中文版 | English
题名

钴酸锶薄膜的结构调控及其性质研究

其他题名
THE STRUCTURE REGULATION AND PROPERTIES OF SrCoO3-δ FILMS
姓名
姓名拼音
HAN Wenqiao
学号
11930736
学位类型
博士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
陈朗
导师单位
物理系
论文答辩日期
2023-09-28
论文提交日期
2023-12-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

钙钛矿(Perovskite, P)结构过渡金属氧化物由于其电荷、自旋、轨道、晶体结构等自由度之间的复杂相互作用,展现出多样的性质,例如锰氧化物的磁阻效应、铁氧化物的多铁性、镍氧化物的超导性,从而在存储、铁电、铁磁、超导等领域具有重要应用。它们的基本结构是由氧八面体堆积而成,通式为ABO3-δ (A位为LnCaSrBaBi 等元素,B位为Ti、Mn、Fe、Co、Ni等过渡金属元素,3-δ为氧含量,δ为氧空位含量)

SrCoO3-δ (SCO)因其可变的氧含量,伴随着可控的电学、磁学、光学、电催化等性质,而受到广泛关注。通过高温气氛退火、化学处理、离子液体调控、应力调控等手段,可以控制SCO氧含量在2.5 ~ 3的范围内变化,其晶体结构在钙钛矿(2.75 < 3-δ < 3)和钙铁石(Brownmillerite, BM, 2.5 ≤ 3-δ < 2.75)之间转变。然而,Co4+离子的不稳定性使得制备和保持氧含量为3P-SCO极为困难。另一方面,尽管此前有基于BM-SCO,经氢化、脱水处理制备SrCoO2的报道,但目前的调控手段难以控制SCO的氧含量在2 ~ 2.5范围内连续变化,因此对氧含量在该范围内的SCO的研究仍有待开展。此外,这些调控都基于拓扑化学相变,反应前后SCO在成分、结构、性质上具有较大的连续性,而突破SCO母相结构对称性的相变调控研究较为匮乏。

本论文以钙钛矿结构SCO薄膜为研究对象,采取空穴/电子掺杂的策略,对SCO的成分、晶体结构及其物理、化学性质进行调控。一方面,从O离子、B位离子和A位离子三方面入手进行非中性调控,分别为:电压驱动调节氧含量、低价Cu取代高价Co进行空穴掺杂、高价Nd取代低价Sr进行电子掺杂。在此基础上,采用应力调控进一步调控CuNd离子掺杂SCO的氧含量和晶体结构。另一方面,采用中性掺杂策略,即在BM-SCO中引入H2O分子,突破BM-SCO结构对称性的限制,获得具有高电导和优异热电性能的新型层状氧化物。主要内容如下:

首先采用电压调控的手段,快速、连续、可逆地调节SCO的氧含量在2.5 ~ 3的范围内变化,实现SCOBM-P之间可控相变,并伴随绝缘体-金属、反铁磁-铁磁、透明-不透明等性质的转变。

接着,在B位以低价Cu取代高价Co进行空穴掺杂,Cu的引入,显著降低了SCO薄膜的氧含量,当掺杂浓度超过33%时,氧含量降至2.25以下,形成有三维氧空位通道的新结构;该薄膜展现出增强的导电性和优异的电解水催化性能。另一方面,在A位以高价Nd取代低价Sr进行电子掺杂,Nd的引入,提高了SCO的氧含量并稳定了P相结构,然而其电导率和磁性有所降低。

在此基础上,对CuNd掺杂的SCO薄膜进行应力调控。对Cu掺杂SCO薄膜,由无应力状态逐渐增大压应力或张应力,薄膜中氧含量升高,从具有三维氧空位通道的结构转变为BM相;特别的是,压应力可以减小薄膜的带隙,使其电导率进一步提升。对Nd掺杂的SCO薄膜,当其面内晶格被压缩时,磁性获得增强,电导率提高并且由绝缘态转变为金属态。

我们通过非中性掺杂的策略,实现了对SCO薄膜氧含量、晶体结构和性质的有效调控。但是,这些新的晶体结构依然没有逃脱钙钛矿结构的藩篱。因此在论文的最后,我们采用中性掺杂的策略,即在BM-SCO中引入H2O,实现了由BM-SCO到新型层状氧化物SrCoO3H的相变,该材料展现出优异的导电性和热电性能。这一策略有效突破了钙钛矿结构拓扑化学相变的限制,发现了新的钙钛矿氧化物的改性策略。

其他摘要

Perovskite transition metal oxides exhibit diverse properties due to the complex interactions among the degrees of freedom of charge, spin, orbitals, and crystal structures, such as magnetoresistance effect in manganese oxides, multiferroicity in iron oxides, and newly discovered superconductivity in nickel oxides, resulting in important applications in the fields of storage, ferroelectricity, ferromagnetism, superconductivity, and so on. Their basic structure consists of oxygen octahedral stacking with the general formula ABO3-δ (A-site for elements such as Ln, Ca, Sr, Ba, Bi, etc., B-site for transition metal elements such as Ti, Mn, Fe, Co, Ni, etc., 3-δ is the oxygen content and δ is the oxygen vacancy concentration).

SrCoO3-δ has attracted attention due to its variable oxygen content accompanied by controllable electrical, magnetic, optical, and electrocatalytic properties. By means of high-temperature atmosphere annealing, chemical treatment, ionic liquid modulation, and stress modulation, the oxygen content of SCO can be tuned in the range of 2.5 ~ 3, and its crystal structure is transformed between P (2.75 < 3-δ < 3) and BM (2.5 ≤ 3-δ < 2.75). However, it is difficult to prepare and stabilize P-SCO with an oxygen content of 3 due to the instability of Co4+. On the other hand, although the preparation of SrCoO2 by hydrogenation followed by dehydration of BM-SCO has been reported, it is difficult to control the oxygen content of SCO to vary in the range of 2 ~ 2.5. The SCO with oxygen content in the range of 2 ~ 2.5 still remains to be investigated. In addition, these modulations are based on topological chemical phase transformation, and there is a large continuity in the composition, structure and properties of SCO before and after the reaction. There is a lack of phase-transition modulation studies that break through the structural symmetry of the SCO parent phase.

In this thesis, the perovskite SCO thin films are investigated by adopting the strategy of hole/electron doping to modulate their composition, crystal structure, as well as physical and chemical properties. On the one hand, non-neutral modulation was carried out from O ions, B-site ions and A-site ions, which are: voltage-driven modulation of oxygen content, hole doping by replacing high-valent Co with low-valent Cu, and electron doping by replacing low-valent Sr with high-valent Nd. On this basis, strain engineering was employed to further tune the oxygen content and crystal structure of Cu-doped and Nd-doped SCO. On the other hand, a neutral doping strategy, i.e., the introduction of H2O into BM-SCO, was employed to break through the structural symmetry of BM-SCO and obtain novel layered oxides with high conductivity and excellent thermoelectric properties. The main contents are as follows:

Firstly, a voltage-driven way was employed to quickly, continuously and reversibly tune the oxygen content of SCO to vary in the range of 2.5 ~ 3, realizing the controlled phase transformation of SCO between BM-P, accompanied with the property transition of insulator-metal, antiferromagnetic-ferromagnetic and transparency-opacity.

Next, high-valent Co was replaced by low-valent Cu for hole doping at the B-site. The introduction of Cu significantly reduced the oxygen content of the SCO film to below 2.25 when the concentration of Cu exceeded 33%, forming a new structure with three-dimensional oxygen vacancy channels; the film exhibited enhanced electrical conductivity and excellent catalytic performance for electrolytic water. On the other hand, electron doping was carried out by replacing low-valent Sr with high-valent Nd at the A-site. The introduction of Nd increased the oxygen content of SCO and stabilized the P structure; however, its conductivity and magnetic properties were reduced.

