中文版 | English
题名

蜡样芽孢杆菌和金黄色葡萄球菌对高岭土的铁浸出特性研究

其他题名
IRON BIOLEACHING PROPERTIES OF KAOLIN BY BACILLUS CEREUS AND STAPHYLOCOCCUS AUREUS
姓名
姓名拼音
JING Hao
学号
11930776
学位类型
博士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
蒋兴宇
导师单位
生物医学工程系
论文答辩日期
2023-11-14
论文提交日期
2023-12-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

高岭土是一种化学性质稳定的硅酸盐矿物,具有良好的吸附性、可塑性、分散性,用作颜料或增量剂时具有良好的遮盖力,通常作为填料和涂层材料应用于陶瓷、化妆品、造纸等工业领域。白度是评价高岭土品质的重要指标,然而天然高岭土中普遍存在三价铁杂质,降低了高岭土的白度并影响其性能。传统的物理和化学除铁方法存在成本高、污染环境、破坏高岭土结构等缺点。因此基于微生物的生物浸出法已成为高岭土行业的研究热点。目前微生物浸出加工使用的多为从自然环境中分离得到的革兰氏阴性菌,而对革兰氏阳性菌铁浸出机制和潜在应用研究较少。

本研究选用革兰氏阳性菌蜡样芽胞杆菌Bacillus cereusB. cereus)和金黄色葡萄球菌Staphylococcus aureusS. aureus)为实验菌株,通过调控浸出环境中的氮源碳源成分,分析了B. cereusS. aureus对高岭土中晶态和非晶态铁杂质的还原浸出特性,通过监测细菌培养环境中的生化指标阐明铁还原浸出机制,利用工程化方法提高细菌的铁还原能力。本文主要研究内容及结果如下:

(1)探究B. cereusS. aureus对晶态、非晶态铁氧化物的还原能力。实验中选取Fe2O3和高岭土作为铁还原目标,通过监测细菌浸出过程中的生化指标,分析B. cereusS. aureus对晶态和非晶态铁氧化物的铁还原行为。实验结果显示B. cereus对晶态铁氧化物具有还原活性,其还原Fe2O3时培养基中亚铁离子总积累值最高达到了3 mg/L,而S. aureus仅能还原高岭土中非晶态三价铁杂质,培养基中亚铁离子总积累值最高达到0.6 mg/L。研究表明铁载体的类型和结合效率是影响革兰氏阳性菌还原高岭土中铁杂质的重要因素。

(2)探究培养基中氮源碳源成分对B. cereusS. aureus铁还原能力的影响。实验中通过监测细菌浸出过程中的生化指标,分析革兰氏阳性菌B. cereusS. aureus在氮源和碳源辅助氮源生长环境中的铁还原行为,揭示培养基成分与革兰氏阳性菌铁还原行为之间的关系。实验结果显示B. cereus在氮源成分稀释的0.1×LB培养基中还原晶态铁氧化物时达到最高亚铁离子浓度3 mg/L,S. aureus仅能在1×LB培养基中还原高岭土中非晶态铁氧化物。氮源培养基中添加碳源淀粉进一步提高了B. cereus的铁还原能力,亚铁离子总积累值最高提升超过0.6 mg/L。研究表明培养基中氮源碳源新陈代谢产物改变了细胞环境酸碱度,影响细胞铁载体的产生和对铁的结合能力,调节细菌的铁还原行为。

(3)探究革兰氏阳性菌B. cereusS. aureus的铁还原通路,通过工程化提高B. cereusS. aureus的铁还原能力。实验中利用实时荧光定量PCR分析不同培养基成分下生长细菌的铁还原基因表达水平,绘制革兰氏阳性菌还原浸出三价铁的通路,探究革兰氏阳性菌的铁还原机制。实验结果显示B. cereus的铁载体合成基因asb与细胞内外稳态调节基因sigBnapA共同调控B. cereus的铁还原过程。S. aureus铁还原相关基因包括负责三价铁转运和内化的Isd系统与Fur调节因子,负责铁载体生物合成的SbnI,负责pH稳态调节的DacA。研究表明革兰氏阳性菌B. cereusS. aureus通过培养基中氮源碳源代谢产物改变周围环境的酸碱度,引起细胞pH响应,并利用能量代谢和pH稳态调节来影响铁载体的合成和铁复合物的转运还原。铁载体复合物进入细胞后最终被还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)还原,释放出亚铁离子。通过转入铁载体合成基因重组质粒,B. cereusS. aureus铁还原环境中的亚铁离子浓度最高提升50%。

本研究揭示了革兰氏阳性菌B. cereusS. aureus的铁还原浸出机制,发现其与革兰氏阴性菌的电子传递机制不同,主要通过铁载体转运还原铁氧化物。通过工程化提高了铁载体合成量,增强B. cereusS. aureus的铁还原能力。本研究有助于优化提高革兰氏阳性菌的铁浸出效率,为革兰氏阳性菌在生物浸出工业中的应用提供重要参考。

其他摘要

Kaolin is a chemically stable silicate mineral with good adsorption, plasticity and dispersion, and has good hiding power when used as pigment or additive. It is usually used as filler and coating material in ceramics, cosmetics, paper making and other industrial fields. Whiteness is an important index to evaluate the quality of kaolin. However, the presence of ferric impurities in natural kaolin reduces the whiteness of kaolin and affects its properties. The traditional physical and chemical methods of iron removal have disadvantages such as high cost, pollution of environment and destruction of kaolin structure. Therefore, bioleaching based on microorganism has become the research hotspot in kaolin industry. At present, most of the microorganisms used in microbial leaching process are Gram-negative bacteria isolated from natural environment, but there are few researches on the mechanism and potential application of iron leaching of Gram-positive bacteria.

This study selected the Gram-positive bacteria Bacillus cereus (B. cereus) and Staphylococcus aureus (S. aureus) as experimental strains, by regulating the composition of nitrogen and carbon sources in the leaching environment, the reduction leaching characteristics of B. cereus and S. aureus on crystalline and amorphous iron impurities in kaolin were analyzed. And the iron reductive leaching mechanism was elucidated by monitoring the biochemical indicators in the bacterial culture environment. The iron reduction abilities of bacteria were improved by engineering bacteria. The main research content and results of this thesis are as follows:

(1) Investigate the reduction ability of B. cereus and S. aureus on crystalline and amorphous ferric iron. In the experiment, Fe2O3 and kaolin were selected as iron reduction targets, and the iron reduction behaviors of B. cereus and S. aureus on crystalline and amorphous ferric oxides were analyzed by monitoring the biochemical indicators in the bacterial leaching process. The experimental results showed that B. cereus had reduction activity on crystalline iron oxides, and the total accumulation value of ferrous ions in the medium of Fe2O3 reduction reached 3 mg/L, while S. aureus could only reduce amorphous ferric impurities in kaolin, and the total accumulation value of ferrous ions in the medium reached 0.6 mg/L. The results showed that the type and binding efficiency of siderophores are important factors affecting the reduction of iron impurities in kaolin by Gram-positive bacteria.

