[1] Gilbert D A, Grutter A J, Arenholz E, et al. Structural and Magnetic Depth Profiles of Magneto-Ionic Heterostructures Beyond the Interface Limit[J]. Nature Communications, 2016, 7: 12264.
[2] Jin C, Zhu Y, Li X, et al. Super-Flexible Freestanding BiMnO3 Membranes with Stable Ferroelectricity and Ferromagnetism[J]. Advanced Science, 2021, 8(24): 2102178.
[3] Li Q, Yao F-Z, Liu Y, et al. High-Temperature Dielectric Materials for Electrical Energy Storage[J]. Annual Review of Materials Research, 2018, 48(1): 219-243.
[4] Martin L W, Rappe A M. Thin-Film Ferroelectric Materials and Their Applications[J]. Nature Reviews Materials, 2016, 2(2): 16087.
[5] Tokura Y, Seki S, Nagaosa N. Multiferroics of Spin Origin[J]. Reports on Progress in Physics, 2014, 77(7): 076501.
[6] Orenstein J, Millis A J. Advances in the Physics of High-Temperature Superconductivity[J]. Science, 2000, 288(5465): 468-474.
[7] Tokura Y, Torrance J B, Huang T C, et al. Broader Perspective on the High-Temperature Superconducting YBa2Cu3Oy System: The Real Role of the Oxygen Content[J]. Physical Review B, 1988, 38(10): 7156-7159.
[8] Xiao G, Cieplak M Z, Gavrin A, et al. High-Temperature Superconductivity in Tetragonal Perovskite Structures: Is Oxygen-Vacancy Order Important?[J]. Physical Review Letters, 1988, 60(14): 1446-1449.
[9] Zhang L, Li X, Wang F, et al. Colossal Electroresistance and Magnetoresistance Effect in Polycrystalline Perovskite Cobaltites Nd1−xSrxCoO3 (x=0.1, 0.2, 0.3)[J]. Materials Research Bulletin, 2013, 48(3): 1088-1092.
[10] Jin S, Mccormack M, Tiefel T H, et al. Colossal Magnetoresistance in La‐Ca‐Mn‐O Ferromagnetic Thin Films (Invited)[J]. Journal of Applied Physics, 1994, 76(10): 6929-6933.
[11] Ngai J H, Walker F J, Ahn C H. Correlated Oxide Physics and Electronics[J]. Annual Review of Materials Research, 2014, 44(1): 1-17.
[12] Greiner M T, Chai L, Helander M G, et al. Transition Metal Oxide Work Functions: The Influence of Cation Oxidation State and Oxygen Vacancies[J]. Advanced Functional Materials, 2012, 22(21): 4557-4568.
[13] Lee J S, Lee S, Noh T W. Resistive Switching Phenomena: A Review of Statistical Physics Approaches[J]. Applied Physics Reviews, 2015, 2(3): 031303.
[14] Schmitt R, Kubicek M, Sediva E, et al. Accelerated Ionic Motion in Amorphous Memristor Oxides for Nonvolatile Memories and Neuromorphic Computing[J]. Advanced Functional Materials, 2019, 29(5): 1804782.
[15] Grimaud A, Diaz-Morales O, Han B, et al. Activating Lattice Oxygen Redox Reactions in Metal Oxides to Catalyse Oxygen Evolution[J]. Nature Chemistry, 2017, 9(5): 457-465.
[16] Mefford J T, Rong X, Abakumov A M, et al. Water Electrolysis on La1-xSrxCoO3-δ Perovskite Electrocatalysts[J]. Nature Communications, 2016, 7: 11053.
[17] Pramana S S, Cavallaro A, Li C, et al. Crystal Structure and Surface Characteristics of Sr-Doped GdBaCo2O6−δ Double Perovskites: Oxygen Evolution Reaction and Conductivity[J]. Journal of Materials Chemistry A, 2018, 6(13): 5335-5345.
[18] Li X, Wang H, Cui Z, et al. Exceptional Oxygen Evolution Reactivities on CaCoO3 and SrCoO3[J]. Science Advances, 2019, 5(8): 6262.
[19] Wang G, Yang Y, Han D, et al. Oxygen Defective Metal Oxides for Energy Conversion and Storage[J]. Nano Today, 2017, 13: 23-39.
[20] Stamenkovic V R, Strmcnik D, Lopes P P, et al. Energy and Fuels from Electrochemical Interfaces[J]. Nature Materials, 2016, 16(1): 57-69.
[21] Mahato N, Banerjee A, Gupta A, et al. Progress in Material Selection for Solid Oxide Fuel Cell Technology: A Review[J]. Progress in Materials Science, 2015, 72: 141-337.
[22] Petrie J R, Jeen H, Barron S C, et al. Enhancing Perovskite Electrocatalysis through Strain Tuning of the Oxygen Deficiency[J]. Journal of the American Chemical Society, 2016, 138(23): 7252-7255.
[23] Bauer U, Yao L, Tan A J, et al. Magneto-Ionic Control of Interfacial Magnetism[J]. Nature Materials, 2014, 14: 174.
[24] Wen R T, Granqvist C G, Niklasson G A. Eliminating Degradation and Uncovering Ion-Trapping Dynamics in Electrochromic WO3 Thin Films[J]. Nature Materials, 2015, 14(10): 996-1001.
[25] Lu N, Zhang P, Zhang Q, et al. Electric-Field Control of Tri-State Phase Transformation with a Selective Dual-Ion Switch[J]. Nature, 2017, 546(7656): 124-128.
[26] Elemans J B a A, Van Laar B, Van Der Veen K R, et al. The Crystallographic and Magnetic Structures of La1−xBaxMn1−xMexO3 (Me = Mn or Ti)[J]. Journal of Solid State Chemistry, 1971, 3(2): 238-242.
[27] Norby P, Andersen I G K, Andersen E K, et al. The Crystal Structure of Lanthanum Manganate(III), LaMnO3, at Room Temperature and at 1273 K under N2[J]. Journal of Solid State Chemistry, 1995, 119(1): 191-196.
[28] Wollan E O, Koehler W C. Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [(1-x)La, xCa]MnO3[J]. Physical Review, 1955, 100(2): 545-563.
[29] Goodenough J B, Wold A, Arnott R J, et al. Relationship between Crystal Symmetry and Magnetic Properties of Ionic Compounds Containing Mn3+[J]. Physical Review, 1961, 124(2): 373-384.
[30] Ghivelder L, Abrego Castillo I, Gusmão M A, et al. Specific Heat and Magnetic Order in LaMnO3+δ[J]. Physical Review B, 1999, 60(17): 12184-12190.
[31] Laiho R, Lisunov K G, Lähderanta E, et al. Low-Field Magnetic Properties of LaMnO3+δ with 0.065≤δ≤0.154[J]. Journal of Physics and Chemistry of Solids, 2003, 64(12): 2313-2319.
[32] Töpfer J, Goodenough J B. LaMnO3+δ Revisited[J]. Journal of Solid State Chemistry, 1997, 130(1): 117-128.
[33] Cortés-Gil R, Arroyo A, Ruiz-González L, et al. Evolution of Magnetic Behaviour in Oxygen Deficient LaMnO3−δ[J]. Journal of Physics and Chemistry of Solids, 2006, 67(1): 579-582.
[34] Zhao R, Jin K, Xu Z, et al. The Oxygen Vacancy Effect on the Magnetic Property of the LaMnO3−δ Thin Films[J]. Applied Physics Letters, 2013, 102(12): 122402.
[35] Fujishiro H, Fukase T, Ikebe M. Charge Ordering and Sound Velocity Anomaly in La1-xSrxMnO3 (x ≥ 0.5)[J]. Journal of the Physical Society of Japan, 1998, 67(8): 2582-2585.
[36] Bhide V G, Rajoria D S, Rao C N R, et al. Itinerant-Electron Ferromagnetism in La1-xSrxCoO3: A Mossbauer Study[J]. Physical Review B, 1975, 12(7): 2832-2843.
[37] Cui B, Song C, Wang G, et al. Reversible Ferromagnetic Phase Transition in Electrode-Gated Manganites[J]. Advanced Functional Materials, 2014, 24(46): 7233-7240.
[38] Cui B, Song C, Gehring G A, et al. Electrical Manipulation of Orbital Occupancy and Magnetic Anisotropy in Manganites[J]. Advanced Functional Materials, 2015, 25(6): 864-870.