On this basis, strain engineering was used on Cu-doped and Nd-doped SCO films. For Cu-doped SCO, when compressive or tensile strain increased, the oxygen content in the films was elevated and transformed SCO from a structure with three-dimensional oxygen vacancy channels to the BM; in particular, the compressive strain reduced the bandgap of the films, which led to a further enhancement of their conductivity. For Nd-doped SCO, when the in-plane lattice was compressed, the magnetic properties were enhanced and the conductivity was increased, resulting in an insulator-metal transition.

We have achieved an effective modulation of the oxygen content, crystal structure and properties of SCO thin films through the non-neutral doping strategy. However, these new crystal structures still have not escaped the fence of perovskite structure. Therefore, at the end of the paper, we adopt a neutral doping strategy, i.e., introducing H2O into BM-SCO, to realize the phase transition from BM-SCO to a novel layered oxide SrCoO3H, which exhibited excellent electronic conductivity and thermoelectric properties. This strategy effectively breaks through the limitation of the topological chemical phase transition of perovskite and discovers a new modification strategy for perovskite oxides.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-12
参考文献列表

[1] Gilbert D A, Grutter A J, Arenholz E, et al. Structural and Magnetic Depth Profiles of Magneto-Ionic Heterostructures Beyond the Interface Limit[J]. Nature Communications, 2016, 7: 12264.
[2] Jin C, Zhu Y, Li X, et al. Super-Flexible Freestanding BiMnO3 Membranes with Stable Ferroelectricity and Ferromagnetism[J]. Advanced Science, 2021, 8(24): 2102178.
[3] Li Q, Yao F-Z, Liu Y, et al. High-Temperature Dielectric Materials for Electrical Energy Storage[J]. Annual Review of Materials Research, 2018, 48(1): 219-243.
[4] Martin L W, Rappe A M. Thin-Film Ferroelectric Materials and Their Applications[J]. Nature Reviews Materials, 2016, 2(2): 16087.
[5] Tokura Y, Seki S, Nagaosa N. Multiferroics of Spin Origin[J]. Reports on Progress in Physics, 2014, 77(7): 076501.
[6] Orenstein J, Millis A J. Advances in the Physics of High-Temperature Superconductivity[J]. Science, 2000, 288(5465): 468-474.
[7] Tokura Y, Torrance J B, Huang T C, et al. Broader Perspective on the High-Temperature Superconducting YBa2Cu3Oy System: The Real Role of the Oxygen Content[J]. Physical Review B, 1988, 38(10): 7156-7159.
[8] Xiao G, Cieplak M Z, Gavrin A, et al. High-Temperature Superconductivity in Tetragonal Perovskite Structures: Is Oxygen-Vacancy Order Important?[J]. Physical Review Letters, 1988, 60(14): 1446-1449.
[9] Zhang L, Li X, Wang F, et al. Colossal Electroresistance and Magnetoresistance Effect in Polycrystalline Perovskite Cobaltites Nd1−xSrxCoO3 (x=0.1, 0.2, 0.3)[J]. Materials Research Bulletin, 2013, 48(3): 1088-1092.
[10] Jin S, Mccormack M, Tiefel T H, et al. Colossal Magnetoresistance in La‐Ca‐Mn‐O Ferromagnetic Thin Films (Invited)[J]. Journal of Applied Physics, 1994, 76(10): 6929-6933.
[11] Ngai J H, Walker F J, Ahn C H. Correlated Oxide Physics and Electronics[J]. Annual Review of Materials Research, 2014, 44(1): 1-17.
[12] Greiner M T, Chai L, Helander M G, et al. Transition Metal Oxide Work Functions: The Influence of Cation Oxidation State and Oxygen Vacancies[J]. Advanced Functional Materials, 2012, 22(21): 4557-4568.
[13] Lee J S, Lee S, Noh T W. Resistive Switching Phenomena: A Review of Statistical Physics Approaches[J]. Applied Physics Reviews, 2015, 2(3): 031303.
[14] Schmitt R, Kubicek M, Sediva E, et al. Accelerated Ionic Motion in Amorphous Memristor Oxides for Nonvolatile Memories and Neuromorphic Computing[J]. Advanced Functional Materials, 2019, 29(5): 1804782.
[15] Grimaud A, Diaz-Morales O, Han B, et al. Activating Lattice Oxygen Redox Reactions in Metal Oxides to Catalyse Oxygen Evolution[J]. Nature Chemistry, 2017, 9(5): 457-465.
[16] Mefford J T, Rong X, Abakumov A M, et al. Water Electrolysis on La1-xSrxCoO3-δ Perovskite Electrocatalysts[J]. Nature Communications, 2016, 7: 11053.
[17] Pramana S S, Cavallaro A, Li C, et al. Crystal Structure and Surface Characteristics of Sr-Doped GdBaCo2O6−δ Double Perovskites: Oxygen Evolution Reaction and Conductivity[J]. Journal of Materials Chemistry A, 2018, 6(13): 5335-5345.
[18] Li X, Wang H, Cui Z, et al. Exceptional Oxygen Evolution Reactivities on CaCoO3 and SrCoO3[J]. Science Advances, 2019, 5(8): 6262.
[19] Wang G, Yang Y, Han D, et al. Oxygen Defective Metal Oxides for Energy Conversion and Storage[J]. Nano Today, 2017, 13: 23-39.
[20] Stamenkovic V R, Strmcnik D, Lopes P P, et al. Energy and Fuels from Electrochemical Interfaces[J]. Nature Materials, 2016, 16(1): 57-69.
[21] Mahato N, Banerjee A, Gupta A, et al. Progress in Material Selection for Solid Oxide Fuel Cell Technology: A Review[J]. Progress in Materials Science, 2015, 72: 141-337.
[22] Petrie J R, Jeen H, Barron S C, et al. Enhancing Perovskite Electrocatalysis through Strain Tuning of the Oxygen Deficiency[J]. Journal of the American Chemical Society, 2016, 138(23): 7252-7255.
[23] Bauer U, Yao L, Tan A J, et al. Magneto-Ionic Control of Interfacial Magnetism[J]. Nature Materials, 2014, 14: 174.
[24] Wen R T, Granqvist C G, Niklasson G A. Eliminating Degradation and Uncovering Ion-Trapping Dynamics in Electrochromic WO3 Thin Films[J]. Nature Materials, 2015, 14(10): 996-1001.
[25] Lu N, Zhang P, Zhang Q, et al. Electric-Field Control of Tri-State Phase Transformation with a Selective Dual-Ion Switch[J]. Nature, 2017, 546(7656): 124-128.
[26] Elemans J B a A, Van Laar B, Van Der Veen K R, et al. The Crystallographic and Magnetic Structures of La1−xBaxMn1−xMexO3 (Me = Mn or Ti)[J]. Journal of Solid State Chemistry, 1971, 3(2): 238-242.
[27] Norby P, Andersen I G K, Andersen E K, et al. The Crystal Structure of Lanthanum Manganate(III), LaMnO3, at Room Temperature and at 1273 K under N2[J]. Journal of Solid State Chemistry, 1995, 119(1): 191-196.
[28] Wollan E O, Koehler W C. Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [(1-x)La, xCa]MnO3[J]. Physical Review, 1955, 100(2): 545-563.
