] SHELDON J R, HEINRICHS D E. Recent developments in understanding the iron acquisition strategies of gram positive pathogens[J]. FEMS Microbiology Reviews, 2015, 39(4): 592-630.
[184] MALACHOWA N, WHITNEY A R, KOBAYASHI S D, et al. Global Changes in Staphylococcus aureus Gene Expression in Human Blood[J]. PloS One, 2011, 6(4): e18617.
[185] DALE S E, SEBULSKY M T, HEINRICHS D E. Involvement of SirABC in ironsiderophore import in Staphylococcus aureus[J]. Journal of Bacteriology, 2004, 186(24): 8356-8362.
[186] MAZMANIAN S K, SKAAR E P, GASPAR A H, et al. Passage of heme-iron across the envelope of Staphylococcus aureus[J]. Science, 2003, 299(5608): 906-909.
[187] MAZMANIAN S K, TON-THAT H, SU K, et al. An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(4): 2293-2298.
[188] ABE R, CAAVEIRO J M M, KOZUKA-HATA H, et al. Mapping ultra-weak protein-protein interactions between heme transporters of Staphylococcus aureus[J]. Journal of Biological Chemistry, 2012, 287(20): 16477-16487.
[189] TAYLOR J M, HEINRICHS D E. Transferrin binding in Staphylococcus aureus: involvement of a cell wall-anchored protein[J]. Molecular Microbiology, 2002, 43(6): 1603-1614.
[190] DRYLA A, GELBMANN D, VON GABAIN A, et al. Identification of a novel iron regulated staphylococcal surface protein with haptoglobin-haemoglobin binding activity[J]. Molecular Microbiology, 2003, 49(1): 37-53.
[191] GRIGG J C, VERMEIREN C L, HEINRICHS D E, et al. Heme coordination by Staphylococcus aureus IsdE[J]. Journal of Biological Chemistry, 2007, 282(39): 28815-28822.
[192] SKAAR E P, GASPAR A H, SCHNEEWIND O. IsdG and IsdI, heme-degrading enzymes in the cytoplasm of Staphylococcus aureus[J]. Journal of Biological Chemistry, 2004, 279(1): 436-443.
[193] KOBYLARZ M J, HEIEIS G A, LOUTET S A, et al. Iron uptake oxidoreductase (IruO) uses a flavin adenine dinucleotide semiquinone intermediate for ironsiderophorereduction[J]. ACS Chemical Biology, 2017, 12(7): 1778-1786.
[194] STUCKI J W. Chapter 11-Properties and behaviour of iron in clay minerals[M]//BERGAYA F, LAGALY G. Developments in Clay Science. Elsevier. 2013: 559-611.
[195] STONE W E E, TORRESSANCHEZ R M. Nuclear magnetic resonance spectroscopy applied to minerals. Part 6.-Structural iron in kaolinites as viewed by proton magnetic-resonance[J]. Journal of the Chemical Society-Faraday Transactions I, 1988, 84: 117-132.
[196] FYSH S A, CLARK P E. A mossbauer study of the iron mineralogy of acidleachedbauxite[J]. Hydrometallurgy, 1983, 10(3): 285-303.
[197] SCHWALB C, CHAPMAN S K, REID G A. The tetraheme cytochrome CymA is required for anaerobic respiration with dimethyl sulfoxide and nitrite in Shewanella oneidensis[J]. Biochemistry, 2003, 42(31): 9491-9497.
[198] SHIRODKAR S, REED S, ROMINE M, et al. The octahaem SirA catalyses dissimilatory sulfite reduction in Shewanella oneidensis MR-1[J]. Environmental Microbiology, 2011, 13(1): 108-115.
[199] TIEDJE J M. Shewanella—the environmentally versatile genome[J]. Nature Biotechnology, 2002, 20(11): 1093-1094.
[200] FADRUS H, MALý J. Suppression of iron(III) interference in the determination of iron(II) in water by the 1,10-phenanthroline method[J]. Analyst, 1975, 100(1193): 549-554.
[201] LLORENS J M N, TORMO A, MARTINEZ-GARCIA E. Stationary phase in gram-negative bacteria[J]. FEMS Microbiology Reviews, 2010, 34(4): 476-495.
[202] CEPL J, BLAHUSKOVA A, CVRCKOVA F, et al. Ammonia produced by bacterial colonies promotes growth of ampicillin-sensitive Serratia sp. by means of antibiotic inactivation[J]. FEMS Microbiology Letters, 2014, 354(2): 126-132.