[39] Cui B, Song C, Mao H, et al. Magnetoelectric Coupling Induced by Interfacial Orbital Reconstruction[J]. Advanced Materials, 2015, 27(42): 6651-6656.
[40] Yao L, Inkinen S, Van Dijken S. Direct Observation of Oxygen Vacancy-Driven Structural and Resistive Phase Transitions in La2/3Sr1/3MnO3[J]. Nature Communications, 2017, 8: 14544.
[41] Yao L, Inkinen S, Komsa H P, et al. Structural Phase Transitions to 2D and 3D Oxygen Vacancy Patterns in a Perovskite Film Induced by Electrical and Mechanical Nanoprobing[J]. Small, 2021, 17(10): 2006273.
[42] Cao L, Petracic O, Zakalek P, et al. Reversible Control of Physical Properties via an Oxygen-Vacancy-Driven Topotactic Transition in Epitaxial La0.7Sr0.3MnO3−δ Thin Films[J]. Advanced Materials, 2018, 31: 1806183.
[43] Chen S, Zhou H, Ye X, et al. Versatile and Highly Efficient Controls of Reversible Topotactic Metal–Insulator Transitions through Proton Intercalation[J]. Advanced Functional Materials, 2019, 29(50): 1907072.
[44] Macchesney J B, Sherwood R C, Potter J F. Electric and Magnetic Properties of the Strontium Ferrates[J]. The Journal of Chemical Physics, 1965, 43(6): 1907-1913.
[45] Takeda T, Yamaguchi Y, Watanabe H. Magnetic Structure of SrFeO3[J]. Journal of the Physical Society of Japan, 1972, 33(4): 967-969.
[46] Hodges J P, Short S, Jorgensen J D, et al. Evolution of Oxygen-Vacancy Ordered Crystal Structures in the Perovskite Series SrnFenO3n−1 (n=2, 4, 8, and ∞), and the Relationship to Electronic and Magnetic Properties[J]. Journal of Solid State Chemistry, 2000, 151(2): 190-209.
[47] Schmidt M, Hofmann M, Campbell S J. Magnetic Structure of Strontium Ferrite Sr4Fe4O11[J]. Journal of Physics: Condensed Matter, 2003, 15(50): 8691.
[48] Reehuis M, Ulrich C, Maljuk A, et al. Neutron Diffraction Study of Spin and Charge Ordering in SrFeO3−δ[J]. Physical Review B, 2012, 85(18): 184109.
[49] D’hondt H, Abakumov A M, Hadermann J, et al. Tetrahedral Chain Order in the Sr2Fe2O5 Brownmillerite[J]. Chemistry of Materials, 2008, 20(22): 7188-7194.
[50] Yamada H, Kawasaki M, Tokura Y. Epitaxial Growth and Valence Control of Strained Perovskite SrFeO3 Films[J]. Applied Physics Letters, 2002, 80(4): 622-624.
[51] Nemudry A, Weiss M, Gainutdinov I, et al. Room Temperature Electrochemical Redox Reactions of the Defect Perovskite SrFeO2.5+x[J]. Chemistry of Materials, 1998, 10(9): 2403-2411.
[52] Piovano A, Agostini G, Frenkel A I, et al. Time Resolved in Situ XAFS Study of the Electrochemical Oxygen Intercalation in SrFeO2.5 Brownmillerite Structure: Comparison with the Homologous SrCoO2.5 System[J]. The Journal of Physical Chemistry C, 2011, 115(4): 1311-1322.
[53] Hirai K, Kan D, Ichikawa N, et al. Strain-Induced Significant Increase in Metal-Insulator Transition Temperature in Oxygen-Deficient Fe Oxide Epitaxial Thin Films[J]. Scientific Reports, 2015, 5: 7894.
[54] Acharya S K, Nallagatla R V, Togibasa O, et al. Epitaxial Brownmillerite Oxide Thin Films for Reliable Switching Memory[J]. ACS Applied Materials & Interfaces, 2016, 8(12): 7902-7911.
[55] Acharya S K, Jo J, Raveendra N V, et al. Brownmillerite Thin Films as Fast Ion Conductors for Ultimate-Performance Resistance Switching Memory[J]. Nanoscale, 2017, 9(29): 10502-10510.
[56] Ge C, Liu C X, Zhou Q L, et al. A Ferrite Synaptic Transistor with Topotactic Transformation[J]. Advanced Materials, 2019, 31(19): 1900379.
[57] Nallagatla V R, Heisig T, Baeumer C, et al. Topotactic Phase Transition Driving Memristive Behavior[J]. Advanced Materials, 2019, 31(40): 1903391.
[58] Saleem M S, Cui B, Song C, et al. Electric Field Control of Phase Transition and Tunable Resistive Switching in SrFeO2.5[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6581-6588.
[59] Tsujimoto Y, Tassel C, Hayashi N, et al. Infinite-Layer Iron Oxide with a Square-Planar Coordination[J]. Nature, 2007, 450(7172): 1062-1065.
[60] Hayward M A, Rosseinsky M J. Cool Conditions for Mobile Ions[J]. Nature, 2007, 450(7172): 960-961.
[61] Xiang H J, Wei S H, Whangbo M H. Origin of the Structural and Magnetic Anomalies of the Layered Compound SrFeO2: A Density Functional Investigation[J]. Physical Review Letters, 2008, 100(16): 167207.
[62] Chen S, Zhao J, Jin Q, et al. Strain-Mediated Insulator-Metal Transition in Topotactically Hydro-Reduced SrFeO2[J]. Science China Physics, Mechanics & Astronomy, 2021, 64(8): 287711.
[63] Zhang C X, Xia H L, Liu H, et al. Infrared Spectroscopic Study on Lattice Dynamics in CaFeO3[J]. Physical Review B, 2017, 95(6): 064104.
[64] Piovano A, Ceretti M, Johnson M R, et al. Anisotropy in the Raman Scattering of a CaFeO2.5 Single Crystal and Its Link with Oxygen Ordering in Brownmillerite Frameworks[J]. Journal of Physics: Condensed Matter, 2015, 27(22): 225403.
[65] Ceretti M, Piovano A, Cousson A, et al. Growth and Characterization of Large High Quality Brownmillerite CaFeO2.5 Single Crystals[J]. CrystEngComm, 2012, 14(18): 5771-5776.
[66] Inoue S, Kawai M, Ichikawa N, et al. Anisotropic Oxygen Diffusion at Low Temperature in Perovskite-Structure Iron Oxides[J]. Nature Chemistry, 2010, 2: 213.
[67] Park S K, Ishikawa T, Tokura Y, et al. Variation of Charge-Ordering Transitions in R1/3Sr2/3FeO3 (R=La, Pr, Nd, Sm, and Gd)[J]. Physical Review B, 1999, 60(15): 10788-10795.
[68] Matsuno J, Mizokawa T, Fujimori A, et al. Different Routes to Charge Disproportionation in Perovskite-Type Fe Oxides[J]. Physical Review B, 2002, 66(19): 193103.
[69] Sichel-Tissot R J, Devlin R C, Ryan P J, et al. The Effect of Oxygen Vacancies on the Electronic Phase Transition in La1/3Sr2/3FeO3 Films[J]. Applied Physics Letters, 2013, 103(21): 212905.
[70] Xie Y, Scafetta M D, Sichel-Tissot R J, et al. Control of Functional Responses Via Reversible Oxygen Loss in La1-xSrxFeO3-δ Films[J]. Advanced Materials, 2014, 26(9): 1434-1438.
[71] Smolin S Y, Scafetta M D, Choquette A K, et al. Static and Dynamic Optical Properties of La1–xSrxFeO3−δ: The Effects of A-Site and Oxygen Stoichiometry[J]. Chemistry of Materials, 2016, 28(1): 97-105.
[72] Islam M A, Xie Y, Scafetta M D, et al. Raman Scattering in La1−xSrxFeO3−δ Thin Films: Annealing-Induced Reduction and Phase Transformation[J]. Journal of Physics: Condensed Matter, 2015, 27(15): 155401.
[73] Sereda V V, Tsvetkov D S, Ivanov I L, et al. Interplay between Chemical Strain, Defects and Ordering in Sr1-xLaxFeO3 Materials[J]. Acta Materialia, 2019, 162: 33-45.