[29] Goodenough J B, Wold A, Arnott R J, et al. Relationship between Crystal Symmetry and Magnetic Properties of Ionic Compounds Containing Mn3+[J]. Physical Review, 1961, 124(2): 373-384.
[30] Ghivelder L, Abrego Castillo I, Gusmão M A, et al. Specific Heat and Magnetic Order in LaMnO3+δ[J]. Physical Review B, 1999, 60(17): 12184-12190.
[31] Laiho R, Lisunov K G, Lähderanta E, et al. Low-Field Magnetic Properties of LaMnO3+δ with 0.065≤δ≤0.154[J]. Journal of Physics and Chemistry of Solids, 2003, 64(12): 2313-2319.
[32] Töpfer J, Goodenough J B. LaMnO3+δ Revisited[J]. Journal of Solid State Chemistry, 1997, 130(1): 117-128.
[33] Cortés-Gil R, Arroyo A, Ruiz-González L, et al. Evolution of Magnetic Behaviour in Oxygen Deficient LaMnO3−δ[J]. Journal of Physics and Chemistry of Solids, 2006, 67(1): 579-582.
[34] Zhao R, Jin K, Xu Z, et al. The Oxygen Vacancy Effect on the Magnetic Property of the LaMnO3−δ Thin Films[J]. Applied Physics Letters, 2013, 102(12): 122402.
[35] Fujishiro H, Fukase T, Ikebe M. Charge Ordering and Sound Velocity Anomaly in La1-xSrxMnO3 (x ≥ 0.5)[J]. Journal of the Physical Society of Japan, 1998, 67(8): 2582-2585.
[36] Bhide V G, Rajoria D S, Rao C N R, et al. Itinerant-Electron Ferromagnetism in La1-xSrxCoO3: A Mossbauer Study[J]. Physical Review B, 1975, 12(7): 2832-2843.
[37] Cui B, Song C, Wang G, et al. Reversible Ferromagnetic Phase Transition in Electrode-Gated Manganites[J]. Advanced Functional Materials, 2014, 24(46): 7233-7240.
[38] Cui B, Song C, Gehring G A, et al. Electrical Manipulation of Orbital Occupancy and Magnetic Anisotropy in Manganites[J]. Advanced Functional Materials, 2015, 25(6): 864-870.
[39] Cui B, Song C, Mao H, et al. Magnetoelectric Coupling Induced by Interfacial Orbital Reconstruction[J]. Advanced Materials, 2015, 27(42): 6651-6656.
[40] Yao L, Inkinen S, Van Dijken S. Direct Observation of Oxygen Vacancy-Driven Structural and Resistive Phase Transitions in La2/3Sr1/3MnO3[J]. Nature Communications, 2017, 8: 14544.
[41] Yao L, Inkinen S, Komsa H P, et al. Structural Phase Transitions to 2D and 3D Oxygen Vacancy Patterns in a Perovskite Film Induced by Electrical and Mechanical Nanoprobing[J]. Small, 2021, 17(10): 2006273.
[42] Cao L, Petracic O, Zakalek P, et al. Reversible Control of Physical Properties via an Oxygen-Vacancy-Driven Topotactic Transition in Epitaxial La0.7Sr0.3MnO3−δ Thin Films[J]. Advanced Materials, 2018, 31: 1806183.
[43] Chen S, Zhou H, Ye X, et al. Versatile and Highly Efficient Controls of Reversible Topotactic Metal–Insulator Transitions through Proton Intercalation[J]. Advanced Functional Materials, 2019, 29(50): 1907072.
[44] Macchesney J B, Sherwood R C, Potter J F. Electric and Magnetic Properties of the Strontium Ferrates[J]. The Journal of Chemical Physics, 1965, 43(6): 1907-1913.
[45] Takeda T, Yamaguchi Y, Watanabe H. Magnetic Structure of SrFeO3[J]. Journal of the Physical Society of Japan, 1972, 33(4): 967-969.
[46] Hodges J P, Short S, Jorgensen J D, et al. Evolution of Oxygen-Vacancy Ordered Crystal Structures in the Perovskite Series SrnFenO3n−1 (n=2, 4, 8, and ∞), and the Relationship to Electronic and Magnetic Properties[J]. Journal of Solid State Chemistry, 2000, 151(2): 190-209.
[47] Schmidt M, Hofmann M, Campbell S J. Magnetic Structure of Strontium Ferrite Sr4Fe4O11[J]. Journal of Physics: Condensed Matter, 2003, 15(50): 8691.
[48] Reehuis M, Ulrich C, Maljuk A, et al. Neutron Diffraction Study of Spin and Charge Ordering in SrFeO3−δ[J]. Physical Review B, 2012, 85(18): 184109.
[49] D’hondt H, Abakumov A M, Hadermann J, et al. Tetrahedral Chain Order in the Sr2Fe2O5 Brownmillerite[J]. Chemistry of Materials, 2008, 20(22): 7188-7194.
[50] Yamada H, Kawasaki M, Tokura Y. Epitaxial Growth and Valence Control of Strained Perovskite SrFeO3 Films[J]. Applied Physics Letters, 2002, 80(4): 622-624.
[51] Nemudry A, Weiss M, Gainutdinov I, et al. Room Temperature Electrochemical Redox Reactions of the Defect Perovskite SrFeO2.5+x[J]. Chemistry of Materials, 1998, 10(9): 2403-2411.
[52] Piovano A, Agostini G, Frenkel A I, et al. Time Resolved in Situ XAFS Study of the Electrochemical Oxygen Intercalation in SrFeO2.5 Brownmillerite Structure: Comparison with the Homologous SrCoO2.5 System[J]. The Journal of Physical Chemistry C, 2011, 115(4): 1311-1322.
[53] Hirai K, Kan D, Ichikawa N, et al. Strain-Induced Significant Increase in Metal-Insulator Transition Temperature in Oxygen-Deficient Fe Oxide Epitaxial Thin Films[J]. Scientific Reports, 2015, 5: 7894.
[54] Acharya S K, Nallagatla R V, Togibasa O, et al. Epitaxial Brownmillerite Oxide Thin Films for Reliable Switching Memory[J]. ACS Applied Materials & Interfaces, 2016, 8(12): 7902-7911.
[55] Acharya S K, Jo J, Raveendra N V, et al. Brownmillerite Thin Films as Fast Ion Conductors for Ultimate-Performance Resistance Switching Memory[J]. Nanoscale, 2017, 9(29): 10502-10510.
[56] Ge C, Liu C X, Zhou Q L, et al. A Ferrite Synaptic Transistor with Topotactic Transformation[J]. Advanced Materials, 2019, 31(19): 1900379.
[57] Nallagatla V R, Heisig T, Baeumer C, et al. Topotactic Phase Transition Driving Memristive Behavior[J]. Advanced Materials, 2019, 31(40): 1903391.
[58] Saleem M S, Cui B, Song C, et al. Electric Field Control of Phase Transition and Tunable Resistive Switching in SrFeO2.5[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6581-6588.
[59] Tsujimoto Y, Tassel C, Hayashi N, et al. Infinite-Layer Iron Oxide with a Square-Planar Coordination[J]. Nature, 2007, 450(7172): 1062-1065.
[60] Hayward M A, Rosseinsky M J. Cool Conditions for Mobile Ions[J]. Nature, 2007, 450(7172): 960-961.
[61] Xiang H J, Wei S H, Whangbo M H. Origin of the Structural and Magnetic Anomalies of the Layered Compound SrFeO2: A Density Functional Investigation[J]. Physical Review Letters, 2008, 100(16): 167207.
[62] Chen S, Zhao J, Jin Q, et al. Strain-Mediated Insulator-Metal Transition in Topotactically Hydro-Reduced SrFeO2[J]. Science China Physics, Mechanics & Astronomy, 2021, 64(8): 287711.