(2) Investigate the effects of nitrogen and carbon compositions on the iron reduction abilities of B. cereus and S. aureus. In the experiment, by monitoring the biochemical indicators in the process of bacterial leaching, the iron reduction behaviors of Gram-positive bacteria B. cereus and S. aureus in the growth environment of nitrogen source and carbon source-assisted nitrogen source were analyzed, revealing the relationship between the medium composition and iron-reducing behaviors of Gram-positive bacteria. The experimental results showed that B. cereus achieved the highest concentration of ferrous ion 3 mg/L when reducing crystalline iron oxides in 0.1´LB medium with diluted nitrogen source composition, while S. aureus could only reduce amorphous iron oxide of kaolin in 1´LB medium. The addition of carbon source starch in nitrogen source medium further improved the iron reduction ability of B. cereus, and the maximum increase of the total accumulation value of ferrous ions was more than 0.6 mg/L. The results showed that the metabolic products of nitrogen source and carbon source in the medium changed the pH of the cell environment, affected the production of siderophore and its binding ability to iron, and regulated the iron reduction behaviors of bacteria.

(3) Investigate the iron reduction pathway of Gram-positive bacteria B. cereus and S. aureus, and improve their iron reduction ability through bacterial engineering. In the experiment, real-time fluorescent quantitative PCR was used to analyze the iron-reducing gene expression level of bacteria grown under different medium compositions, and the pathway of ferric iron reduction by Gram-positive bacteria was mapped to explore their iron reduction mechanism. The experimental results showed that the siderophore synthesis gene cluster asb, the extracellular and extracellular homeostasis regulation genes sigB and napA jointly regulated the iron reduction process of B. cereus. S. aureus iron reduction-related genes include the Isd system and Fur regulator responsible for ferric iron transport and internalization, SbnI for siderophore biosynthesis, and DacA for pH homeostasis regulation. The results showed that Gram-positive bacteria B. cereus and S. aureus change the pH of the surrounding environment through the metabolites of nitrogen and carbon sources in the medium, causing cell pH response, affecting the syntheses of siderophore and the transport and reduction of iron complexes through the regulation of energy metabolism and pH homeostasis. The siderophore complexes enter the cell and are reduced by the reduced nicotinamide adenine dinucleotide phosphate (NADPH) to release ferrous ions. The concentration of ferrous ions in B. cereus and S. aureus iron-reducing environment was increased by up to 50% by transferring the siderophore synthesized gene recombinant plasmid.

In this study, the iron leaching mechanisms of Gram-positive bacteria B. cereus and S. aureus were revealed, and found that it is different from the electron transport mechanism of Gram-negative bacteria, the ferric oxides were mainly transported through siderophores. Through bacterial engineering, the synthesis of siderophores was increased and the iron reducing abilities of B. cereus and S. aureus were enhanced. This study is helpful to optimize and improve the iron leaching efficiency of Gram-positive bacteria, and provides an important reference for the application of Gram-positive bacteria in bioleaching industry.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-12
参考文献列表