[74] Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures[J]. Science, 2003, 299(5613): 1719-1722.
[75] Fei Liu S, Jun Wu Y, Li J, et al. Effects of Oxygen Vacancies on Dielectric, Electrical, and Ferroelectric Properties of Ba4Nd2Fe2Nb8O30 Ceramics[J]. Applied Physics Letters, 2014, 104(8): 082912.
[76] Singh V, Daryapurkar A, Rajput S S, et al. Effect of Annealing Atmosphere on Leakage and Dielectric Characteristics of Multiferroic Gallium Ferrite[J]. Journal of the American Ceramic Society, 2017, 100(11): 5226-5238.
[77] Wang C, Jin K-J, Xu Z-T, et al. Switchable Diode Effect and Ferroelectric Resistive Switching in Epitaxial BiFeO3 Thin Films[J]. Applied Physics Letters, 2011, 98(19): 192901.
[78] Farokhipoor S, Noheda B. Conduction through 71° Domain Walls in BiFeO3 Thin Films[J]. Physical Review Letters, 2011, 107(12): 127601.
[79] Seidel J, Martin L W, He Q, et al. Conduction at Domain Walls in Oxide Multiferroics[J]. Nature Materials, 2009, 8(3): 229-234.
[80] Farokhipoor S, Noheda B. Local Conductivity and the Role of Vacancies around Twin Walls of (001)−BiFeO3 Thin Films[J]. Journal of Applied Physics, 2012, 112(5): 052003.
[81] Choi T, Lee S, Choi Y J, et al. Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3[J]. Science, 2009, 324(5923): 63-66.
[82] A. Wold, B. Post, Banks E. Rare Earth Nickel Oxides[J]. Journal of the American Chemical Society, 1957, 70: 4911.
[83] Rajeev K P, Shivashankar G V, Raychaudhuri A K. Low-Temperature Electronic Properties of a Normal Conducting Perovskite Oxide (LaNiO3)[J]. Solid State Communications, 1991, 79(7): 591-595.
[84] Vasanthacharya N Y, Ganguly P, Goodenough J B, et al. Valence States and Magnetic Properties of LaNi1-xMnxO3 (for 0≤x≤0.2 and x=0.5)[J]. Journal of Physics C: Solid State Physics, 1984, 17(15): 2745.
[85] Sayagués M J, Vallet-Regı́ M, Caneiro A, et al. Microstructural Characterization of the LaNiO3-y System[J]. Journal of Solid State Chemistry, 1994, 110(2): 295-304.
[86] González-Calbet J M, Sayagués M J, Vallet-Regí M. An Electron Diffraction Study of New Phases in the LaNiO3−x System[J]. Solid State Ionics, 1989, 32-33: 721-726.
[87] Sánchez R D, Causa M T, Caneiro A, et al. Metal-Insulator Transition in Oxygen-Deficient LaNiO3 Perovskites[J]. Physical Review B, 1996, 54(23): 16574-16578.
[88] Abbate M, Zampieri G, Prado F, et al. Electronic Structure and Metal-Insulator Transition in LaNiO3-δ[J]. Physical Review B, 2002, 65(15): 155101.
[89] Horiba K, Eguchi R, Taguchi M, et al. Electronic Structure of LaNiO3-x: An in Situ Soft X-Ray Photoemission and Absorption Study[J]. Physical Review B, 2007, 76(15): 155104.
[90] Berini B, Noun W, Dumont Y, et al. High Temperature Ellipsometry of the Conductive Oxide LaNiO3[J]. Journal of Applied Physics, 2007, 101(2): 023529.
[91] Crespin M, Levitz P, Gatineau L. Reduced Forms of LaNiO3 Perovskite. Part 1.—Evidence for New Phases: La2Ni2O5 and LaNiO2[J]. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1983, 79(8): 1181-1194.
[92] Levitz P, Crespin M, Gatineau L. Reduced Forms of LaNiO3 Perovskite. Part 2.—X-Ray Structure of LaNiO2 and Extended X-Ray Absorption Fine Structure Study: Local Environment of Monovalent Nickel[J]. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1983, 79(8): 1195-1203.
[93] Kawai M, Inoue S, Mizumaki M, et al. Reversible Changes of Epitaxial Thin Films from Perovskite LaNiO3 to Infinite-Layer Structure LaNiO2[J]. Applied Physics Letters, 2009, 94(8): 082102.
[94] Hayward M A, Green M A, Rosseinsky M J, et al. Sodium Hydride as a Powerful Reducing Agent for Topotactic Oxide Deintercalation: Synthesis and Characterization of the Nickel(I) Oxide LaNiO2[J]. Journal of the American Chemical Society, 1999, 121(38): 8843-8854.
[95] Ikeda A, Krockenberger Y, Irie H, et al. Direct Observation of Infinite NiO2 Planes in LaNiO2 Films[J]. Applied Physics Express, 2016, 9(6): 061101.
[96] Ortiz R A, Puphal P, Klett M, et al. Magnetic Correlations in Infinite-Layer Nickelates: An Experimental and Theoretical Multimethod Study[J]. Physical Review Research, 2022, 4(2): 023093.
[97] Hayward M A, Rosseinsky M J. Synthesis of the Infinite Layer Ni(I) Phase NdNiO2+x by Low Temperature Reduction of NdNiO3 with Sodium Hydride[J]. Solid State Sciences, 2003, 5(6): 839-850.
[98] Li D, Lee K, Wang B Y, et al. Superconductivity in an Infinite-Layer Nickelate[J]. Nature, 2019, 572(7771): 624-627.
[99] Lacorre P. Passage from T-Type to T'-Type Arrangement by Reducing R4Ni3O10 to R4Ni3O8 (R = La, Pr, Nd)[J]. Journal of Solid State Chemistry, 1992, 97(2): 495-500.
[100] Zhang J, Pajerowski D M, Botana A S, et al. Spin Stripe Order in a Square Planar Trilayer Nickelate[J]. Physical Review Letters, 2019, 122(24): 247201.
[101] Zhang J, Botana A S, Freeland J W, et al. Large Orbital Polarization in a Metallic Square-Planar Nickelate[J]. Nature Physics, 2017, 13(9): 864-869.
[102] Zhang J, Chen Y-S, Phelan D, et al. Stacked Charge Stripes in the Quasi-2D Trilayer Nickelate La4Ni3O8[J]. Proceedings of the National Academy of Sciences, 2016, 113(32): 8945-8950.
[103] Li H, Zhou X, Nummy T, et al. Fermiology and Electron Dynamics of Trilayer Nickelate La4Ni3O10[J]. Nature Communications, 2017, 8(1): 704.
[104] Poltavets V V, Lokshin K A, Dikmen S, et al. La3Ni2O6: A New Double T‘-type Nickelate with Infinite Ni1+/2+O2 Layers[J]. Journal of the American Chemical Society, 2006, 128(28): 9050-9051.
[105] Y.Takeda, T.Hashino, H.Miyamoto, et al. Synthesis of SrNiO3 and Related Compound, Sr2Ni2O5[J]. Journal of Inorganic and Nuclear Chemistry, 1972, 34(5): 1599-1601.
[106] Zinkevich M. Constitution of the Sr–Ni–O System[J]. Journal of Solid State Chemistry, 2005, 178(9): 2818-2824.
[107] Chen G-Y, Ma C-L, Chen D, et al. Robust Half-Metallicity of Hexagonal SrNiO3[J]. Journal of Solid State Chemistry, 2016, 233: 438-443.
[108] Wang L, Yang Z, Yin X, et al. Spontaneous Phase Segregation of Sr2NiO3 and SrNi2O3 during SrNiO3 Heteroepitaxy[J]. Science Advances, 2021, 7(10): eabe2866.
[109] Wang L, Zhao J, Kuo C-T, et al. Synthesis and Electronic Properties of Epitaxial SrNiO3/SrTiO3 Superlattices[J]. Physical Review Materials, 2022, 6(7): 075006.
[110] Sawatzky G A, Van Der Woude F, Morrish A H. Cation Distributions in Octahedral and Tetrahedral Sites of the Ferrimagnetic Spinel CoFe2O4[J]. Journal of Applied Physics, 1968, 39(2): 1204-1205.
[111] Hou Y H, Zhao Y J, Liu Z W, et al. Structural, Electronic and Magnetic Properties of Partially Inverse Spinel CoFe2O4: A First-Principles Study[J]. Journal of Physics D: Applied Physics, 2010, 43(44): 445003.