[63] Zhang C X, Xia H L, Liu H, et al. Infrared Spectroscopic Study on Lattice Dynamics in CaFeO3[J]. Physical Review B, 2017, 95(6): 064104.
[64] Piovano A, Ceretti M, Johnson M R, et al. Anisotropy in the Raman Scattering of a CaFeO2.5 Single Crystal and Its Link with Oxygen Ordering in Brownmillerite Frameworks[J]. Journal of Physics: Condensed Matter, 2015, 27(22): 225403.
[65] Ceretti M, Piovano A, Cousson A, et al. Growth and Characterization of Large High Quality Brownmillerite CaFeO2.5 Single Crystals[J]. CrystEngComm, 2012, 14(18): 5771-5776.
[66] Inoue S, Kawai M, Ichikawa N, et al. Anisotropic Oxygen Diffusion at Low Temperature in Perovskite-Structure Iron Oxides[J]. Nature Chemistry, 2010, 2: 213.
[67] Park S K, Ishikawa T, Tokura Y, et al. Variation of Charge-Ordering Transitions in R1/3Sr2/3FeO3 (R=La, Pr, Nd, Sm, and Gd)[J]. Physical Review B, 1999, 60(15): 10788-10795.
[68] Matsuno J, Mizokawa T, Fujimori A, et al. Different Routes to Charge Disproportionation in Perovskite-Type Fe Oxides[J]. Physical Review B, 2002, 66(19): 193103.
[69] Sichel-Tissot R J, Devlin R C, Ryan P J, et al. The Effect of Oxygen Vacancies on the Electronic Phase Transition in La1/3Sr2/3FeO3 Films[J]. Applied Physics Letters, 2013, 103(21): 212905.
[70] Xie Y, Scafetta M D, Sichel-Tissot R J, et al. Control of Functional Responses Via Reversible Oxygen Loss in La1-xSrxFeO3-δ Films[J]. Advanced Materials, 2014, 26(9): 1434-1438.
[71] Smolin S Y, Scafetta M D, Choquette A K, et al. Static and Dynamic Optical Properties of La1–xSrxFeO3−δ: The Effects of A-Site and Oxygen Stoichiometry[J]. Chemistry of Materials, 2016, 28(1): 97-105.
[72] Islam M A, Xie Y, Scafetta M D, et al. Raman Scattering in La1−xSrxFeO3−δ Thin Films: Annealing-Induced Reduction and Phase Transformation[J]. Journal of Physics: Condensed Matter, 2015, 27(15): 155401.
[73] Sereda V V, Tsvetkov D S, Ivanov I L, et al. Interplay between Chemical Strain, Defects and Ordering in Sr1-xLaxFeO3 Materials[J]. Acta Materialia, 2019, 162: 33-45.
[74] Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures[J]. Science, 2003, 299(5613): 1719-1722.
[75] Fei Liu S, Jun Wu Y, Li J, et al. Effects of Oxygen Vacancies on Dielectric, Electrical, and Ferroelectric Properties of Ba4Nd2Fe2Nb8O30 Ceramics[J]. Applied Physics Letters, 2014, 104(8): 082912.
[76] Singh V, Daryapurkar A, Rajput S S, et al. Effect of Annealing Atmosphere on Leakage and Dielectric Characteristics of Multiferroic Gallium Ferrite[J]. Journal of the American Ceramic Society, 2017, 100(11): 5226-5238.
[77] Wang C, Jin K-J, Xu Z-T, et al. Switchable Diode Effect and Ferroelectric Resistive Switching in Epitaxial BiFeO3 Thin Films[J]. Applied Physics Letters, 2011, 98(19): 192901.
[78] Farokhipoor S, Noheda B. Conduction through 71° Domain Walls in BiFeO3 Thin Films[J]. Physical Review Letters, 2011, 107(12): 127601.
[79] Seidel J, Martin L W, He Q, et al. Conduction at Domain Walls in Oxide Multiferroics[J]. Nature Materials, 2009, 8(3): 229-234.
[80] Farokhipoor S, Noheda B. Local Conductivity and the Role of Vacancies around Twin Walls of (001)−BiFeO3 Thin Films[J]. Journal of Applied Physics, 2012, 112(5): 052003.
[81] Choi T, Lee S, Choi Y J, et al. Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3[J]. Science, 2009, 324(5923): 63-66.
[82] A. Wold, B. Post, Banks E. Rare Earth Nickel Oxides[J]. Journal of the American Chemical Society, 1957, 70: 4911.
[83] Rajeev K P, Shivashankar G V, Raychaudhuri A K. Low-Temperature Electronic Properties of a Normal Conducting Perovskite Oxide (LaNiO3)[J]. Solid State Communications, 1991, 79(7): 591-595.
[84] Vasanthacharya N Y, Ganguly P, Goodenough J B, et al. Valence States and Magnetic Properties of LaNi1-xMnxO3 (for 0≤x≤0.2 and x=0.5)[J]. Journal of Physics C: Solid State Physics, 1984, 17(15): 2745.
[85] Sayagués M J, Vallet-Regı́ M, Caneiro A, et al. Microstructural Characterization of the LaNiO3-y System[J]. Journal of Solid State Chemistry, 1994, 110(2): 295-304.
[86] González-Calbet J M, Sayagués M J, Vallet-Regí M. An Electron Diffraction Study of New Phases in the LaNiO3−x System[J]. Solid State Ionics, 1989, 32-33: 721-726.
[87] Sánchez R D, Causa M T, Caneiro A, et al. Metal-Insulator Transition in Oxygen-Deficient LaNiO3 Perovskites[J]. Physical Review B, 1996, 54(23): 16574-16578.
[88] Abbate M, Zampieri G, Prado F, et al. Electronic Structure and Metal-Insulator Transition in LaNiO3-δ[J]. Physical Review B, 2002, 65(15): 155101.
[89] Horiba K, Eguchi R, Taguchi M, et al. Electronic Structure of LaNiO3-x: An in Situ Soft X-Ray Photoemission and Absorption Study[J]. Physical Review B, 2007, 76(15): 155104.
[90] Berini B, Noun W, Dumont Y, et al. High Temperature Ellipsometry of the Conductive Oxide LaNiO3[J]. Journal of Applied Physics, 2007, 101(2): 023529.
[91] Crespin M, Levitz P, Gatineau L. Reduced Forms of LaNiO3 Perovskite. Part 1.—Evidence for New Phases: La2Ni2O5 and LaNiO2[J]. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1983, 79(8): 1181-1194.
[92] Levitz P, Crespin M, Gatineau L. Reduced Forms of LaNiO3 Perovskite. Part 2.—X-Ray Structure of LaNiO2 and Extended X-Ray Absorption Fine Structure Study: Local Environment of Monovalent Nickel[J]. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1983, 79(8): 1195-1203.
[93] Kawai M, Inoue S, Mizumaki M, et al. Reversible Changes of Epitaxial Thin Films from Perovskite LaNiO3 to Infinite-Layer Structure LaNiO2[J]. Applied Physics Letters, 2009, 94(8): 082102.
[94] Hayward M A, Green M A, Rosseinsky M J, et al. Sodium Hydride as a Powerful Reducing Agent for Topotactic Oxide Deintercalation:  Synthesis and Characterization of the Nickel(I) Oxide LaNiO2[J]. Journal of the American Chemical Society, 1999, 121(38): 8843-8854.
[95] Ikeda A, Krockenberger Y, Irie H, et al. Direct Observation of Infinite NiO2 Planes in LaNiO2 Films[J]. Applied Physics Express, 2016, 9(6): 061101.
[96] Ortiz R A, Puphal P, Klett M, et al. Magnetic Correlations in Infinite-Layer Nickelates: An Experimental and Theoretical Multimethod Study[J]. Physical Review Research, 2022, 4(2): 023093.