[1] BISH D L. Rietveld refinement of the kaolinite structure at 1.5 K[J]. Clays and Clay Minerals, 1993, 41(6): 738-744.
[2] SPERINCK S, RAITERI P, MARKS N, et al. Dehydroxylation of kaolinite to metakaolin-a molecular dynamics study[J]. Journal of Materials Chemistry, 2011, 21(7): 2118-2125.
[3] OYEBANJO O, EKOSSE G-I, ODIYO J. Physico-chemical, mineralogical, and chemical characterisation of cretaceous–paleogene/neogene kaolins within eastern dahomey and niger delta basins from nigeria: Possible industrial applications[J]. 2020, 10(8): 670.
[4] ZEWDIE T M, PRIHATININGTYAS I, DUTTA A, et al. Characterization and beneficiation of Ethiopian kaolin for use in fabrication of ceramic membrane[J]. Materials Research Express, 2021, 8(11): 115201.
[5] RYU H W, CHO K S, CHANG Y K, et al. Refinement of low-grade clay by microbial removal of sulfur and iron compounds using Thiobacillus ferrooxidans[J]. Journal of Fermentation and Bioengineering, 1995, 80(1): 46-52.
[6] LIU P, ZHU W, XIAO X. Metabolic networks of electricigens Shewanella for anaerobic respiration[J]. Microbiology China, 2015, 42(11): 2238-2244.
[7] ROTARU A E, SHRESTHA P M, LIU F, et al. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri[J]. Applied and Environmental Microbiology, 2014, 80(15): 4599-4605.
[8] LUU Y S, RAMSAY J A. Review: microbial mechanisms of accessing insoluble Fe(III) as an energy source[J]. World Journal of Microbiology and Biotechnology, 2003, 19(2): 215-225.
[9] REGUERA G, MCCARTHY K D, MEHTA T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045): 1098-1101.
[10] BROWN J S, HOLDEN D W. Iron acquisition by Gram-positive bacterial pathogens[J]. Microbes and Infection, 2002, 4(11): 1149-1156.
[11] BEASLEY F C, HEINRICHS D E. Siderophore-mediated iron acquisition in the staphylococci[J]. Journal of Inorganic Biochemistry, 2010, 104(3): 282-288.
[12] DOYLE L E, MARSILI E. Weak electricigens: A new avenue for bioelectrochemical research[J]. Bioresource Technology, 2018, 258: 354-364.
[13] SHEAN B J, CILLIERS J J. A review of froth flotation control[J]. International Journal of Mineral Processing, 2011, 100(3): 57-71.
[14] CHEN P, ZHAI J, SUN W, et al. Adsorption mechanism of lead ions at ilmenite/water interface and its influence on ilmenite flotability[J]. Journal of Industrial and Engineering Chemistry, 2017, 53: 285-293.
[15] XU L, TIAN J, WU H, et al. The flotation and adsorption of mixed collectors on oxide and silicate minerals[J]. Advances in Colloid and Interface Science, 2017, 250: 1-14.
[16] XU L, TIAN J, WU H, et al. Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals[J]. Advances in Colloid and Interface Science, 2018, 256: 340-351.
[17] KOCABAĞ D, GüLER T. Two-liquid flotation of sulphides: An electrochemical approach[J]. Minerals Engineering, 2007, 20(13): 1246-1254.
[18] 张香亭, 刘晨宏, 郭东风. 双液浮选脱除煤系高岭土中的铁[J]. 煤炭学报, 2000, 25(S1): 186-192.
[19] OBERTEUFFER J. Magnetic separation: a review of principles, devices, and applications[J]. IEEE Transactions on Magnetics, 1974, 10(2): 223-238.
[20] IANNICELLI J. New developments in magnetic separation[J]. IEEE Transactions on Magnetics, 1976, 12(5): 436-443.
[21] 刁润丽, 张条兰. 高岭土除铁增白方法及研究进展[J]. 中国非金属矿工业导刊, 2016, 120(1): 9-12.
[22] 蔡丽娜, 胡德文, 李凯琦, et al. 高岭土除铁技术进展[J]. 矿冶, 2008, 17(4): 51-54.
[23] ARSLAN V, BAYAT O. Removal of Fe from kaolin by chemical leaching and bioleaching[J]. Clays and Clay Minerals, 2009, 57(6): 787-794.
[24] TUNCUK A, ÇIFTLIK S, GüNEŞ A, et al. Effects of different organic acids in iron removal from kaolin ore[J]. Madencilik, 2010, 49: 3-16.
[25] 侯太鹏. 高岭土除铁、增白试验研究[J]. 非金属矿, 2001, 24(4): 32-35+10.
[26] 胡流球. 高岭土漂白过程中铁溶出率实验研究[J]. 非金属矿, 2016, 39(5): 73-75.
[27] 吕宪俊. 高岭土中染色物质的赋存形式及其漂白工艺的选择[J]. 中国非金属矿工业导刊, 2004, (4): 8-12.
[28] 林培喜, 揭永文, 邱宝渭. 亚硫酸氢钠-锌粉漂白高岭土工艺研究[J]. 茂名学院学报, 2009, 19(1): 1-3.
[29] 李云辉, 武子玉, 于德利, et al. 吉林省白山地区煤系高岭土煅烧增白实验研究 [J]. 长春理工大学学报, 2006, (1): 18-20.
[30] 周枚花, 赵启航, 肖燕云, et al. 基于氧化还原法高岭土去铁增白的研究[J]. 江西化工, 2016, (2): 53-55.
[31] DE MESQUITA L M S, RODRIGUES T, GOMES S S. Bleaching of Brazilian kaolins using organic acids and fermented medium[J]. Minerals Engineering, 1996, 9(9): 965-971.
[32] BURGSTALLER W, SCHINNER F. Leaching of metals with fungi[J]. Journal of Biotechnology, 1993, 27(2): 91-116.
[33] SAIKIA N J, BHARALI D J, SENGUPTA P, et al. Characterization, beneficiation and utilization of a kaolinite clay from Assam, India[J]. Applied Clay Science, 2003, 24(1): 93-103.
[34] HERNáNDEZ R A H, GARCíA F L, CRUZ L E H, et al. Iron removal from a kaolinitic clay by leaching to obtain high whiteness index[J]. IOP Conference Series: Materials Science and Engineering, 2013, 45(1): 012002.
[35] AMBIKADEVI V R, LALITHAMBIKA M. Effect of organic acids on ferric iron removal from iron-stained kaolinite[J]. Applied Clay Science, 2000, 16(3): 133-145.
[36] LOVLEY D R, HOLMES D E, NEVIN K P. Dissimilatory Fe(III) and Mn(IV) Reduction[M]//POOLE R K. Advances in Microbial Physiology. Academic Press. 2004: 219-286.
[37] MUSIAŁ I, CIBIS E, RYMOWICZ W. Designing a process of kaolin bleaching in an oxalic acid enriched medium by Aspergillus niger cultivated on biodieselderivederived waste composed of glycerol and fatty acids[J]. Applied Clay Science, 2011, 52(3): 277-284.
[38] CAMESELLE C, BOHLMANN J T, NúñEZ M J, et al. Oxalic acid production by Aspergillus niger[J]. Bioprocess Engineering, 1998, 19(4): 247-252.
[39] CAMESELLE C, JOSé NúñEZ M, LEMA J M, et al. Leaching of iron from kaolins by a spent fermentation liquor: Influence of temperature, pH, agitation and citric acid concentration[J]. Journal of Industrial Microbiology, 1995, 14(3): 288-292.
[40] CAMESELLE C, RICART M T, NúñEZ M J, et al. Iron removal from kaolin. Comparison between “in situ” and “two-stage” bioleaching processes[J]. Hydrometallurgy, 2003, 68(1): 97-105.
[41] MAURICE P A, VIERKORN M A, HERSMAN L E, et al. Enhancement of kaolinite dissolution by an aerobic Pseudomonas mendocina bacterium[J]. Geomicrobiology Journal, 2001, 18(1): 21-35.
[42] ZEGEYE A, YAHAYA S, FIALIPS C I, et al. Refinement of industrial kaolin by microbial removal of iron-bearing impurities[J]. Applied Clay Science, 2013, 86: 47-53.
[43] LEE E-Y, CHO K-S, RYU H W, et al. Microbial removal of Fe(III) impurities from clay using dissimilatory iron reducers[J]. Journal of Bioscience and Bioengineering, 1999, 87(3): 397-399.
[44] TORO L, PAPONETTI B, VEGLIò F, et al. Removal of iron from kaolin ores using different microorganisms. The role of the organic acids and ferric iron reductase[J]. Particulate Science and Technology, 1992, 10(3-4): 201-208.
[45] MOCKOVČIAKOVá A, IVETA Š, JIŘí Š, et al. Characterization of changes of low and high defect kaolinite after bioleaching[J]. Applied Clay Science, 2008, 39(3): 202-207.
[46] KOSTKA J E, HAEFELE E, VIEHWEGER R, et al. Respiration and dissolution of iron(III)-containing clay minerals by bacteria[J]. Environmental Science & Technology, 1999, 33(18): 3127-3133.