[112] Ramos A V, Santos T S, Miao G X, et al. Influence of Oxidation on the Spin-Filtering Properties of CoFe2O4 and the Resultant Spin Polarization[J]. Physical Review B, 2008, 78(18): 180402.
[113] Holgersson S, Karlsson A. Über Einige neue Kobaltite vom Spinelltypus[J]. Zeitschrift für anorganische und allgemeine Chemie, 1929, 183(1): 384-394.
[114] Knop O, Reid K I G, Sutarno, et al. Chalkogenides of the Transition Elements. VI. X-Ray, Neutron, and Magnetic Investigation of the Spinels Co3O4, NiCo2O4, Co3S4, and NiCo2S4[J]. Canadian Journal of Chemistry, 1968, 46(22): 3463-3476.
[115] Marco J F, Gancedo J R, Gracia M, et al. Characterization of the Nickel Cobaltite, NiCo2O4, Prepared by Several Methods: An XRD, XANES, EXAFS, and XPS Study[J]. Journal of Solid State Chemistry, 2000, 153(1): 74-81.
[116] Silwal P, Miao L, Stern I, et al. Metal Insulator Transition with Ferrimagnetic Order in Epitaxial Thin Films of Spinel NiCo2O4[J]. Applied Physics Letters, 2012, 100(3): 032102.
[117] Bitla Y, Chin Y-Y, Lin J-C, et al. Origin of Metallic Behavior in NiCo2O4 Ferrimagnet[J]. Scientific Reports, 2015, 5(1): 15201.
[118] Pandey P, Bitla Y, Zschornak M, et al. Enhancing the Magnetic Moment of Ferrimagnetic NiCo2O4 via Ion Irradiation Driven Oxygen Vacancies[J]. APL Materials, 2018, 6(6): 066109.
[119] Wang M, Sui X, Wang Y, et al. Manipulate the Electronic and Magnetic States in NiCo2O4 Films through Electric-Field-Induced Protonation at Elevated Temperature[J]. Advanced Materials, 2019, 31(16): e1900458.
[120] Raccah P M, Goodenough J B. First-Order Localized-Electron ⇆ Collective-Electron Transition in LaCoO3[J]. Physical Review, 1967, 155(3): 932-943.
[121] Itoh M, Sugahara M, Natori I, et al. Spin State and Hyperfine Interaction in LaCoO3: NMR and Magnetic Susceptibility Studies[J]. Journal of the Physical Society of Japan, 1995, 64(10): 3967-3977.
[122] Asai K, Yoneda A, Yokokura O, et al. Two Spin-State Transitions in LaCoO3[J]. Journal of the Physical Society of Japan, 1998, 67(1): 290-296.
[123] Yan J Q, Zhou J S, Goodenough J B. Ferromagnetism in LaCoO3[J]. Physical Review B, 2004, 70(1): 014402.
[124] Freeland J W, Ma J X, Shi J. Ferromagnetic Spin-Correlations in Strained LaCoO3 Thin Films[J]. Applied Physics Letters, 2008, 93(21): 212501.
[125] Park S, Ryan P, Karapetrova E, et al. Microscopic Evidence of a Strain-Enhanced Ferromagnetic State in LaCoO3 Thin Films[J]. Applied Physics Letters, 2009, 95(7): 072508.
[126] Biškup N, Salafranca J, Mehta V, et al. Insulating Ferromagnetic LaCoO3-δ Films: A Phase Induced by Ordering of Oxygen Vacancies[J]. Physical Review Letters, 2014, 112(8): 087202.
[127] Mehta V V, Biskup N, Jenkins C, et al. Long-Range Ferromagnetic Order in LaCoO3−δ Epitaxial Films due to the Interplay of Epitaxial Strain and Oxygen Vacancy Ordering[J]. Physical Review B, 2015, 91(14): 144418.
[128] Zhang N, Zhu Y, Li D, et al. Oxygen Vacancy Ordering Modulation of Magnetic Anisotropy in Strained LaCoO3-x Thin Films[J]. ACS Applied Materials & Interfaces, 2018, 10: 38230-38238.
[129] Zhang J, Zhong Z, Guan X, et al. Symmetry Mismatch-Driven Perpendicular Magnetic Anisotropy for Perovskite/Brownmillerite Heterostructures[J]. Nature Communications, 2018, 9(1): 1923.
[130] Zhang Q, Gao A, Meng F, et al. Near-Room Temperature Ferromagnetic Insulating State in Highly Distorted LaCoO2.5 with CoO5 Square Pyramids[J]. Nature Communications, 2021, 12(1): 1853.
[131] Jang J H, Kim Y-M, He Q, et al. In Situ Observation of Oxygen Vacancy Dynamics and Ordering in the Epitaxial LaCoO3 System[J]. ACS Nano, 2017, 11(7): 6942-6949.
[132] Mineshige A, Inaba M, Yao T, et al. Crystal Structure and Metal–Insulator Transition of La1−xSrxCoO3[J]. Journal of Solid State Chemistry, 1996, 121(2): 423-429.
[133] Wu J, Leighton C. Glassy Ferromagnetism and Magnetic Phase Separation in La1-xSrxCoO3[J]. Physical Review B, 2003, 67(17): 174408.
[134] Caciuffo R, Rinaldi D, Barucca G, et al. Structural Details and Magnetic Order of La1-xSrxCoO3 (x≤0.3)[J]. Physical Review B, 1999, 59(2): 1068-1078.
[135] Mira J, Rivas J, Baio G, et al. Phase Separation as Origin of the Magnetic Anomalies in La0.85Sr0.15CoO3[J]. Journal of Applied Physics, 2001, 89(10): 5606-5609.
[136] Hoch M J R, Kuhns P L, Moulton W G, et al. Evolution of the Ferromagnetic and Nonferromagnetic Phases with Temperature in Phase-Separated La1-xSrxCoO3 by High-Field 139La NMR[J]. Physical Review B, 2004, 70(17): 174443.
[137] Phelan D, Louca D, Kamazawa K, et al. Spin Incommensurability and Two Phase Competition in Cobaltites[J]. Physical Review Letters, 2006, 97(23): 235501.
[138] Podlesnyak A, Russina M, Furrer A, et al. Spin-State Polarons in Lightly-Hole-Doped LaCoO3[J]. Physical Review Letters, 2008, 101(24): 247603.
[139] Nam D N H, Mathieu R, Nordblad P, et al. Spin-Glass Dynamics of La0.95Sr0.05CoO3[J]. Physical Review B, 2000, 62(13): 8989-8995.
[140] Mukherjee S, Ranganathan R, Anilkumar P S, et al. Static and Dynamic Response of Cluster Glass in La0.5Sr0.5CoO3[J]. Physical Review B, 1996, 54(13): 9267-9274.
[141] Wu X W, Walter J, Feng T L, et al. Glass-Like Through-Plane Thermal Conductivity Induced by Oxygen Vacancies in Nanoscale Epitaxial La0.5Sr0.5CoO3-δ[J]. Advanced Functional Materials, 2017, 27(47): 11.
[142] Wang X L, Sakurai H, Takayama-Muromachi E. Synthesis, Structures, and Magnetic Properties of Novel Roddlesden–Popper Homologous Series Srn+1ConO3n+1 (n=1,2,3,4, and ∞)[J]. Journal of Applied Physics, 2005, 97(10): 10M519.
[143] Dann S E, Weller M T. Structure and Oxygen Stoichiometry in Sr3Co2O7-y (0.94 ≤ y ≤ 1.22)[J]. Journal of Solid State Chemistry, 1995, 115(2): 499-507.
[144] Harrison W T A, Hegwood S L, Jacobson A J. A Powder Neutron Diffraction Determination of the Structure of Sr6Co5O15, Formerly Described as the Low-Temperature Hexagonal Form of SrCoO3-x[J]. Journal of the Chemical Society-Chemical Communications, 1995, (19): 1953-1954.
[145] Sun J, Li G, Li Z, et al. Crystal Growth and Structure Determination of Oxygen-Deficient Sr6Co5O15[J]. Inorganic Chemistry, 2006, 45(20): 8394-8402.