[97] Hayward M A, Rosseinsky M J. Synthesis of the Infinite Layer Ni(I) Phase NdNiO2+x by Low Temperature Reduction of NdNiO3 with Sodium Hydride[J]. Solid State Sciences, 2003, 5(6): 839-850.
[98] Li D, Lee K, Wang B Y, et al. Superconductivity in an Infinite-Layer Nickelate[J]. Nature, 2019, 572(7771): 624-627.
[99] Lacorre P. Passage from T-Type to T'-Type Arrangement by Reducing R4Ni3O10 to R4Ni3O8 (R = La, Pr, Nd)[J]. Journal of Solid State Chemistry, 1992, 97(2): 495-500.
[100] Zhang J, Pajerowski D M, Botana A S, et al. Spin Stripe Order in a Square Planar Trilayer Nickelate[J]. Physical Review Letters, 2019, 122(24): 247201.
[101] Zhang J, Botana A S, Freeland J W, et al. Large Orbital Polarization in a Metallic Square-Planar Nickelate[J]. Nature Physics, 2017, 13(9): 864-869.
[102] Zhang J, Chen Y-S, Phelan D, et al. Stacked Charge Stripes in the Quasi-2D Trilayer Nickelate La4Ni3O8[J]. Proceedings of the National Academy of Sciences, 2016, 113(32): 8945-8950.
[103] Li H, Zhou X, Nummy T, et al. Fermiology and Electron Dynamics of Trilayer Nickelate La4Ni3O10[J]. Nature Communications, 2017, 8(1): 704.
[104] Poltavets V V, Lokshin K A, Dikmen S, et al. La3Ni2O6:  A New Double T‘-type Nickelate with Infinite Ni1+/2+O2 Layers[J]. Journal of the American Chemical Society, 2006, 128(28): 9050-9051.
[105] Y.Takeda, T.Hashino, H.Miyamoto, et al. Synthesis of SrNiO3 and Related Compound, Sr2Ni2O5[J]. Journal of Inorganic and Nuclear Chemistry, 1972, 34(5): 1599-1601.
[106] Zinkevich M. Constitution of the Sr–Ni–O System[J]. Journal of Solid State Chemistry, 2005, 178(9): 2818-2824.
[107] Chen G-Y, Ma C-L, Chen D, et al. Robust Half-Metallicity of Hexagonal SrNiO3[J]. Journal of Solid State Chemistry, 2016, 233: 438-443.
[108] Wang L, Yang Z, Yin X, et al. Spontaneous Phase Segregation of Sr2NiO3 and SrNi2O3 during SrNiO3 Heteroepitaxy[J]. Science Advances, 2021, 7(10): eabe2866.
[109] Wang L, Zhao J, Kuo C-T, et al. Synthesis and Electronic Properties of Epitaxial SrNiO3/SrTiO3 Superlattices[J]. Physical Review Materials, 2022, 6(7): 075006.
[110] Sawatzky G A, Van Der Woude F, Morrish A H. Cation Distributions in Octahedral and Tetrahedral Sites of the Ferrimagnetic Spinel CoFe2O4[J]. Journal of Applied Physics, 1968, 39(2): 1204-1205.
[111] Hou Y H, Zhao Y J, Liu Z W, et al. Structural, Electronic and Magnetic Properties of Partially Inverse Spinel CoFe2O4: A First-Principles Study[J]. Journal of Physics D: Applied Physics, 2010, 43(44): 445003.
[112] Ramos A V, Santos T S, Miao G X, et al. Influence of Oxidation on the Spin-Filtering Properties of CoFe2O4 and the Resultant Spin Polarization[J]. Physical Review B, 2008, 78(18): 180402.
[113] Holgersson S, Karlsson A. Über Einige neue Kobaltite vom Spinelltypus[J]. Zeitschrift für anorganische und allgemeine Chemie, 1929, 183(1): 384-394.
[114] Knop O, Reid K I G, Sutarno, et al. Chalkogenides of the Transition Elements. VI. X-Ray, Neutron, and Magnetic Investigation of the Spinels Co3O4, NiCo2O4, Co3S4, and NiCo2S4[J]. Canadian Journal of Chemistry, 1968, 46(22): 3463-3476.
[115] Marco J F, Gancedo J R, Gracia M, et al. Characterization of the Nickel Cobaltite, NiCo2O4, Prepared by Several Methods: An XRD, XANES, EXAFS, and XPS Study[J]. Journal of Solid State Chemistry, 2000, 153(1): 74-81.
[116] Silwal P, Miao L, Stern I, et al. Metal Insulator Transition with Ferrimagnetic Order in Epitaxial Thin Films of Spinel NiCo2O4[J]. Applied Physics Letters, 2012, 100(3): 032102.
[117] Bitla Y, Chin Y-Y, Lin J-C, et al. Origin of Metallic Behavior in NiCo2O4 Ferrimagnet[J]. Scientific Reports, 2015, 5(1): 15201.
[118] Pandey P, Bitla Y, Zschornak M, et al. Enhancing the Magnetic Moment of Ferrimagnetic NiCo2O4 via Ion Irradiation Driven Oxygen Vacancies[J]. APL Materials, 2018, 6(6): 066109.
[119] Wang M, Sui X, Wang Y, et al. Manipulate the Electronic and Magnetic States in NiCo2O4 Films through Electric-Field-Induced Protonation at Elevated Temperature[J]. Advanced Materials, 2019, 31(16): e1900458.
[120] Raccah P M, Goodenough J B. First-Order Localized-Electron ⇆ Collective-Electron Transition in LaCoO3[J]. Physical Review, 1967, 155(3): 932-943.
[121] Itoh M, Sugahara M, Natori I, et al. Spin State and Hyperfine Interaction in LaCoO3: NMR and Magnetic Susceptibility Studies[J]. Journal of the Physical Society of Japan, 1995, 64(10): 3967-3977.
[122] Asai K, Yoneda A, Yokokura O, et al. Two Spin-State Transitions in LaCoO3[J]. Journal of the Physical Society of Japan, 1998, 67(1): 290-296.
[123] Yan J Q, Zhou J S, Goodenough J B. Ferromagnetism in LaCoO3[J]. Physical Review B, 2004, 70(1): 014402.
[124] Freeland J W, Ma J X, Shi J. Ferromagnetic Spin-Correlations in Strained LaCoO3 Thin Films[J]. Applied Physics Letters, 2008, 93(21): 212501.
[125] Park S, Ryan P, Karapetrova E, et al. Microscopic Evidence of a Strain-Enhanced Ferromagnetic State in LaCoO3 Thin Films[J]. Applied Physics Letters, 2009, 95(7): 072508.
[126] Biškup N, Salafranca J, Mehta V, et al. Insulating Ferromagnetic LaCoO3-δ Films: A Phase Induced by Ordering of Oxygen Vacancies[J]. Physical Review Letters, 2014, 112(8): 087202.
[127] Mehta V V, Biskup N, Jenkins C, et al. Long-Range Ferromagnetic Order in LaCoO3−δ Epitaxial Films due to the Interplay of Epitaxial Strain and Oxygen Vacancy Ordering[J]. Physical Review B, 2015, 91(14): 144418.
[128] Zhang N, Zhu Y, Li D, et al. Oxygen Vacancy Ordering Modulation of Magnetic Anisotropy in Strained LaCoO3-x Thin Films[J]. ACS Applied Materials & Interfaces, 2018, 10: 38230-38238.
[129] Zhang J, Zhong Z, Guan X, et al. Symmetry Mismatch-Driven Perpendicular Magnetic Anisotropy for Perovskite/Brownmillerite Heterostructures[J]. Nature Communications, 2018, 9(1): 1923.
[130] Zhang Q, Gao A, Meng F, et al. Near-Room Temperature Ferromagnetic Insulating State in Highly Distorted LaCoO2.5 with CoO5 Square Pyramids[J]. Nature Communications, 2021, 12(1): 1853.
[131] Jang J H, Kim Y-M, He Q, et al. In Situ Observation of Oxygen Vacancy Dynamics and Ordering in the Epitaxial LaCoO3 System[J]. ACS Nano, 2017, 11(7): 6942-6949.
[132] Mineshige A, Inaba M, Yao T, et al. Crystal Structure and Metal–Insulator Transition of La1−xSrxCoO3[J]. Journal of Solid State Chemistry, 1996, 121(2): 423-429.