[47] KOSTKA J E, DALTON D D, SKELTON H, et al. Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms[J]. Applied and Environmental Microbiology, 2002, 68(12): 6256-6262.
[48] HE Q X, HUANG X C, CHEN Z L. Influence of organic acids, complexing agents and heavy metals on the bioleaching of iron from kaolin using Fe(III)-reducing bacteria[J]. Applied Clay Science, 2011, 51(4): 478-483.
[49] TSUNEDA S, AIKAWA H, HAYASHI H, et al. Extracellular polymeric substances responsible for bacterial adhesion onto solid surface[J]. FEMS Microbiology Letters, 2003, 223(2): 287-292.
[50] SELIM K A, ROSTOM M. Bioflocculation of (Iron oxide–Silica) system using Bacillus cereus bacteria isolated from Egyptian iron ore surface[J]. Egyptian Journal of Petroleum, 2018, 27(2): 235-240.
[51] HONG Z N, ZHAO G, CHEN W L, et al. Effects of solution chemistry on bacterial adhesion with phyllosilicates and goethite explained by the extended DLVO theory[J]. Geomicrobiology Journal, 2014, 31(5): 419-430.
[52] HONG Z N, RONG X M, CAI P, et al. Effects of temperature, pH and salt concentrations on the adsorption of Bacillus subtilis on soil clay minerals investigated by microcalorimetry[J]. Geomicrobiology Journal, 2011, 28(8): 686-691.
[53] JIA C V, WEI D Z, LI P J, et al. Selective adsorption of Mycobacterium Phlei on pyrite and sphalerite[J]. Colloids and Surfaces B-Biointerfaces, 2011, 83(2): 214-219.
[54] CAI P, HUANG Q Y, WALKER S L. Deposition and survival of Escherichia coli O157:H7 on clay minerals in a parallel plate flow system[J]. Environmental Science & Technology, 2013, 47(4): 1896-1903.
[55] CHANDRAPRABHA M N, NATARAJAN K A. Microbially induced mineral beneficiation[J]. Mineral Processing and Extractive Metallurgy Review, 2010, 31(1): 1-29.
[56] FONG J N C, YILDIZ F H. Biofilm matrix proteins[J]. Microbiology spectrum, 2015, 3(2): 3.2.28.
[57] WARR L N, PERDRIAL J N, LETT M C, et al. Clay mineral-enhanced bioremediation of marine oil pollution[J]. Applied Clay Science, 2009, 46(4): 337-345.
[58] PERDRIAL J N, WARR L N, PERDRIAL N, et al. Interaction between smectite and bacteria: implications for bentonite as backfill material in the disposal of nuclear waste[J]. Chemical Geology, 2009, 264(1-4): 281-294.
[59] NICHOLS C M, BOWMAN J P, GUEZENNEC J. Olleya marilimosa gen. nov., sp nov., an exopolysaccharide-producing marine bacterium from the family Flavobacteriaceae, isolated from the Southern Ocean[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55: 1557-1561.
[60] ZHU Y, LI Y, LU A H, et al. Study of the interaction between bentonite and a strain of Bacillus mucilaginosus[J]. Clays and Clay Minerals, 2011, 59(5): 538-545.
[61] STYRIAKOVA I, STYRIAK I, MALACHOVSKY P, et al. Bacterial clay release and iron dissolution during the quality improvement of quartz sands[J]. Hydrometallurgy, 2007, 89(1-2): 99-106.
[62] SAEID A, PROCHOWNIK E, DOBROWOLSKA-IWANEK J. Phosphorus solubilization by Bacillus species[J]. Molecules, 2018, 23(11): 2897.
[63] AGHAIE E, PAZOUKI M, HOSSEINI M R, et al. Response surface methodology (RSM) analysis of organic acid production for kaolin beneficiation by Aspergillus niger[J]. Chemical Engineering Journal, 2009, 147(2): 245-251.
[64] LEE E Y, CHO K-S, WOOK RYU H. Microbial refinement of kaolin by ironreducing bacteria[J]. Applied Clay Science, 2002, 22(1): 47-53.
[65] MOLS M, VAN KRANENBURG R, VAN MELIS C C J, et al. Analysis of acidstressed Bacillus cereus reveals a major oxidative response and inactivationassociated radical formation[J]. Environmental Microbiology, 2010, 12(4): 873-885.
[66] COTTER P D, GAHAN C G M, HILL C. A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid[J]. Molecular Microbiology, 2001, 40(2): 465-475.
[67] MOLS M, DE BEEN M, ZWIETERING M H, et al. Metabolic capacity of Bacillus cereus strains ATCC 14579 and ATCC 10987 interlinked with comparative genomics[J]. Environmental Microbiology, 2007, 9(12): 2933-2944.
[68] RYAN S, BEGLEY M, GAHAN C G M, et al. Molecular characterization of the arginine deiminase system in Listeria monocytogenes: regulation and role in acid tolerance[J]. Environmental Microbiology, 2009, 11(2): 432-445.
[69] VAN DER VOORT M, ABEE T. Transcriptional regulation of metabolic pathways, alternative respiration and enterotoxin genes in anaerobic growth of Bacillus cereus ATCC 14579[J]. Journal of Applied Microbiology, 2009, 107(3): 795-804.
[70] WRAY L V, PERSON A E, FISHER S H. Expression of the Bacillus subtilis ureABC operon is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and Spo0H[J]. Journal of Bacteriology, 1997, 179(17): 5494-5501.
[71] MOBLEY H L T, ISLAND M D, HAUSINGER R P. Molecular biology of microbial ureases[J]. Microbiological Reviews, 1995, 59(3): 451-480.
[72] MOLS M, ABEE T. Role of ureolytic activity in Bacillus cereus nitrogen metabolism and acid survival[J]. Applied and Environmental Microbiology, 2008, 74(8): 2370-2378.
[73] KAZMIERCZAK M J, WIEDMANN M, BOOR K J. Alternative sigma factors and their roles in bacterial virulence[J]. Microbiology and Molecular Biology Reviews, 2005, 69(4): 527-543.
[74] VAN SCHAIK W, ZWIETERING M H, DE VOS W M, et al. Identification of sigma(B)-dependent genes in Bacillus cereus by proteome and in vitro transcription analysis[J]. Journal of Bacteriology, 2004, 186(13): 4100-4109.
[75] HECKER M, PANE-FARRE J, VOLKER U. SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria[J]. Annual Review of Microbiology, 2007, 61(1): 215-236.
[76] VAN SCHAIK W, TEMPELAARS M H, WOUTERS J A, et al. The alternative sigma factor sigma(B) of Bacillus cereus: Response to stress and role in heat adaptation[J]. Journal of Bacteriology, 2004, 186(2): 316-325.
[77] FAHMI T, PORT G C, CHO K H. c-di-AMP: An essential molecule in the signaling pathways that regulate the viability and virulence of gram-positive bacteria[J]. Genes, 2017, 8(8): 197.
[78] BOWMAN L, ZEDEN M S, SCHUSTER C F, et al. New insights into the cyclic di-adenosine monophosphate (c-di-AMP) degradation pathway and the requirement of the cyclic dinucleotide for acid stress resistance in Staphylococcus aureus[J]. Journal of Biological Chemistry, 2016, 291(53): 26970-26986.
[79] WEINRICK B, DUNMAN P M, MCALEESE F, et al. Effect of mild acid on gene expression in Staphylococcus aureus[J]. Journal of Bacteriology, 2004, 186(24): 8407-8423.
[80] JOHNSON L. Iron and siderophores in fungal–host interactions[J]. Mycological Research, 2008, 112(2): 170-183.
[81] NEILANDS J B. Siderophores: structure and function of microbial iron transport compounds[J]. Journal of Biological Chemistry, 1995, 270(45): 26723-26726.
[82] BAAKZA A, VALA A K, DAVE B P, et al. A comparative study of siderophore production by fungi from marine and terrestrial habitats[J]. Journal of Experimental Marine Biology and Ecology, 2004, 311(1): 1-9.