[146] Zhao Q, Darriet J, Whangbo M H, et al. Intriguing Interconnections among Phase Transition, Magnetic Moment, and Valence Disproportionation in 2H-Perovskite Related Oxides[J]. Journal of the American Chemical Society, 2011, 133(51): 20981-20994.
[147] Matsubara I, Funahashi R, Shikano M, et al. Cation Substituted (Ca2CoO3)xCoO2 Films and Their Thermoelectric Properties[J]. Applied Physics Letters, 2002, 80(25): 4729-4731.
[148] Pelloquin D, Hébert S, Maignan A, et al. A New Thermoelectric Misfit Cobaltite: [Sr2CoO3][CoO2]1.8[J]. Solid State Sciences, 2004, 6(2): 167-172.
[149] Sakai A, Kanno T, Yotsuhashi S, et al. Preparation of Metastable Sr3Co4O9 Epitaxial Thin Films with Controlled Orientation and Their Anisotropic Thermoelectric Properties[J]. Journal of Applied Physics, 2006, 99(9): 093704.
[150] Sakai A, Kanno T, Yotsuhashi S, et al. Control of Epitaxial Growth Orientation and Anisotropic Thermoelectric Properties of Misfit-Type Ca3Co4O9 Thin Films[J]. Japanese Journal of Applied Physics, 2005, 44(7L): L966.
[151] Panchakarla L S, Lajaunie L, Ramasubramaniam A, et al. Strontium Cobalt Oxide Misfit Nanotubes[J]. Chemistry of Materials, 2016, 28(24): 9150-9157.
[152] Taguchi H, Shimada M, Koizumi M. The Effect of Oxygen Vacancy on the Magnetic Properties in the System SrCoO3−δ (0 < δ < 0.5)[J]. Journal of Solid State Chemistry, 1979, 29(2): 221-225.
[153] Muñoz A, De La Calle C, Alonso J A, et al. Crystallographic and Magnetic Structure of SrCoO2.5 Brownmillerite: Neutron Study Coupled with Band-Structure Calculations[J]. Physical Review B, 2008, 78(5): 054404.
[154] Takeda T, Watanabe H. Magnetic Properties of the System SrCo1−xFexO3−y[J]. Journal of the Physical Society of Japan, 1972, 33(4): 973-978.
[155] Taguchi H, Shimada M, Koizumi M. The Electrical Properties of Ferromagnetic SrCoO3-δ (0<δ<0.5)[J]. Materials Research Bulletin, 1980, 15: 165-169.
[156] Pouchard M, Villesuzanne A, Doumerc J-P. Spin State Behavior in Some Cobaltites (III) and (IV) with Perovskite or Related Structure[J]. Journal of Solid State Chemistry, 2001, 162(2): 282-292.
[157] Matar S F, Villesuzanne A, Uhl M. The Electronic and Magnetic Structures of Stoichiometric SrCoO3: ASW Calculations[J]. Journal of Materials Chemistry, 1996, 6(11): 1785.
[158] Min Zhuang W Z, An Hu, and Naiben Ming. Possible Magnetic Ground State in the Perovskite SrCoO3[J]. Physical Review B, 1998, 57: 13655.
[159] Takeda T, Yamaguchi Y, Watanabe H. Magnetic Structure of SrCoO2.5[J]. Journal of the Physical Society of Japan, 1972, 33(4): 970-972.
[160] Xie C K, Nie Y F, Wells B O, et al. Magnetic Phase Separation in SrCoOx (2.5 ≤ x ≤ 3)[J]. Applied Physics Letters, 2011, 99(5): 052503.
[161] De La Calle C, Aguadero A, Alonso J A, et al. Correlation Between Reconstructive Phase Transitions and Transport Properties from SrCoO2.5 Brownmillerite: A Neutron Diffraction Study[J]. Solid State Sciences, 2008, 10(12): 1924-1935.
[162] Takeda Y, Kanno R, Takada T, et al. Phase Relation and Oxygen-Non-Stoichiometry of Perovskite-Like Compound SrCoOx (2.29 < x < 2.80)[J]. Zeitschrift für anorganische und allgemeine Chemie, 1986, 540(9‐10): 259-270.
[163] Jeen H, Choi W S, Freeland J W, et al. Topotactic Phase Transformation of the Brownmillerite SrCoO2.5 to the Perovskite SrCoO3–δ[J]. Advanced Materials, 2013, 25(27): 3651-3656.
[164] Jeen H, Choi W S, Biegalski M D, et al. Reversible Redox Reactions in an Epitaxially Stabilized SrCoOx Oxygen Sponge[J]. Nature Materials, 2013, 12(11): 1057-1063.
[165] Petrie J R, Mitra C, Jeen H, et al. Strain Control of Oxygen Vacancies in Epitaxial Strontium Cobaltite Films[J]. Advanced Functional Materials, 2016, 26(10): 1564-1570.
[166] Cui B, Werner P, Ma T, et al. Direct Imaging of Structural Changes Induced by Ionic Liquid Gating Leading to Engineered Three-Dimensional Meso-Structures[J]. Nature Communications, 2018, 9(1): 3055.
[167] Zhang Q, He X, Shi J, et al. Atomic-Resolution Imaging of Electrically Induced Oxygen Vacancy Migration and Phase Transformation in SrCoO2.5-σ[J]. Nature Communications, 2017, 8(1): 104.
[168] Li H B, Lou F, Wang Y, et al. Electric Field–Controlled Multistep Proton Evolution in HxSrCoO2.5 with Formation of H–H Dimer[J]. Advanced Science, 2019, 6: 1901432.
[169] Gao L, Chen X, Lyu X, et al. Tracing the Ionic Evolution during ILG Induced Phase Transformation in Strontium Cobaltite Thin Films[J]. Journal of Physics: Condensed Matter, 2021, 33(10): 104004.
[170] Gilbert D A, Grutter A J, Murray P D, et al. Ionic Tuning of Cobaltites at the Nanoscale[J]. Physical Review Materials, 2018, 2(10): 104402.
[171] Li Z, Shen S, Tian Z, et al. Reversible Manipulation of the Magnetic State in SrRuO3 through Electric-Field Controlled Proton Evolution[J]. Nature Communications, 2020, 11(1): 184.
[172] Qin Q, Liu L, Lin W, et al. Emergence of Topological Hall Effect in a SrRuO3 Single Layer[J]. Advanced Materials, 2019, 31(8): e1807008.
[173] Li H B, Kobayashi S, Zhong C, et al. Dehydration of Electrochemically Protonated Oxide: SrCoO2 with Square Spin Tubes[J]. Journal of the American Chemical Society, 2021, 143(42): 17517-17525.
[174] Lu Q, Huberman S, Zhang H, et al. Bi-Directional Tuning of Thermal Transport in SrCoOx with Electrochemically Induced Phase Transitions[J]. Nature Materials, 2020, 19: 655-662.
[175] Katayama T, Chikamatsu A, Kamisaka H, et al. Topotactic Synthesis of Strontium Cobalt Oxyhydride Thin Film with Perovskite Structure[J]. AIP Advances, 2015, 5(10): 107147.
[176] Hu S, Wang Y, Cazorla C, et al. Strain-Enhanced Oxygen Dynamics and Redox Reversibility in Topotactic SrCoO3-δ (0 < δ ≤ 0.5)[J]. Chemistry of Materials, 2017, 29(2): 708-717.
[177] Wang Y, He Q, Ming W, et al. Robust Ferromagnetism in Highly Strained SrCoO3 Thin Films[J]. Physical Review X, 2020, 10(2): 021030.
[178] Hu S, Seidel J. Oxygen Content Modulation by Nanoscale Chemical and Electrical Patterning in Epitaxial SrCoO3-δ (0 < δ ≤ 0.5) Thin Films[J]. Nanotechnology, 2016, 27(32): 325301.
[179] Lee J H, Rabe K M. Coupled Magnetic-Ferroelectric Metal-Insulator Transition in Epitaxially Strained SrCoO3 from First Principles[J]. Physical Review Letters, 2011, 107(6): 067601.
[180] Callori S J, Hu S, Bertinshaw J, et al. Strain-Induced Magnetic Phase Transition in SrCoO3−δ Thin Films[J]. Physical Review B, 2015, 91(14): 140405.
[181] Hu S, Yue Z, Lim J S, et al. Growth and Properties of Fully Strained SrCoOx (x ≈ 2.8) Thin Films on DyScO3[J]. Advanced Materials Interfaces, 2015, 2(8): 1500012.