[133] Wu J, Leighton C. Glassy Ferromagnetism and Magnetic Phase Separation in La1-xSrxCoO3[J]. Physical Review B, 2003, 67(17): 174408.
[134] Caciuffo R, Rinaldi D, Barucca G, et al. Structural Details and Magnetic Order of La1-xSrxCoO3 (x≤0.3)[J]. Physical Review B, 1999, 59(2): 1068-1078.
[135] Mira J, Rivas J, Baio G, et al. Phase Separation as Origin of the Magnetic Anomalies in La0.85Sr0.15CoO3[J]. Journal of Applied Physics, 2001, 89(10): 5606-5609.
[136] Hoch M J R, Kuhns P L, Moulton W G, et al. Evolution of the Ferromagnetic and Nonferromagnetic Phases with Temperature in Phase-Separated La1-xSrxCoO3 by High-Field 139La NMR[J]. Physical Review B, 2004, 70(17): 174443.
[137] Phelan D, Louca D, Kamazawa K, et al. Spin Incommensurability and Two Phase Competition in Cobaltites[J]. Physical Review Letters, 2006, 97(23): 235501.
[138] Podlesnyak A, Russina M, Furrer A, et al. Spin-State Polarons in Lightly-Hole-Doped LaCoO3[J]. Physical Review Letters, 2008, 101(24): 247603.
[139] Nam D N H, Mathieu R, Nordblad P, et al. Spin-Glass Dynamics of La0.95Sr0.05CoO3[J]. Physical Review B, 2000, 62(13): 8989-8995.
[140] Mukherjee S, Ranganathan R, Anilkumar P S, et al. Static and Dynamic Response of Cluster Glass in La0.5Sr0.5CoO3[J]. Physical Review B, 1996, 54(13): 9267-9274.
[141] Wu X W, Walter J, Feng T L, et al. Glass-Like Through-Plane Thermal Conductivity Induced by Oxygen Vacancies in Nanoscale Epitaxial La0.5Sr0.5CoO3-δ[J]. Advanced Functional Materials, 2017, 27(47): 11.
[142] Wang X L, Sakurai H, Takayama-Muromachi E. Synthesis, Structures, and Magnetic Properties of Novel Roddlesden–Popper Homologous Series Srn+1ConO3n+1 (n=1,2,3,4, and ∞)[J]. Journal of Applied Physics, 2005, 97(10): 10M519.
[143] Dann S E, Weller M T. Structure and Oxygen Stoichiometry in Sr3Co2O7-y (0.94 ≤ y ≤ 1.22)[J]. Journal of Solid State Chemistry, 1995, 115(2): 499-507.
[144] Harrison W T A, Hegwood S L, Jacobson A J. A Powder Neutron Diffraction Determination of the Structure of Sr6Co5O15, Formerly Described as the Low-Temperature Hexagonal Form of SrCoO3-x[J]. Journal of the Chemical Society-Chemical Communications, 1995, (19): 1953-1954.
[145] Sun J, Li G, Li Z, et al. Crystal Growth and Structure Determination of Oxygen-Deficient Sr6Co5O15[J]. Inorganic Chemistry, 2006, 45(20): 8394-8402.
[146] Zhao Q, Darriet J, Whangbo M H, et al. Intriguing Interconnections among Phase Transition, Magnetic Moment, and Valence Disproportionation in 2H-Perovskite Related Oxides[J]. Journal of the American Chemical Society, 2011, 133(51): 20981-20994.
[147] Matsubara I, Funahashi R, Shikano M, et al. Cation Substituted (Ca2CoO3)xCoO2 Films and Their Thermoelectric Properties[J]. Applied Physics Letters, 2002, 80(25): 4729-4731.
[148] Pelloquin D, Hébert S, Maignan A, et al. A New Thermoelectric Misfit Cobaltite: [Sr2CoO3][CoO2]1.8[J]. Solid State Sciences, 2004, 6(2): 167-172.
[149] Sakai A, Kanno T, Yotsuhashi S, et al. Preparation of Metastable Sr3Co4O9 Epitaxial Thin Films with Controlled Orientation and Their Anisotropic Thermoelectric Properties[J]. Journal of Applied Physics, 2006, 99(9): 093704.
[150] Sakai A, Kanno T, Yotsuhashi S, et al. Control of Epitaxial Growth Orientation and Anisotropic Thermoelectric Properties of Misfit-Type Ca3Co4O9 Thin Films[J]. Japanese Journal of Applied Physics, 2005, 44(7L): L966.
[151] Panchakarla L S, Lajaunie L, Ramasubramaniam A, et al. Strontium Cobalt Oxide Misfit Nanotubes[J]. Chemistry of Materials, 2016, 28(24): 9150-9157.
[152] Taguchi H, Shimada M, Koizumi M. The Effect of Oxygen Vacancy on the Magnetic Properties in the System SrCoO3−δ (0 < δ < 0.5)[J]. Journal of Solid State Chemistry, 1979, 29(2): 221-225.
[153] Muñoz A, De La Calle C, Alonso J A, et al. Crystallographic and Magnetic Structure of SrCoO2.5 Brownmillerite: Neutron Study Coupled with Band-Structure Calculations[J]. Physical Review B, 2008, 78(5): 054404.
[154] Takeda T, Watanabe H. Magnetic Properties of the System SrCo1−xFexO3−y[J]. Journal of the Physical Society of Japan, 1972, 33(4): 973-978.
[155] Taguchi H, Shimada M, Koizumi M. The Electrical Properties of Ferromagnetic SrCoO3-δ (0<δ<0.5)[J]. Materials Research Bulletin, 1980, 15: 165-169.
[156] Pouchard M, Villesuzanne A, Doumerc J-P. Spin State Behavior in Some Cobaltites (III) and (IV) with Perovskite or Related Structure[J]. Journal of Solid State Chemistry, 2001, 162(2): 282-292.
[157] Matar S F, Villesuzanne A, Uhl M. The Electronic and Magnetic Structures of Stoichiometric SrCoO3: ASW Calculations[J]. Journal of Materials Chemistry, 1996, 6(11): 1785.
[158] Min Zhuang W Z, An Hu, and Naiben Ming. Possible Magnetic Ground State in the Perovskite SrCoO3[J]. Physical Review B, 1998, 57: 13655.
[159] Takeda T, Yamaguchi Y, Watanabe H. Magnetic Structure of SrCoO2.5[J]. Journal of the Physical Society of Japan, 1972, 33(4): 970-972.
[160] Xie C K, Nie Y F, Wells B O, et al. Magnetic Phase Separation in SrCoOx (2.5 ≤ x ≤ 3)[J]. Applied Physics Letters, 2011, 99(5): 052503.
[161] De La Calle C, Aguadero A, Alonso J A, et al. Correlation Between Reconstructive Phase Transitions and Transport Properties from SrCoO2.5 Brownmillerite: A Neutron Diffraction Study[J]. Solid State Sciences, 2008, 10(12): 1924-1935.
[162] Takeda Y, Kanno R, Takada T, et al. Phase Relation and Oxygen-Non-Stoichiometry of Perovskite-Like Compound SrCoOx (2.29 < x < 2.80)[J]. Zeitschrift für anorganische und allgemeine Chemie, 1986, 540(9‐10): 259-270.
[163] Jeen H, Choi W S, Freeland J W, et al. Topotactic Phase Transformation of the Brownmillerite SrCoO2.5 to the Perovskite SrCoO3–δ[J]. Advanced Materials, 2013, 25(27): 3651-3656.
[164] Jeen H, Choi W S, Biegalski M D, et al. Reversible Redox Reactions in an Epitaxially Stabilized SrCoOx Oxygen Sponge[J]. Nature Materials, 2013, 12(11): 1057-1063.
[165] Petrie J R, Mitra C, Jeen H, et al. Strain Control of Oxygen Vacancies in Epitaxial Strontium Cobaltite Films[J]. Advanced Functional Materials, 2016, 26(10): 1564-1570.