[83] OBEREGGER H, SCHOESER M, ZADRA I, et al. SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in Aspergillus nidulans[J]. Molecular Microbiology, 2001, 41(5): 1077-1089.
[84] SAHA M, SARKAR S, SARKAR B, et al. Microbial siderophores and their potential applications: a review[J]. Environmental Science and Pollution Research, 2016, 23(5): 3984-3999.
[85] WILSON B R, BOGDAN A R, MIYAZAWA M, et al. Siderophores in Iron Metabolism: From Mechanism to Therapy Potential[J]. Trends in Molecular Medicine, 2016, 22(12): 1077-1090.
[86] WINKELMANN G. Microbial siderophore-mediated transport[J]. Biochemical Society Transactions, 2002, 30(4): 691-696.
[87] LAMONT I L, MARTIN L W, SIMS T, et al. Characterization of a gene encoding an acetylase required for pyoverdine synthesis in Pseudomonas aeruginosa[J]. Journal of Bacteriology, 2006, 188(8): 3149-3152.
[88] MOSSIALOS D, OCHSNER U, BAYSSE C, et al. Identification of new, conserved, non-ribosomal peptide synthetases from fluorescent pseudomonads involved in the biosynthesis of the siderophore pyoverdine[J]. Molecular Microbiology, 2002, 45(6): 1673-1685.
[89] STINTZI A, CORNELIS P, HOHNADEL D, et al. Novel pyoverdine biosynthesis gene(s) of Pseudomonas aeruginosa PAO[J]. Microbiology-Sgm, 1996, 142(5): 1181-1190.
[90] WINTERBERG B, UHLMANN S, LINNE U, et al. Elucidation of the complete ferrichrome A biosynthetic pathway in Ustilago maydis[J]. Molecular Microbiology, 2010, 75(5): 1260-1271.
[91] GEHRING A M, BRADLEY K A, WALSH C T. Enterobactin biosynthesis in Escherichia coli: Isochorismate lyase (EntB) is a bifunctional enzyme that is phosphopantetheinylated by EntD and then acylated by EntE using ATP and 2,3-dihydroxybenzoate[J]. Biochemistry, 1997, 36(28): 8495-8503.
[92] KOHLI R M, TRAUGER J W, SCHWARZER D, et al. Generality of peptide cyclization catalyzed by isolated thioesterase domains of nonribosomal peptide synthetases[J]. Biochemistry, 2001, 40(24): 7099-7108.
[93] EHMANN D E, SHAW-REID C A, LOSEY H C, et al. The EntF and EntE adenylation domains of Escherichia coli enterobactin synthetase: sequestration and selectivity in acyl-AMP transfers to thiolation domain cosubstrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(6): 2509-2514.
[94] WARNER P J, WILLIAMS P H, BINDEREIF A, et al. Colv plasmid-specified aerobactin synthesis by invasive strains of Escherichia coli[J]. Infection and Immunity, 1981, 33(2): 540-545.
[95] CHEUNG J, BEASLEY F C, LIU S Y, et al. Molecular characterization of staphyloferrin B biosynthesis in Staphylococcus aureus[J]. Molecular Microbiology, 2009, 74(3): 594-608.
[96] BARONA-GOMEZ F, WONG U, GIANNAKOPULOS A E, et al. Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145[J]. Journal of the American Chemical Society, 2004, 126(50): 16282-16283.
[97] FLEMING E J, LANGDON A E, MARTINEZ-GARCIA M, et al. What's new is old: resolving the identity of Leptothrix ochracea using single cell genomics, pyrosequencing and FISH[J]. PloS One, 2011, 6(3).
[98] FURRER J L, SANDERS D N, HOOK-BARNARD I G, et al. Export of the siderophore enterobactin in Escherichia coli: involvement of a 43 kDa membrane exporter[J]. Molecular Microbiology, 2002, 44(5): 1225-1234.
[99] BLEUEL C, GROSSE C, TAUDTE N, et al. TolC is involved in enterobactin efflux across the outer membrane of Escherichia coli[J]. Journal of Bacteriology, 2005, 187(19): 6701-6707.
[100] VETTORETTI L, PLESIAT P, MULLER C, et al. Efflux unbalance in Pseudomonas aeruginosa isolates from cystic fibrosis patients[J]. Antimicrobial Agents and Chemotherapy, 2009, 53(5): 1987-1997.
[101] POOLE K, NESHAT S, KREBES K, et al. Cloning and nucleotide sequence analysis of the ferripyoverdine receptor gene fpvA of Pseudomonas aeruginosa[J]. Journal of Bacteriology, 1993, 175(15): 4597-4604.
[102] GRIGG J C, COOPER J D, CHEUNG J, et al. The Staphylococcus aureus siderophore receptor HtsA undergoes localized conformational changes to enclose staphyloferrin A in an arginine-rich binding pocket[J]. Journal of Biological Chemistry, 2010, 285(15): 11162-11171.
[103] RODRIGUEZ G M, SMITH I. Identification of an ABC transporter required for iron acquisition and virulence in Mycobacterium tuberculosis[J]. Journal of Bacteriology, 2006, 188(2): 424-430.
[104] FARHANA A, KUMAR S, RATHORE S S, et al. Mechanistic insights into a novel exporter-importer system of Mycobacterium tuberculosis unravel its role in trafficking of iron[J]. PloS One, 2008, 3(5).
[105] KOSTER W, BRAUN V. Iron-hydroxamate transport into Escherichia coli K12 localization of FhuD in the periplasm and of FhuB in the cytoplasmic membrane[J]. Molecular and General Genetics, 1989, 217(2-3): 233-239.
[106] IMPERI F, TIBURZI F, VISCA P. Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(48): 20440-20445.
[107] YETERIAN E, MARTIN L W, LAMONT I L, et al. An efflux pump is required for siderophore recycling by Pseudomonas aeruginosa[J]. Environmental Microbiology Reports, 2010, 2(3): 412-418.
[108] GREENWALD J, HOEGY F, NADER M, et al. Real time fluorescent resonance energy transfer visualization of ferric pyoverdine uptake in Pseudomonas aeruginosa: a role for ferrous iron[J]. Journal of Biological Chemistry, 2007, 282(5): 2987-2995.
[109] MA L, KASERER W, ANNAMALAI R, et al. Evidence of ball-and-chain transport of ferric enterobactin through FepA[J]. Journal of Biological Chemistry, 2007, 282(1): 397-406.
[110] BRAUN V, BRAUN M. Iron transport and signaling in Escherichia coli[J]. FEBS Letters, 2002, 529(1): 78-85.
[111] NADER M, DOBBELAERE W, VINCENT M, et al. Identification of residues of FpvA involved in the different steps of Pvd-Fe uptake in Pseudomonas aeruginosa[J]. Biochemistry, 2007, 46(42): 11707-11717.
[112] NADER M, JOURNET L, MEKSEM A, et al. Mechanism of ferripyoverdine uptake by Pseudomonas aeruginosa outer membrane transporter FpvA: no diffusion channel formed at any time during ferrisiderophore uptake[J]. Biochemistry, 2011, 50(13): 2530-2540.
[113] GREENWALD J, ZEDER-LUTZ G, HAGEGE A, et al. The metal dependence of pyoverdine interactions with its outer membrane receptor FpvA[J]. Journal of Bacteriology, 2008, 190(20): 6548-6558.
[114] PAWELEK P D, CROTEAU N, NG-THOW-HING C, et al. Structure of TonB in complex with FhuA, E. coli outer membrane receptor[J]. Science, 2006, 312(5778): 1399-1402.
[115] BRAUN V. Energy-coupled transport and signal transduction through the Gramnegative outer membrane via TonB-ExbB-ExbD dependent receptor proteins[J]. FEMS Microbiology Reviews, 1995, 16(4): 295-307.
[116] LUBELSKI J, KONINGS W N, DRIESSEN A J M. Distribution and physiology of ABC-Type transporters contributing to multidrug resistance in bacteria[J]. Microbiology and Molecular Biology Reviews, 2007, 71(3): 463-+.