[182] James M, Avdeev M, Barnes P, et al. Orthorhombic Superstructures within the Rare Earth Strontium-Doped Cobaltate Perovskites: Ln1−xSrxCoO3−δ (Ln=Y3+, Dy3+–Yb3+; 0.750⩽x⩽0.875)[J]. Journal of Solid State Chemistry, 2007, 180(8): 2233-2247.
[183] Maignan A, Hébert S, Caignaert V, et al. Sr2/3Y1/3CoO8/3+δ: Transition from Insulating Antiferromagnet to Metallic Ferromagnet by Control of the Oxygen Content[J]. Journal of Solid State Chemistry, 2005, 178(3): 868-873.
[184] Kobayashi W, Ishiwata S, Terasaki I, et al. Room-Temperature Ferromagnetism in Sr1-xYxCoO3-δ (0.2 ≤ x ≤ 0.25)[J]. Physical Review B, 2005, 72(10): 104408.
[185] Sunstrom J E, Ramanujachary K V, Greenblatt M, et al. The Synthesis and Properties of the Chemically Oxidized Perovskite, La1–xSrxCoO3−δ (0.5≤x≤0.9)[J]. Journal of Solid State Chemistry, 1998, 139(2): 388-397.
[186] Raveau B, Pralong V, Caignaert V, et al. Primordial Role of Cobalt Valence in the Magnetotransport Properties of Oxygen Deficient Perovskites Sr1−xLnxCoO3−δ[J]. Journal of Physics: Condensed Matter, 2005, 17(46): 7371.
[187] Huang H, Chen Z, Xie L, et al. Neodymium‐Doping Concentration Induced Face‐Shared to Corner‐Shared Transition in Strontium Cobaltite[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(7): 9294-9301.
[188] Wang J, Jiang L, Xiong X, et al. A Broad Stability Investigation of Nb-Doped SrCoO2.5+δ as a Reversible Oxygen Electrode for Intermediate-Temperature Solid Oxide Fuel Cells[J]. Journal of The Electrochemical Society, 2016, 163(8): F891-F898.
[189] Wang J, Jin X, Huang K. A New Defect Chemistry Model for Nb-Doped SrCoO2.5+δ: The Role of Oxygen Interstitials and Delocalized-to-Localized Electron Holes[J]. Journal of Solid State Chemistry, 2017, 246: 97-106.
[190] Fuertes V C, Eroles F M, Menzaque A D, et al. Sol-Gel Synthesis of Cubic Nb/Ta-Doped SrCoO3−δ with Mixed Nano-Micro Morphology[J]. Materials Research Express, 2019, 6(8): 085549.
[191] Chen X, Huang L, Wei Y, et al. Tantalum Stabilized SrCoO3−δ Perovskite Membrane for Oxygen Separation[J]. Journal of Membrane Science, 2011, 368(1): 159-164.
[192] Park J H, Lee Y A, Yu J H, et al. Effects of Nb and Sn Co-Doping on the Structure and Properties of SrCoO3-δ Oxygen Transport Membranes[J]. Journal of Asian Ceramic Societies, 2020, 8(2): 519-527.
[193] Le S, Li C, Song X, et al. A Novel Nb and Cu Co-Doped SrCoO3-δ Cathode for Intermediate Temperature Solid Oxide Fuel Cells[J]. International Journal of Hydrogen Energy, 2020, 45(18): 10862-10870.
[194] Vojvodic A, Nørskov J K. Optimizing Perovskites for the Water-Splitting Reaction[J]. Science, 2011, 334(6061): 1355-1356.
[195] Suntivich J, May K J, Gasteiger H A, et al. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles[J]. Science, 2011, 334(6061): 1383-1385.
[196] Grimaud A, May K J, Carlton C E, et al. Double Perovskites as a Family of Highly Active Catalysts for Oxygen Evolution in Alkaline Solution[J]. Nature Communications, 2013, 4: 2439.
[197] Chang S H, Danilovic N, Chang K-C, et al. Functional Links between Stability and Reactivity of Strontium Ruthenate Single Crystals during Oxygen Evolution[J]. Nature Communications, 2014, 5(1): 4191.
[198] Kim J, Yin X, Tsao K C, et al. Ca2Mn2O5 as Oxygen-Deficient Perovskite Electrocatalyst for Oxygen Evolution Reaction[J]. Journal of the American Chemical Society, 2014, 136(42): 14646-14649.
[199] Lee S A, Oh S, Hwang J-Y, et al. Enhanced Electrocatalytic Activity via Phase Transitions in Strongly Correlated SrRuO3 Thin Films[J]. Energy & Environmental Science, 2017, 10(4): 924-930.
[200] Weng Z, Huang H, Li X, et al. Coordination Tailoring of Epitaxial Perovskite-Derived Iron Oxide Films for Efficient Water Oxidation Electrocatalysis[J]. ACS Catalysis, 2023, 13(4): 2751-2760.
[201] Stoerzinger K A, Choi W S, Jeen H, et al. Role of Strain and Conductivity in Oxygen Electrocatalysis on LaCoO3 Thin Films[J]. The Journal of Physical Chemistry Letters, 2015, 6(3): 487-492.
[202] An Q, Xu Z, Wang Z, et al. Tuning of the Oxygen Vacancies in LaCoO3 Films at the Atomic Scale[J]. Applied Physics Letters, 2021, 118(8): 081602.
[203] Hayward M A, Cussen E J, Claridge J B, et al. The Hydride Anion in an Extended Transition Metal Oxide Array: LaSrCoO3H0.7[J]. Science, 2002, 295(5561): 1882-1884.
[204] Bouilly G, Yajima T, Terashima T, et al. Electrical Properties of Epitaxial Thin Films of Oxyhydrides ATiO3–xHx (A = Ba and Sr)[J]. Chemistry of Materials, 2015, 27(18): 6354-6359.
[205] S. M S, M. V S. Scanning Probe Microscopy[J]. IEEE Control Systems Magazine, 2008, 28(2): 65-83.
[206] Utsunomiya S, Ewing R C. Application of High-Angle Annular Dark Field Scanning Transmission Electron Microscopy, Scanning Transmission Electron Microscopy-Energy Dispersive X-ray Spectrometry, and Energy-Filtered Transmission Electron Microscopy to the Characterization of Nanoparticles in the Environment[J]. Environmental Science & Technology, 2003, 37(4): 786-791.
[207] Fagaly R L. Superconducting Quantum Interference Device Instruments and Applications[J]. Review of Scientific Instruments, 2006, 77(10): 101101.
[208] Guo H, Wang J-O, He X, et al. The Origin of Oxygen Vacancies Controlling La2/3Sr1/3MnO3 Electronic and Magnetic Properties[J]. Advanced Materials Interfaces, 2016, 3(5): 1500753.
[209] Yang J J, Pickett M D, Li X, et al. Memristive Switching Mechanism for Metal/Oxide/Metal Nanodevices[J]. Nature Nanotechnology, 2008, 3: 429.
[210] Kagomiya I, Murayama T, Tsunekawa K, et al. Crystalline Phases and Oxygen Permeation Properties of Mixed Conductive (La, Ca)FeO3-δ[J]. Journal of the European Ceramic Society, 2019, 39(4): 1082-1092.
[211] Trabelsi H, Bejar M, Dhahri E, et al. Oxygen-Vacancy-Related Giant Permittivity and Ethanol Sensing Response in SrTiO3-δ Ceramics[J]. Physica E: Low-dimensional Systems and Nanostructures, 2019, 108: 317-325.
[212] Safakas A, Bampos G, Bebelis S. Oxygen Reduction Reaction on La0.8Sr0.2CoxFe1-xO3-δ Perovskite/Carbon Black Electrocatalysts in Alkaline Medium[J]. Applied Catalysis B: Environmental, 2019, 244: 225-232.
[213] Huo W C, Dong X A, Li J Y, et al. Synthesis of Bi2WO6 with Gradient Oxygen Vacancies for Highly Photocatalytic NO Oxidation and Mechanism Study[J]. Chemical Engineering Journal, 2019, 361: 129-138.
[214] Campbell C T, Peden C H F. Oxygen Vacancies and Catalysis on Ceria Surfaces[J]. Science, 2005, 309(5735): 713.