[203] MERTE L R, BECHSTEIN R, PENG G, et al. Water clustering on nanostructured iron oxide films[J]. Nature Communications, 2014, 5(1): 4193.
[204] FARRELL M J, FINKEL S E. The growth advantage in stationary-phase phenotype conferred by rpoS mutations is dependent on the pH and nutrient environment[J]. Journal of Bacteriology, 2003, 185(24): 7044-7052.
[205] HOSSEINI M R, PAZOUKI M, RANJBAR M, et al. Bioleaching of iron from highly contaminated Kaolin clay by Aspergillus niger[J]. Applied Clay Science, 2007, 37(3): 251-257.
[206] MERRICK M J, EDWARDS R A. Nitrogen control in bacteria[J]. Microbiological Reviews, 1995, 59(4): 604-622.
[207] STYRIAKOVA I, STYRIAK I. Iron removal from kaolins by bacterial leaching[J]. Ceramics-Silikaty, 2000, 44(4): 135-141.
[208] ANGEL B R, VINCENT W E J. Electron spin resonance studies of iron oxides associated with the surface of kaolins[J]. Clays and Clay Minerals, 1978, 26(4): 263-272.
[209] MEADS R E, MALDEN P J. Electron-spin resonance in natural kaolinites containing Fe3+ and other transition-metal ions[J]. Clay Minerals, 1975, 10(5): 313-345.
[210] PAYNE S M.
[25] Detection, isolation, and characterization of siderophores[M]//CLARK V L, BAVOIL P M. Bacterial Pathogenesis, Part A: Identification and Regulation of Virulence Factors. Academic Press. 1994: 329-344.
[211] GUO M-R, LIN Y-M, XU X-P, et al. Bioleaching of iron from kaolin using Fe(III)-reducing bacteria with various carbon nitrogen sources[J]. Applied Clay Science, 2010, 48(3): 379-383.
[212] SHERMAN J M, STARK P. The Fermentation of Disaccharides by Streptococcus thermophilus[J]. Journal of Bacteriology, 1938, 36(1): 77-81.
[213] SULOCHANA M B, JAYACHANDRA S Y, KUMAR S A, et al. Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25[J]. Applied Biochemistry and Biotechnology, 2014, 174(1): 297-308.
[214] SHAIKH S S, WANI S J, SAYYED R Z. Statistical-based optimization and scaleup of siderophore production process on laboratory bioreactor[J]. 3 Biotech, 2016, 6(1): 69.
[215] AL SHAER D, AL MUSAIMI O, DE LA TORRE B G, et al. Hydroxamate siderophores: natural occurrence, chemical synthesis, iron binding affinity and use as Trojan horses against pathogens[J]. European Journal of Medicinal Chemistry, 2020, 208: 112791.
[216] MIETHKE M, MARAHIEL M A. Siderophore-based iron acquisition and pathogen control[J]. Microbiology and Molecular Biology Reviews, 2007, 71(3): 413-451.
[217] KO K S, KIM J W, KIM J M, et al. Population structure of the Bacillus cereus group as determined by sequence analysis of six housekeeping genes and the plcR gene[J]. Infection and Immunity, 2004, 72(9): 5253-5261.
[218] ENRIGHT M C, DAY N P J, DAVIES C E, et al. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus[J]. Journal of Clinical Microbiology, 2000, 38(3): 1008-1015.
[219] DIXON S D, JANES B K, BOURGIS A, et al. Multiple ABC transporters are involved in the acquisition of petrobactin in Bacillus anthracis[J]. Molecular Microbiology, 2012, 84(2): 370-382.
[220] KOPPISCH A T, DHUNGANA S, HILL K K, et al. Petrobactin is produced by both pathogenic and non-pathogenic isolates of the Bacillus cereus group of bacteria[J]. BioMetals, 2008, 21(5): 581-589.
[221] WILSON M K, ABERGEL R J, RAYMOND K N, et al. Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis[J]. Biochemical and Biophysical Research Communications, 2006, 348(1): 320-325.
[222] ARCENEAUX J E L, BYERS B R. Ferrisiderophore reductase activity in Bacillus megaterium[J]. Journal of Bacteriology, 1980, 141(2): 715-721.
[223] CORRIGAN R M, FOSTER T J. An improved tetracycline-inducible expression vector for Staphylococcus aureus[J]. Plasmid, 2009, 61(2): 126-129.
[224] BRYAN E M, BAE T, KLEEREBEZEM M, et al. Improved vectors for nisincontrolledexpression in gram-positive bacteria[J]. Plasmid, 2000, 44(2): 183-190.
修改评论