[117] DALE S E, DOHERTY-KIRBY A, LAJOIE G, et al. Role of siderophore biosynthesis in virulence of Staphylococcus aureus: identification and characterization of genes involved in production of a siderophore[J]. Infection and Immunity, 2004, 72(1): 29-37.
[118] WENCEWICZ T A, LONG T E, MOLLMANN U, et al. Trihydroxamate Siderophore-Fluoroquinolone Conjugates Are Selective Sideromycin Antibiotics that Target Staphylococcus aureus[J]. Bioconjugate Chemistry, 2013, 24(3): 473-486.
[119] LIN H, FISCCHBACH M A, LIU D R, et al. In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes[J]. Journal of the American Chemical Society, 2005, 127(31): 11075-11084.
[120] MATZANKE B F, ANEMULLER S, SCHUNEMANN V, et al. FhuF, part of a siderophore-reductase system[J]. Biochemistry, 2004, 43(5): 1386-1392.
[121] PIERRE J L, FONTECAVE M, CRICHTON R R. Chemistry for an essential biological process: the reduction of ferric iron[J]. BioMetals, 2002, 15(4): 341-346.
[122] BOYD P W, STRZEPEK R F, ELLWOOD M J, et al. Why are biotic iron pools uniform across high- and low-iron pelagic ecosystems?[J]. Global Biogeochemical Cycles, 2015, 29(7): 1028-1043.
[123] MAKITA H. Iron-oxidizing bacteria in marine environments: recent progresses and future directions[J]. World Journal of Microbiology and Biotechnology, 2018, 34(8): 110.
[124] MALDONADO M T, PRICE N M. Utilization of iron bound to strong organic ligands by plankton communities in the subarctic Pacific Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1999, 46(11): 2447-2473.
[125] ENZ S, BRAND H, ORELLANA C, et al. Sites of interaction between the FecA and FecR signal transduction proteins of ferric citrate transport in Escherichia coli K-12[J]. Journal of Bacteriology, 2003, 185(13): 3745-3752.
[126] CAO Y R, ZHANG X Y, DENG J Y, et al. Lead and cadmium-induced oxidative stress impacting mycelial growth of Oudemansiella radicata in liquid medium alleviated by microbial siderophores[J]. World Journal of Microbiology & Biotechnology, 2012, 28(4): 1727-1737.
[127] CROUCH M L V, CASTOR M, KARLINSEY J E, et al. Biosynthesis and IroCdependent export of the siderophore salmochelin are essential for virulence of Salmonella enterica serovar Typhimurium[J]. Molecular Microbiology, 2008, 67(5): 971-983.
[128] CHIM N, HABEL J E, JOHNSTON J M, et al. The TB structural genomics consortium: a decade of progress[J]. Tuberculosis, 2011, 91(2): 155-172.
[129] JIN B, NEWTON S M C, SHAO Y, et al. Iron acquisition systems for ferric hydroxamates, haemin and haemoglobin in Listeria monocytogenes[J]. Molecular Microbiology, 2006, 59(4): 1185-1198.
[130] DEMIR M, KALELI I. Production by Escherichia coli isolates of siderophore and other virulence factors and their pathogenic role in a cutaneous infection model[J]. Clinical Microbiology and Infection, 2004, 10(11): 1011-1014.
[131] CAZA M, LEPINE F, DOZOIS C M. Secretion, but not overall synthesis, of catecholate siderophores contributes to virulence of extraintestinal pathogenic Escherichia coli[J]. Molecular Microbiology, 2011, 80(1): 266-282.
[132] ABERGEL R J, MOORE E G, STRONG R K, et al. Microbial evasion of the immune system: structural modifications of enterobactin impair siderocalin recognition[J]. Journal of the American Chemical Society, 2006, 128(34): 10998-10999.
[133] LAWLOR M S, O'CONNOR C, MILLER V L. Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection[J]. Infection and Immunity, 2007, 75(3): 1463-1472.
[134] XIAO R, KISAALITA W S. Iron acquisition from transferrin and lactoferrin by Pseudomonas aeruginosa pyoverdin[J]. Microbiology-Uk, 1997, 143(7): 2509-2515.
[135] BEASLEY F C, MAROLDA C L, CHEUNG J, et al. Staphylococcus aureus transporters Hts, Sir, and Sst capture iron liberated from human transferrin by staphyloferrin A, staphyloferrin B, and catecholamine stress hormones, respectively, and contribute to virulence[J]. Infection and Immunity, 2011, 79(6): 2345-2355.
[136] WILDERMAN P J, VASIL A I, JOHNSON Z, et al. Characterization of an endoprotease (PrpL) encoded by a PvdS-regulated gene in Pseudomonas aeruginosa[J]. Infection and Immunity, 2001, 69(9): 5385-5394.
[137] BANIN E, VASIL M L, GREENBERG E P. Iron and Pseudomonas aeruginosa biofilm formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(31): 11076-11081.
[138] BRAUD A, HOEGY F, JEZEQUEL K, et al. New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway[J]. Environmental Microbiology, 2009, 11(5): 1079-1091.
[139] DIMKPA C O, SVATOS A, DABROWSKA P, et al. Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp.[J]. Chemosphere, 2008, 74(1): 19-25.
[140] LAMONT I L, MARTIN L W. Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa[J]. Microbiology-Sgm, 2003, 149(4): 833-842.
[141] REDLY G A, POOLE K. FpvIR control of fpvA ferric pyoverdine receptor gene expression in Pseudomonas aeruginosa: demonstration of an interaction between FpvI and FpvR and identification of mutations in each compromising this interaction[J]. Journal of Bacteriology, 2005, 187(16): 5648-5657.
[142] BRAUD A, HANNAUER M, MISLIN G L A, et al. The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity[J]. Journal of Bacteriology, 2009, 191(11): 3517-3525.
[143] DUHME A K, HIDER R C, NALDRETT M J, et al. The stability of the molybdenum-azotochelin complex and its effect on siderophore production in Azotobacter vinelandii[J]. Journal of Biological Inorganic Chemistry, 1998, 3(5): 520-526.
[144] HU X C, BOYER G L. Siderophore-mediated aluminum uptake by Bacillus megaterium ATCC 19213[J]. Applied and Environmental Microbiology, 1996, 62(11): 4044-4048.
[145] SINGH P K, PARSEK M R, GREENBERG E P, et al. A component of innate immunity prevents bacterial biofilm development[J]. Nature, 2002, 417(6888): 552-555.
[146] FERNANDEZ L, MARQUEZ I, GUIJARRO J A. Identification of specific in vivo-induced (ivi) genes in Yersinia ruckeri and analysis of ruckerbactin, a catecholate siderophore iron acquisition system[J]. Applied and Environmental Microbiology, 2004, 70(9): 5199-5207.
[147] CHIADO A, VARANI L, BOSCO F, et al. Opening study on the development of a new biosensor for metal toxicity based on Pseudomonas fluorescens pyoverdine[J]. Biosensors, 2013, 3(4): 385-399.
[148] BACHHAWAT A K, GHOSH S. Temperature inhibition of siderophore production in Azospirillum brasilense[J]. Journal of Bacteriology, 1989, 171(7): 4092-4094.
[149] WORSHAM P L, KONISKY J. Effect of growth temperature on the acquisition of iron by Salmonella typhimurium and Escherichia coli[J]. Journal of Bacteriology, 1984, 158(1): 163-168.
[150] MEYER J M, NEELY A, STINTZI A, et al. Pyoverdin is essential for virulence of Pseudomonas aeruginosa[J]. Infection and Immunity, 1996, 64(2): 518-523.
[151] TUTTOBENE M R, CRIBB P, MUSSI M A. BlsA integrates light and temperature signals into iron metabolism through Fur in the human pathogen Acinetobacter baumannii[J]. Scientific Reports, 2018, 8(1): 7728.