[215] Mayeshiba T T, Morgan D D. Factors Controlling Oxygen Migration Barriers in Perovskites[J]. Solid State Ionics, 2016, 296: 71-77.
[216] Shin H H, Mullins C B, Goodenough J B. Oxygen-Electrode Catalysis on Oxoperovskites at 700 ℃ versus 20 ℃[J]. Chemistry of Materials, 2018, 30(3): 629-635.
[217] Wang G, Wang H, Ling Y, et al. Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting[J]. Nano Letters, 2011, 11(7): 3026-3033.
[218] Wang Y, Cao G. Developments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries[J]. Advanced Materials, 2008, 20(12): 2251-2269.
[219] Zhi M, Xiang C, Li J, et al. Nanostructured Carbon–Metal Oxide Composite Electrodes for Supercapacitors: A Review[J]. Nanoscale, 2013, 5(1): 72-88.
[220] Armstrong A R, Holzapfel M, Novák P, et al. Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. Journal of the American Chemical Society, 2006, 128(26): 8694-8698.
[221] Wang Y, Xiao X, Li Q, et al. Synthesis and Progress of New Oxygen-Vacant Electrode Materials for High-Energy Rechargeable Battery Applications[J]. Small, 2018, 14(41): 1802193.
[222] Janousch M, Meijer G I, Staub U, et al. Role of Oxygen Vacancies in Cr-Doped SrTiO3 for Resistance-Change Memory[J]. Advanced Materials, 2007, 19(17): 2232-2235.
[223] Maignan A, Martin C, Pelloquin D, et al. Structural and Magnetic Studies of Ordered Oxygen-Deficient Perovskites LnBaCo2O5+δ, Closely Related to the “112” Structure[J]. Journal of Solid State Chemistry, 1999, 142(2): 247-260.
[224] Presland M R, Tallon J L, Buckley R G, et al. General Trends in Oxygen Stoichiometry Effects on Tc in Bi and Tl Superconductors[J]. Physica C, 1991, 176: 95-105.
[225] Cava R J, Batlogg B, Chen C H, et al. Oxygen Stoichiometry, Superconductivity and Normal-State Properties of YBa2Cu3O7–δ[J]. Nature, 1987, 329(6138): 423-425.
[226] Nemudry A, Rudolf P, Schöllhorn R. Topotactic Electrochemical Redox Reactions of the Defect Perovskite SrCoO2.5+x[J]. Chemistry of Materials, 1996, 8(9): 2232-2238.
[227] Ichikawa N, Iwanowska M, Kawai M, et al. Reduction and Oxidation of SrCoO2.5 Thin Films at Low Temperatures[J]. Dalton Transactions, 2012, 41(35): 10507-10510.
[228] Mefford J T, Rong X, Abakumov A M, et al. Water Electrolysis on La1−xSrxCoO3−δ Perovskite Electrocatalysts[J]. Nature Communications, 2016, 7(1): 11053.
[229] Jeen H, Bi Z, Choi W S, et al. Orienting Oxygen Vacancies for Fast Catalytic Reaction[J]. Advanced Materials, 2013, 25(44): 6459-6463.
[230] Taguchi H, Shimada M, Koizumi M. The Effect of Oxygen Vacancy on the Magnetic Properties in the System SrCoO3-δ (0 < δ < 0.5)[J]. Journal of Solid State Chemistry, 1979, 29: 221-225.
[231] Long Y, Kaneko Y, Ishiwata S, et al. Synthesis of Cubic SrCoO3 Single Crystal and Its Anisotropic Magnetic and Transport Properties[J]. Journal of Physics: Condensed Matter, 2011, 23(24): 245601.
[232] Hu S, Alsubaie A, Wang Y, et al. Poisson's Ratio of BiFeO3 Thin Films: X-Ray Reciprocal Space Mapping under Variable Uniaxial Strain[J]. Physica Status Solidi A, 2017, 214(1): 1600356.
[233] Zhao J, Guo H, He X, et al. Manipulating the Structural and Electronic Properties of Epitaxial SrCoO2.5 Thin Films by Tuning the Epitaxial Strain[J]. ACS Applied Materials & Interfaces, 2018, 10(12): 10211-10219.
[234] Hu Z, Grazioli C, Knupfer M, et al. Difference in Spin State and Covalence between La1−xSrxCoO3 and La2−xSrxLi0.5Co0.5O4[J]. Journal of Alloys and Compounds, 2002, 343(1): 5-13.
[235] Lu Q, Chen Y, Bluhm H, et al. Electronic Structure Evolution of SrCoOx during Electrochemically Driven Phase Transition Probed by in Situ X-ray Spectroscopy[J]. The Journal of Physical Chemistry C, 2016, 120(42): 24148-24157.
[236] Bi Y, Tao J, Wu Y, et al. Reversible Planar Gliding and Microcracking in a Single-Crystalline Ni-Rich Cathode[J]. Science, 2020, 370: 1313–1317.
[237] Pacchioni G. Oxygen Vacancy: the Invisible Agent on Oxide Surfaces[J]. ChemPhysChem, 2003, 4(10): 1041-1047.
[238] Hu S, Zhu Y, Han W, et al. High-Conductive Protonated Layered Oxides from H2O Vapor-Annealed Brownmillerites[J]. Advanced Materials, 2021, 33: 2104623.
[239] Hu S, Han W, Li X, et al. Converting Brownmillerite to Alternate Layers of Oxygen‐Deficient and Conductive Nano‐Sheets with Enhanced Thermoelectric Properties[J]. Advanced Energy Materials, 2022, 12: 2201469.
[240] Zhang N, Li X, Ye H, et al. Oxide Defect Engineering Enables to Couple Solar Energy into Oxygen Activation[J]. Journal of the American Chemical Society, 2016, 138(28): 8928-8935.
[241] Zhu Y, Zhang L, Zhao B, et al. Improving the Activity for Oxygen Evolution Reaction by Tailoring Oxygen Defects in Double Perovskite Oxides[J]. Advanced Functional Materials, 2019, 29(34): 1901783.
[242] Li D, Li M, Zahid F, et al. Oxygen Vacancy Filament Formation in TiO2: A Kinetic Monte Carlo Study[J]. Journal of Applied Physics, 2012, 112(7): 073512.
[243] Choi W S, Jeen H, Lee J H, et al. Reversal of the Lattice Structure in SrCoOx Epitaxial Thin Films Studied by Real-Time Optical Spectroscopy and First-Principles Calculations[J]. Physical Review Letters, 2013, 111(9): 097401.
[244] Zhang J, Zheng H, Malliakas C D, et al. Brownmillerite Ca2Co2O5: Synthesis, Stability, and Re-entrant Single Crystal to Single Crystal Structural Transitions[J]. Chemistry of Materials, 2014, 26(24): 7172-7182.
[245] Liu G, Li X, Wang Y, et al. Nanoscale Domains of Ordered Oxygen-Vacancies in LaCoO3 Films[J]. Applied Surface Science, 2017, 425: 121-129.
[246] Walter J, Bose S, Cabero M, et al. Perpendicular Magnetic Anisotropy via Strain-Engineered Oxygen Vacancy Ordering in Epitaxial La1−xSrxCoO3−δ[J]. Physical Review Materials, 2018, 2(11): 111404.
[247] Yang Y, Ma C, Liu M, et al. Creating a Low-Symmetry Insulating, Ferroelectric, and Antiferromagnetic Material From a High-Symmetrical Metallic Ferromagnet via Defect Engineering: The Case of LaBaCo2O5+δ Compounds[J]. Physical Review B, 2017, 95(16): 165132.
[248] Lufaso M W, Woodward P M. Jahn-Teller Distortions, Cation Ordering and Octahedral Tilting in Perovskites[J]. Acta Crystallographica Section B, 2004, 60(1): 10-20.
[249] Kresse G, Furthmuller J. Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set[J]. Physical Review B, 1996, 54(16): 11170.
[250] Sun J, Ruzsinszky A, Perdew J P. Strongly Constrained and Appropriately Normed Semilocal Density Functional[J]. Physical Review Letters, 2015, 115(3): 036402.
[251] Kim B J, Koh H, Rotenberg E, et al. Distinct Spinon and Holon Dispersions in Photoemission Spectral Functions from One-Dimensional SrCuO2[J]. Nature Physics, 2006, 2(6): 397-401.