[166] Cui B, Werner P, Ma T, et al. Direct Imaging of Structural Changes Induced by Ionic Liquid Gating Leading to Engineered Three-Dimensional Meso-Structures[J]. Nature Communications, 2018, 9(1): 3055.
[167] Zhang Q, He X, Shi J, et al. Atomic-Resolution Imaging of Electrically Induced Oxygen Vacancy Migration and Phase Transformation in SrCoO2.5-σ[J]. Nature Communications, 2017, 8(1): 104.
[168] Li H B, Lou F, Wang Y, et al. Electric Field–Controlled Multistep Proton Evolution in HxSrCoO2.5 with Formation of H–H Dimer[J]. Advanced Science, 2019, 6: 1901432.
[169] Gao L, Chen X, Lyu X, et al. Tracing the Ionic Evolution during ILG Induced Phase Transformation in Strontium Cobaltite Thin Films[J]. Journal of Physics: Condensed Matter, 2021, 33(10): 104004.
[170] Gilbert D A, Grutter A J, Murray P D, et al. Ionic Tuning of Cobaltites at the Nanoscale[J]. Physical Review Materials, 2018, 2(10): 104402.
[171] Li Z, Shen S, Tian Z, et al. Reversible Manipulation of the Magnetic State in SrRuO3 through Electric-Field Controlled Proton Evolution[J]. Nature Communications, 2020, 11(1): 184.
[172] Qin Q, Liu L, Lin W, et al. Emergence of Topological Hall Effect in a SrRuO3 Single Layer[J]. Advanced Materials, 2019, 31(8): e1807008.
[173] Li H B, Kobayashi S, Zhong C, et al. Dehydration of Electrochemically Protonated Oxide: SrCoO2 with Square Spin Tubes[J]. Journal of the American Chemical Society, 2021, 143(42): 17517-17525.
[174] Lu Q, Huberman S, Zhang H, et al. Bi-Directional Tuning of Thermal Transport in SrCoOx with Electrochemically Induced Phase Transitions[J]. Nature Materials, 2020, 19: 655-662.
[175] Katayama T, Chikamatsu A, Kamisaka H, et al. Topotactic Synthesis of Strontium Cobalt Oxyhydride Thin Film with Perovskite Structure[J]. AIP Advances, 2015, 5(10): 107147.
[176] Hu S, Wang Y, Cazorla C, et al. Strain-Enhanced Oxygen Dynamics and Redox Reversibility in Topotactic SrCoO3-δ (0 < δ ≤ 0.5)[J]. Chemistry of Materials, 2017, 29(2): 708-717.
[177] Wang Y, He Q, Ming W, et al. Robust Ferromagnetism in Highly Strained SrCoO3 Thin Films[J]. Physical Review X, 2020, 10(2): 021030.
[178] Hu S, Seidel J. Oxygen Content Modulation by Nanoscale Chemical and Electrical Patterning in Epitaxial SrCoO3-δ (0 < δ ≤ 0.5) Thin Films[J]. Nanotechnology, 2016, 27(32): 325301.
[179] Lee J H, Rabe K M. Coupled Magnetic-Ferroelectric Metal-Insulator Transition in Epitaxially Strained SrCoO3 from First Principles[J]. Physical Review Letters, 2011, 107(6): 067601.
[180] Callori S J, Hu S, Bertinshaw J, et al. Strain-Induced Magnetic Phase Transition in SrCoO3−δ Thin Films[J]. Physical Review B, 2015, 91(14): 140405.
[181] Hu S, Yue Z, Lim J S, et al. Growth and Properties of Fully Strained SrCoOx (x ≈ 2.8) Thin Films on DyScO3[J]. Advanced Materials Interfaces, 2015, 2(8): 1500012.
[182] James M, Avdeev M, Barnes P, et al. Orthorhombic Superstructures within the Rare Earth Strontium-Doped Cobaltate Perovskites: Ln1−xSrxCoO3−δ (Ln=Y3+, Dy3+–Yb3+; 0.750⩽x⩽0.875)[J]. Journal of Solid State Chemistry, 2007, 180(8): 2233-2247.
[183] Maignan A, Hébert S, Caignaert V, et al. Sr2/3Y1/3CoO8/3+δ: Transition from Insulating Antiferromagnet to Metallic Ferromagnet by Control of the Oxygen Content[J]. Journal of Solid State Chemistry, 2005, 178(3): 868-873.
[184] Kobayashi W, Ishiwata S, Terasaki I, et al. Room-Temperature Ferromagnetism in Sr1-xYxCoO3-δ (0.2 ≤ x ≤ 0.25)[J]. Physical Review B, 2005, 72(10): 104408.
[185] Sunstrom J E, Ramanujachary K V, Greenblatt M, et al. The Synthesis and Properties of the Chemically Oxidized Perovskite, La1–xSrxCoO3−δ (0.5≤x≤0.9)[J]. Journal of Solid State Chemistry, 1998, 139(2): 388-397.
[186] Raveau B, Pralong V, Caignaert V, et al. Primordial Role of Cobalt Valence in the Magnetotransport Properties of Oxygen Deficient Perovskites Sr1−xLnxCoO3−δ[J]. Journal of Physics: Condensed Matter, 2005, 17(46): 7371.
[187] Huang H, Chen Z, Xie L, et al. Neodymium‐Doping Concentration Induced Face‐Shared to Corner‐Shared Transition in Strontium Cobaltite[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(7): 9294-9301.
[188] Wang J, Jiang L, Xiong X, et al. A Broad Stability Investigation of Nb-Doped SrCoO2.5+δ as a Reversible Oxygen Electrode for Intermediate-Temperature Solid Oxide Fuel Cells[J]. Journal of The Electrochemical Society, 2016, 163(8): F891-F898.
[189] Wang J, Jin X, Huang K. A New Defect Chemistry Model for Nb-Doped SrCoO2.5+δ: The Role of Oxygen Interstitials and Delocalized-to-Localized Electron Holes[J]. Journal of Solid State Chemistry, 2017, 246: 97-106.
[190] Fuertes V C, Eroles F M, Menzaque A D, et al. Sol-Gel Synthesis of Cubic Nb/Ta-Doped SrCoO3−δ with Mixed Nano-Micro Morphology[J]. Materials Research Express, 2019, 6(8): 085549.
[191] Chen X, Huang L, Wei Y, et al. Tantalum Stabilized SrCoO3−δ Perovskite Membrane for Oxygen Separation[J]. Journal of Membrane Science, 2011, 368(1): 159-164.
[192] Park J H, Lee Y A, Yu J H, et al. Effects of Nb and Sn Co-Doping on the Structure and Properties of SrCoO3-δ Oxygen Transport Membranes[J]. Journal of Asian Ceramic Societies, 2020, 8(2): 519-527.
[193] Le S, Li C, Song X, et al. A Novel Nb and Cu Co-Doped SrCoO3-δ Cathode for Intermediate Temperature Solid Oxide Fuel Cells[J]. International Journal of Hydrogen Energy, 2020, 45(18): 10862-10870.
[194] Vojvodic A, Nørskov J K. Optimizing Perovskites for the Water-Splitting Reaction[J]. Science, 2011, 334(6061): 1355-1356.
[195] Suntivich J, May K J, Gasteiger H A, et al. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles[J]. Science, 2011, 334(6061): 1383-1385.
[196] Grimaud A, May K J, Carlton C E, et al. Double Perovskites as a Family of Highly Active Catalysts for Oxygen Evolution in Alkaline Solution[J]. Nature Communications, 2013, 4: 2439.
[197] Chang S H, Danilovic N, Chang K-C, et al. Functional Links between Stability and Reactivity of Strontium Ruthenate Single Crystals during Oxygen Evolution[J]. Nature Communications, 2014, 5(1): 4191.
[198] Kim J, Yin X, Tsao K C, et al. Ca2Mn2O5 as Oxygen-Deficient Perovskite Electrocatalyst for Oxygen Evolution Reaction[J]. Journal of the American Chemical Society, 2014, 136(42): 14646-14649.