[152] BALADO M, LAGES M A, FUENTES-MONTEVERDE J C, et al. The siderophore piscibactin is a relevant virulence factor for Vibrio anguillarum favored at low temperatures[J]. Frontiers in Microbiology, 2018, 9: 1766.
[153] MENDONCA C M, YOSHITAKE S, WEI H, et al. Hierarchical routing in carbon metabolism favors iron-scavenging strategy in iron-deficient soil Pseudomonas species[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(51): 32358-32369.
[154] VINDEIRINHO J M, SOARES H, SOARES E V. Modulation of siderophore production by Pseudomonas fluorescens through the manipulation of the culture medium composition[J]. Applied Biochemistry and Biotechnology, 2021, 193(3): 607-618.
[155] VALDEBENITO M, CRUMBLISS A L, WINKELMANN G, et al. Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917[J]. International Journal of Medical Microbiology, 2006, 296(8): 513-520.
[156] SANTOS S, NETO I F F, MACHADO M D, et al. Siderophore production by Bacillus megaterium: effect of growth phase and cultural conditions[J]. Applied Biochemistry and Biotechnology, 2014, 172(1): 549-560.
[157] YU S M, TENG C Y, BAI X, et al. Optimization of siderophore production by Bacillus sp. PZ-1 and its potential enhancement of phytoextration of Pb from soil[J]. Journal of Microbiology and Biotechnology, 2017, 27(8): 1500-1512.
[158] BARBHAIYA H B, RAO K K. Production of pyoverdine, the fluorescent pigment of Pseudomonas aeruginosa PAO1[J]. FEMS Microbiology Letters, 1985, 27(2): 233-235.
[159] SASIREKHA B, SRIVIDYA S. Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli[J]. Agriculture and Natural Resources, 2016, 50(4): 250-256.
[160] ALBESA I, BARBERIS L I, PAJARO M C, et al. Pyoverdine production by Pseudomonas fluorescens in synthetic media with various sources of nitrogen[J]. Journal of General Microbiology, 1985, 131(12): 3251-3254.
[161] SINGH A, MISHRA A K. Influence of various levels of iron and other abiotic factors on siderophorogenesis in paddy field cyanobacterium Anabaena oryzae[J]. Applied Biochemistry and Biotechnology, 2015, 176(2): 372-386.
[162] S V K, MENON S, AGARWAL H, et al. Characterization and optimization of bacterium isolated from soil samples for the production of siderophores[J]. Resource-Efficient Technologies, 2017, 3(4): 434-439.
[163] ESSEN S A, JOHNSSON A, BYLUND D, et al. Siderophore production by Pseudomonas stutzeri under aerobic and anaerobic conditions[J]. Applied and Environmental Microbiology, 2007, 73(18): 5857-5864.
[164] MEIWES J, FIEDLER H P, ZAHNER H, et al. Production of desferrioxamine E and new analogs by directed fermentation and feeding fermentation[J]. Applied Microbiology and Biotechnology, 1990, 32(5): 505-510.
[165] ROTARU A E, SHRESTHA P M, LIU F H, et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy & Environmental Science, 2014, 7(1): 408-415.
[166] KUMAR A, HSU L H-H, KAVANAGH P, et al. The ins and outs of microorganism–electrode electron transfer reactions[J]. Nature Reviews Chemistry, 2017, 1(3): 0024.
[167] RATASUK N, NANNY M A. Characterization and quantification of reversible redox sites in humic substances[J]. Environmental Science & Technology, 2007, 41(22): 7844-7850.
[168] AESCHBACHER M, SANDER M, SCHWARZENBACH R P. Novel electrochemical approach to assess the redox properties of humic substances[J]. Environmental Science & Technology, 2010, 44(1): 87-93.
[169] HOBBIE S N, LI X, BASEN M, et al. Humic substance-mediated Fe(III) reduction by a fermenting Bacillus strain from the alkaline gut of a humusfeeding scarab beetle larva[J]. Systematic and Applied Microbiology, 2012, 35(4): 226-232.
[170] BHUSHAN B, HALASZ A, HAWARI J. Effect of iron(III), humic acids and anthraquinone ‐ 2,6 ‐ disulfonate on biodegradation of cyclic nitramines by Clostridium sp. EDB2[J]. Journal of Applied Microbiology, 2006, 100(3): 555-563.
[171] DOONG R-A, CHIANG H-C. Transformation of carbon tetrachloride by thiol reductants in the presence of quinone compounds[J]. Environmental Science & Technology, 2005, 39(19): 7460-7468.
[172] MIURA R. Versatility and specificity in flavoenzymes: Control mechanisms of flavin reactivity[J]. Chemical Record, 2001, 1(3): 183-194.
[173] MASSEY V. The chemical and biological versatility of riboflavin[J]. Biochemical Society Transactions, 2000, 28(4): 283-296.
[174] SCHLEIFER K H, KANDLER O. Peptidoglycan types of bacterial cell walls and their taxonomic implications[J]. Bacteriological Reviews, 1972, 36(4): 407-477.
[175] LIU Y, QIN R, ZAAT S A J, et al. Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections[J]. Journal of clinical and translational research, 2015, 1(3): 140-167.
[176] CENDROWSKI S, MACARTHUR W, HANNA P. Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence[J]. Molecular Microbiology, 2004, 51(2): 407-417.
[177] ZAWADZKA A M, ABERGEL R J, NICHIPORUK R, et al. Siderophoremediated iron acquisition systems in Bacillus cereus: Identification of receptors for anthrax virulence-associated petrobactin[J]. Biochemistry, 2009, 48(16): 3645-3657.
[178] ZAWADZKA A M, KIM Y, MALTSEVA N, et al. Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21854-21859.
[179] CARLSON P E, DIXON S D, JANES B K, et al. Genetic analysis of petrobactin transport in Bacillus anthracis[J]. Molecular Microbiology, 2010, 75(4): 900-909.
[180] BEASLEY F C, VINES E D, GRIGG J C, et al. Characterization of staphyloferrin A biosynthetic and transport mutants in Staphylococcus aureus[J]. Molecular Microbiology, 2009, 72(4): 947-963.
[181] SHELDON J R, MAROLDA C L, HEINRICHS D E. TCA cycle activity in Staphylococcus aureus is essential for iron-regulated synthesis of staphyloferrin A, but not staphyloferrin B: the benefit of a second citrate synthase[J]. Molecular Microbiology, 2014, 92(4): 824-839.
[182] KOBYLARZ M J, GRIGG J C, TAKAYAMA S J, et al. Synthesis of L-2,3-diaminopropionic acid, a siderophore and antibiotic precursor[J]. Chemistry & Biology, 2014, 21(3): 379-388.
[183] SHELDON J R, HEINRICHS D E. Recent developments in understanding the iron acquisition strategies of gram positive pathogens[J]. FEMS Microbiology Reviews, 2015, 39(4): 592-630.
[184] MALACHOWA N, WHITNEY A R, KOBAYASHI S D, et al. Global Changes in Staphylococcus aureus Gene Expression in Human Blood[J]. PloS One, 2011, 6(4): e18617.
[185] DALE S E, SEBULSKY M T, HEINRICHS D E. Involvement of SirABC in ironsiderophore import in Staphylococcus aureus[J]. Journal of Bacteriology, 2004, 186(24): 8356-8362.
[186] MAZMANIAN S K, SKAAR E P, GASPAR A H, et al. Passage of heme-iron across the envelope of Staphylococcus aureus[J]. Science, 2003, 299(5608): 906-909.
[187] MAZMANIAN S K, TON-THAT H, SU K, et al. An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(4): 2293-2298.
[188] ABE R, CAAVEIRO J M M, KOZUKA-HATA H, et al. Mapping ultra-weak protein-protein interactions between heme transporters of Staphylococcus aureus[J]. Journal of Biological Chemistry, 2012, 287(20): 16477-16487.