[252] Mizokawa T, Wakisaka Y, Sudayama T, et al. Role of Oxygen Holes in LixCoO2 Revealed by Soft X-Ray Spectroscopy[J]. Physical Review Letters, 2013, 111(5): 056404.
[253] Jiang P, Prendergast D, Borondics F, et al. Experimental and Theoretical Investigation of the Electronic Structure of Cu2O and CuO Thin Films on Cu(110) Using X-Ray Photoelectron and Absorption Sspectroscopy[J]. The Journal of Chemical Physics, 2013, 138(2): 024704.
[254] An Q, Meng M, Wang Z, et al. Realization of Monophased LaCoOx Films with Ordered Oxygen Vacancies[J]. Physica Status Solidi A, 2019, 217(1): 1900848.
[255] Han W, Hu S, Liu Q, et al. Strain-Induced Microstructure Damage in SrCoO3−δ Thin Films during the Oxygen Evolution Reaction[J]. ACS Applied Energy Materials, 2021, 4(11): 12696-12702.
[256] Antipin D, Risch M. Trends of Epitaxial Perovskite Oxide Films Catalyzing the Oxygen Evolution Reaction in Alkaline Media[J]. Journal of Physics: Energy, 2020, 2(3): 032003.
[257] Matsumoto Y, Yamada S, Nishida T, et al. Oxygen Evolution on La1−xSrxFe1−yCoyO3 Series Oxides[J]. Journal of The Electrochemical Society, 1980, 127(11): 2360.
[258] Bocca C, Barbucci A, Delucchi M, et al. Nickel-Cobalt Oxide-Coated Electrodes: Influence of the Preparation Technique on Oxygen Evolution Reaction (OER) in an Alkaline Solution[J]. International Journal of Hydrogen Energy, 1999, 24: 21-26.
[259] Tong Y, Guo Y, Chen P, et al. Spin-State Regulation of Perovskite Cobaltite to Realize Enhanced Oxygen Evolution Activity[J]. Chem, 2017, 3(5): 812-821.
[260] Stoerzinger K A, Renshaw Wang X, Hwang J, et al. Speciation and Electronic Structure of La1−xSrxCoO3−δ During Oxygen Electrolysis[J]. Topics in Catalysis, 2018, 61(20): 2161-2174.
[261] Wang C, Zeng L, Guo W, et al. Enhancing Oxygen and Hydrogen Evolution Activities of Perovskite Oxide LaCoO3 via Effective Doping of Platinum[J]. RSC Advances, 2019, 9(61): 35646-35654.
[262] Stoerzinger K A, Qiao L, Biegalski M D, et al. Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2 and RuO2[J]. The Journal of Physical Chemistry Letters, 2014, 5(10): 1636-1641.
[263] Buvat G, Eslamibidgoli M J, Youssef A H, et al. Effect of IrO6 Octahedron Distortion on the OER Activity at (100) IrO2 Thin Film[J]. ACS Catalysis, 2019, 10(1): 806-817.
[264] Weber M L, Baeumer C, Mueller D N, et al. Electrolysis of Water at Atomically Tailored Epitaxial Cobaltite Surfaces[J]. Chemistry of Materials, 2019, 31(7): 2337-2346.
[265] Lippert T, Montenegro M J, Döbeli M, et al. Perovskite Thin Films Deposited by Pulsed Laser Ablation as Model Systems for Electrochemical Applications[J]. Progress in Solid State Chemistry, 2007, 35(2): 221-231.
[266] Wang L, Du Y, Chang L, et al. Band Alignment and Electrocatalytic Activity at the p-n La0.88Sr0.12FeO3/SrTiO3(001) Heterojunction[J]. Applied Physics Letters, 2018, 112(26): 261601.
[267] Bak J, Bin Bae H, Chung S-Y. Atomic-Scale Perturbation of Oxygen Octahedra via Surface Ion Exchange in Perovskite Nickelates Boosts Water Oxidation[J]. Nature Communications, 2019, 10(1): 2713.
[268] Wang L, Stoerzinger K A, Chang L, et al. Strain Effect on Oxygen Evolution Reaction Activity of Epitaxial NdNiO3 Thin Films[J]. ACS Applied Materials & Interfaces, 2019, 11(13): 12941-12947.
[269] Liu J, Jia E, Wang L, et al. Tuning the Electronic Structure of LaNiO3 through Alloying with Strontium to Enhance Oxygen Evolution Activity[J]. Advanced Science, 2019, 6(19): 1901073.
[270] Wang L, Stoerzinger K A, Chang L, et al. Tuning Bifunctional Oxygen Electrocatalysts by Changing the A-Site Rare-Earth Element in Perovskite Nickelates[J]. Advanced Functional Materials, 2018, 28(39): 1803712.
[271] Scholz J, Risch M, Stoerzinger K A, et al. Rotating Ring–Disk Electrode Study of Oxygen Evolution at a Perovskite Surface: Correlating Activity to Manganese Concentration[J]. The Journal of Physical Chemistry C, 2016, 120(49): 27746-27756.
[272] Roddatis V, Lole G, Jooss C. In Situ Preparation of Pr1-xCaxMnO3 and La1-xSrxMnO3 Catalysts Surface for High-Resolution Environmental Transmission Electron Microscopy[J]. Catalysts, 2019, 9(9): 751.
[273] Tang R, Nie Y, Kawasaki J K, et al. Oxygen Evolution Reaction Electrocatalysis on SrIrO3 Grown Using Molecular Beam Epitaxy[J]. Journal of Materials Chemistry A, 2016, 4(18): 6831-6836.
[274] Hu S, Han W, Hu S, et al. Voltage-Controlled Oxygen Non-Stoichiometry in SrCoO3−δ Thin Films[J]. Chemistry of Materials, 2019, 31(16): 6117-6123.
[275] Paraskevopoulos M, Hemberger J, Krimmel A, et al. Magnetic Ordering and Spin-State Transition in R0.67Sr0.33CoO3[J]. Physical Review B, 2001, 63(22): 224416.
[276] Stauffer D D, Leighton C. Magnetic Phase Behavior of the Ferrimagnetic Doped Cobaltite Nd1−xSrxCoO3[J]. Physical Review B, 2004, 70(21): 214414.
[277] Khare A, Shin D, Yoo T S, et al. Topotactic Metal–Insulator Transition in Epitaxial SrFeOx Thin Films[J]. Advanced Materials, 2017, 29(37): 1606566.
[278] Masset A C, Michel C, Maignan A, et al. Misfit-Layered Cobaltite with an Anisotropic Giant Magnetoresistance: Ca3Co4O9[J]. Physical Review B, 2000, 62(1): 166-175.
[279] Dahéron L, Dedryvère R, Martinez H, et al. Electron Transfer Mechanisms upon Lithium Deintercalation from LiCoO2 to CoO2 Investigated by XPS[J]. Chemistry of Materials, 2008, 20(2): 583-590.
[280] Bergmann A, Jones T E, Martinez Moreno E, et al. Unified Structural Motifs of the Catalytically Active State of Co(oxyhydr)oxides during the Electrochemical Oxygen Evolution Reaction[J]. Nature Catalysis, 2018, 1(9): 711-719.
[281] Bediako D K, Surendranath Y, Nocera D G. Mechanistic Studies of the Oxygen Evolution Reaction Mediated by a Nickel–Borate Thin Film Electrocatalyst[J]. Journal of the American Chemical Society, 2013, 135(9): 3662-3674.
[282] Poetzsch D, Merkle R, Maier J. Stoichiometry Variation in Materials with Three Mobile Carriers—Thermodynamics and Transport Kinetics Exemplified for Protons, Oxygen Vacancies, and Holes[J]. Advanced Functional Materials, 2015, 25(10): 1542-1557.
[283] Paul B, Björk E M, Kumar A, et al. Nanoporous Ca3Co4O9 Thin Films for Transferable Thermoelectrics[J]. ACS Applied Energy Materials, 2018, 1(5): 2261-2268.
[284] Boullay P, Seshadri R, Studer F, et al. Chemical and Physical Aspects of the Misfit Layer Oxides Tlα[(Sr1-yCay)O]1+x(CoO2)[J]. Chemistry of Materials, 1998, 10(1): 92-102.
[285] Bonaccorso F, Colombo L, Yu G, et al. Graphene, Related Two-Dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage[J]. Science, 2015, 347(6217): 1246501.
修改评论