[189] TAYLOR J M, HEINRICHS D E. Transferrin binding in Staphylococcus aureus: involvement of a cell wall-anchored protein[J]. Molecular Microbiology, 2002, 43(6): 1603-1614.
[190] DRYLA A, GELBMANN D, VON GABAIN A, et al. Identification of a novel iron regulated staphylococcal surface protein with haptoglobin-haemoglobin binding activity[J]. Molecular Microbiology, 2003, 49(1): 37-53.
[191] GRIGG J C, VERMEIREN C L, HEINRICHS D E, et al. Heme coordination by Staphylococcus aureus IsdE[J]. Journal of Biological Chemistry, 2007, 282(39): 28815-28822.
[192] SKAAR E P, GASPAR A H, SCHNEEWIND O. IsdG and IsdI, heme-degrading enzymes in the cytoplasm of Staphylococcus aureus[J]. Journal of Biological Chemistry, 2004, 279(1): 436-443.
[193] KOBYLARZ M J, HEIEIS G A, LOUTET S A, et al. Iron uptake oxidoreductase (IruO) uses a flavin adenine dinucleotide semiquinone intermediate for ironsiderophorereduction[J]. ACS Chemical Biology, 2017, 12(7): 1778-1786.
[194] STUCKI J W. Chapter 11-Properties and behaviour of iron in clay minerals[M]//BERGAYA F, LAGALY G. Developments in Clay Science. Elsevier. 2013: 559-611.
[195] STONE W E E, TORRESSANCHEZ R M. Nuclear magnetic resonance spectroscopy applied to minerals. Part 6.-Structural iron in kaolinites as viewed by proton magnetic-resonance[J]. Journal of the Chemical Society-Faraday Transactions I, 1988, 84: 117-132.
[196] FYSH S A, CLARK P E. A mossbauer study of the iron mineralogy of acidleachedbauxite[J]. Hydrometallurgy, 1983, 10(3): 285-303.
[197] SCHWALB C, CHAPMAN S K, REID G A. The tetraheme cytochrome CymA is required for anaerobic respiration with dimethyl sulfoxide and nitrite in Shewanella oneidensis[J]. Biochemistry, 2003, 42(31): 9491-9497.
[198] SHIRODKAR S, REED S, ROMINE M, et al. The octahaem SirA catalyses dissimilatory sulfite reduction in Shewanella oneidensis MR-1[J]. Environmental Microbiology, 2011, 13(1): 108-115.
[199] TIEDJE J M. Shewanella—the environmentally versatile genome[J]. Nature Biotechnology, 2002, 20(11): 1093-1094.
[200] FADRUS H, MALý J. Suppression of iron(III) interference in the determination of iron(II) in water by the 1,10-phenanthroline method[J]. Analyst, 1975, 100(1193): 549-554.
[201] LLORENS J M N, TORMO A, MARTINEZ-GARCIA E. Stationary phase in gram-negative bacteria[J]. FEMS Microbiology Reviews, 2010, 34(4): 476-495.
[202] CEPL J, BLAHUSKOVA A, CVRCKOVA F, et al. Ammonia produced by bacterial colonies promotes growth of ampicillin-sensitive Serratia sp. by means of antibiotic inactivation[J]. FEMS Microbiology Letters, 2014, 354(2): 126-132.
[203] MERTE L R, BECHSTEIN R, PENG G, et al. Water clustering on nanostructured iron oxide films[J]. Nature Communications, 2014, 5(1): 4193.
[204] FARRELL M J, FINKEL S E. The growth advantage in stationary-phase phenotype conferred by rpoS mutations is dependent on the pH and nutrient environment[J]. Journal of Bacteriology, 2003, 185(24): 7044-7052.
[205] HOSSEINI M R, PAZOUKI M, RANJBAR M, et al. Bioleaching of iron from highly contaminated Kaolin clay by Aspergillus niger[J]. Applied Clay Science, 2007, 37(3): 251-257.
[206] MERRICK M J, EDWARDS R A. Nitrogen control in bacteria[J]. Microbiological Reviews, 1995, 59(4): 604-622.
[207] STYRIAKOVA I, STYRIAK I. Iron removal from kaolins by bacterial leaching[J]. Ceramics-Silikaty, 2000, 44(4): 135-141.
[208] ANGEL B R, VINCENT W E J. Electron spin resonance studies of iron oxides associated with the surface of kaolins[J]. Clays and Clay Minerals, 1978, 26(4): 263-272.
[209] MEADS R E, MALDEN P J. Electron-spin resonance in natural kaolinites containing Fe3+ and other transition-metal ions[J]. Clay Minerals, 1975, 10(5): 313-345.
[210] PAYNE S M.
[25] Detection, isolation, and characterization of siderophores[M]//CLARK V L, BAVOIL P M. Bacterial Pathogenesis, Part A: Identification and Regulation of Virulence Factors. Academic Press. 1994: 329-344.
[211] GUO M-R, LIN Y-M, XU X-P, et al. Bioleaching of iron from kaolin using Fe(III)-reducing bacteria with various carbon nitrogen sources[J]. Applied Clay Science, 2010, 48(3): 379-383.
[212] SHERMAN J M, STARK P. The Fermentation of Disaccharides by Streptococcus thermophilus[J]. Journal of Bacteriology, 1938, 36(1): 77-81.
[213] SULOCHANA M B, JAYACHANDRA S Y, KUMAR S A, et al. Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25[J]. Applied Biochemistry and Biotechnology, 2014, 174(1): 297-308.
[214] SHAIKH S S, WANI S J, SAYYED R Z. Statistical-based optimization and scaleup of siderophore production process on laboratory bioreactor[J]. 3 Biotech, 2016, 6(1): 69.
[215] AL SHAER D, AL MUSAIMI O, DE LA TORRE B G, et al. Hydroxamate siderophores: natural occurrence, chemical synthesis, iron binding affinity and use as Trojan horses against pathogens[J]. European Journal of Medicinal Chemistry, 2020, 208: 112791.
[216] MIETHKE M, MARAHIEL M A. Siderophore-based iron acquisition and pathogen control[J]. Microbiology and Molecular Biology Reviews, 2007, 71(3): 413-451.
[217] KO K S, KIM J W, KIM J M, et al. Population structure of the Bacillus cereus group as determined by sequence analysis of six housekeeping genes and the plcR gene[J]. Infection and Immunity, 2004, 72(9): 5253-5261.
[218] ENRIGHT M C, DAY N P J, DAVIES C E, et al. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus[J]. Journal of Clinical Microbiology, 2000, 38(3): 1008-1015.
[219] DIXON S D, JANES B K, BOURGIS A, et al. Multiple ABC transporters are involved in the acquisition of petrobactin in Bacillus anthracis[J]. Molecular Microbiology, 2012, 84(2): 370-382.
[220] KOPPISCH A T, DHUNGANA S, HILL K K, et al. Petrobactin is produced by both pathogenic and non-pathogenic isolates of the Bacillus cereus group of bacteria[J]. BioMetals, 2008, 21(5): 581-589.
[221] WILSON M K, ABERGEL R J, RAYMOND K N, et al. Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis[J]. Biochemical and Biophysical Research Communications, 2006, 348(1): 320-325.
[222] ARCENEAUX J E L, BYERS B R. Ferrisiderophore reductase activity in Bacillus megaterium[J]. Journal of Bacteriology, 1980, 141(2): 715-721.
[223] CORRIGAN R M, FOSTER T J. An improved tetracycline-inducible expression vector for Staphylococcus aureus[J]. Plasmid, 2009, 61(2): 126-129.
[224] BRYAN E M, BAE T, KLEEREBEZEM M, et al. Improved vectors for nisincontrolledexpression in gram-positive bacteria[J]. Plasmid, 2000, 44(2): 183-190.

所在学位评定分委会
生物学
国内图书分类号
Q936
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/633381
专题工学院_生物医学工程系
推荐引用方式
GB/T 7714
景浩. 蜡样芽孢杆菌和金黄色葡萄球菌对高岭土的铁浸出特性研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930776-景浩-生物医学工程系.(7951KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[景浩]的文章
百度学术
百度学术中相似的文章
[景浩]的文章
必应学术
必应学术中相似的文章
[景浩]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。