[199] Lee S A, Oh S, Hwang J-Y, et al. Enhanced Electrocatalytic Activity via Phase Transitions in Strongly Correlated SrRuO3 Thin Films[J]. Energy & Environmental Science, 2017, 10(4): 924-930.
[200] Weng Z, Huang H, Li X, et al. Coordination Tailoring of Epitaxial Perovskite-Derived Iron Oxide Films for Efficient Water Oxidation Electrocatalysis[J]. ACS Catalysis, 2023, 13(4): 2751-2760.
[201] Stoerzinger K A, Choi W S, Jeen H, et al. Role of Strain and Conductivity in Oxygen Electrocatalysis on LaCoO3 Thin Films[J]. The Journal of Physical Chemistry Letters, 2015, 6(3): 487-492.
[202] An Q, Xu Z, Wang Z, et al. Tuning of the Oxygen Vacancies in LaCoO3 Films at the Atomic Scale[J]. Applied Physics Letters, 2021, 118(8): 081602.
[203] Hayward M A, Cussen E J, Claridge J B, et al. The Hydride Anion in an Extended Transition Metal Oxide Array: LaSrCoO3H0.7[J]. Science, 2002, 295(5561): 1882-1884.
[204] Bouilly G, Yajima T, Terashima T, et al. Electrical Properties of Epitaxial Thin Films of Oxyhydrides ATiO3–xHx (A = Ba and Sr)[J]. Chemistry of Materials, 2015, 27(18): 6354-6359.
[205] S. M S, M. V S. Scanning Probe Microscopy[J]. IEEE Control Systems Magazine, 2008, 28(2): 65-83.
[206] Utsunomiya S, Ewing R C. Application of High-Angle Annular Dark Field Scanning Transmission Electron Microscopy, Scanning Transmission Electron Microscopy-Energy Dispersive X-ray Spectrometry, and Energy-Filtered Transmission Electron Microscopy to the Characterization of Nanoparticles in the Environment[J]. Environmental Science & Technology, 2003, 37(4): 786-791.
[207] Fagaly R L. Superconducting Quantum Interference Device Instruments and Applications[J]. Review of Scientific Instruments, 2006, 77(10): 101101.
[208] Guo H, Wang J-O, He X, et al. The Origin of Oxygen Vacancies Controlling La2/3Sr1/3MnO3 Electronic and Magnetic Properties[J]. Advanced Materials Interfaces, 2016, 3(5): 1500753.
[209] Yang J J, Pickett M D, Li X, et al. Memristive Switching Mechanism for Metal/Oxide/Metal Nanodevices[J]. Nature Nanotechnology, 2008, 3: 429.
[210] Kagomiya I, Murayama T, Tsunekawa K, et al. Crystalline Phases and Oxygen Permeation Properties of Mixed Conductive (La, Ca)FeO3-δ[J]. Journal of the European Ceramic Society, 2019, 39(4): 1082-1092.
[211] Trabelsi H, Bejar M, Dhahri E, et al. Oxygen-Vacancy-Related Giant Permittivity and Ethanol Sensing Response in SrTiO3-δ Ceramics[J]. Physica E: Low-dimensional Systems and Nanostructures, 2019, 108: 317-325.
[212] Safakas A, Bampos G, Bebelis S. Oxygen Reduction Reaction on La0.8Sr0.2CoxFe1-xO3-δ Perovskite/Carbon Black Electrocatalysts in Alkaline Medium[J]. Applied Catalysis B: Environmental, 2019, 244: 225-232.
[213] Huo W C, Dong X A, Li J Y, et al. Synthesis of Bi2WO6 with Gradient Oxygen Vacancies for Highly Photocatalytic NO Oxidation and Mechanism Study[J]. Chemical Engineering Journal, 2019, 361: 129-138.
[214] Campbell C T, Peden C H F. Oxygen Vacancies and Catalysis on Ceria Surfaces[J]. Science, 2005, 309(5735): 713.
[215] Mayeshiba T T, Morgan D D. Factors Controlling Oxygen Migration Barriers in Perovskites[J]. Solid State Ionics, 2016, 296: 71-77.
[216] Shin H H, Mullins C B, Goodenough J B. Oxygen-Electrode Catalysis on Oxoperovskites at 700 ℃ versus 20 ℃[J]. Chemistry of Materials, 2018, 30(3): 629-635.
[217] Wang G, Wang H, Ling Y, et al. Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting[J]. Nano Letters, 2011, 11(7): 3026-3033.
[218] Wang Y, Cao G. Developments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries[J]. Advanced Materials, 2008, 20(12): 2251-2269.
[219] Zhi M, Xiang C, Li J, et al. Nanostructured Carbon–Metal Oxide Composite Electrodes for Supercapacitors: A Review[J]. Nanoscale, 2013, 5(1): 72-88.
[220] Armstrong A R, Holzapfel M, Novák P, et al. Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. Journal of the American Chemical Society, 2006, 128(26): 8694-8698.
[221] Wang Y, Xiao X, Li Q, et al. Synthesis and Progress of New Oxygen-Vacant Electrode Materials for High-Energy Rechargeable Battery Applications[J]. Small, 2018, 14(41): 1802193.
[222] Janousch M, Meijer G I, Staub U, et al. Role of Oxygen Vacancies in Cr-Doped SrTiO3 for Resistance-Change Memory[J]. Advanced Materials, 2007, 19(17): 2232-2235.
[223] Maignan A, Martin C, Pelloquin D, et al. Structural and Magnetic Studies of Ordered Oxygen-Deficient Perovskites LnBaCo2O5+δ, Closely Related to the “112” Structure[J]. Journal of Solid State Chemistry, 1999, 142(2): 247-260.
[224] Presland M R, Tallon J L, Buckley R G, et al. General Trends in Oxygen Stoichiometry Effects on Tc in Bi and Tl Superconductors[J]. Physica C, 1991, 176: 95-105.
[225] Cava R J, Batlogg B, Chen C H, et al. Oxygen Stoichiometry, Superconductivity and Normal-State Properties of YBa2Cu3O7–δ[J]. Nature, 1987, 329(6138): 423-425.
[226] Nemudry A, Rudolf P, Schöllhorn R. Topotactic Electrochemical Redox Reactions of the Defect Perovskite SrCoO2.5+x[J]. Chemistry of Materials, 1996, 8(9): 2232-2238.
[227] Ichikawa N, Iwanowska M, Kawai M, et al. Reduction and Oxidation of SrCoO2.5 Thin Films at Low Temperatures[J]. Dalton Transactions, 2012, 41(35): 10507-10510.
[228] Mefford J T, Rong X, Abakumov A M, et al. Water Electrolysis on La1−xSrxCoO3−δ Perovskite Electrocatalysts[J]. Nature Communications, 2016, 7(1): 11053.
[229] Jeen H, Bi Z, Choi W S, et al. Orienting Oxygen Vacancies for Fast Catalytic Reaction[J]. Advanced Materials, 2013, 25(44): 6459-6463.
[230] Taguchi H, Shimada M, Koizumi M. The Effect of Oxygen Vacancy on the Magnetic Properties in the System SrCoO3-δ (0 < δ < 0.5)[J]. Journal of Solid State Chemistry, 1979, 29: 221-225.
[231] Long Y, Kaneko Y, Ishiwata S, et al. Synthesis of Cubic SrCoO3 Single Crystal and Its Anisotropic Magnetic and Transport Properties[J]. Journal of Physics: Condensed Matter, 2011, 23(24): 245601.
[232] Hu S, Alsubaie A, Wang Y, et al. Poisson's Ratio of BiFeO3 Thin Films: X-Ray Reciprocal Space Mapping under Variable Uniaxial Strain[J]. Physica Status Solidi A, 2017, 214(1): 1600356.
[233] Zhao J, Guo H, He X, et al. Manipulating the Structural and Electronic Properties of Epitaxial SrCoO2.5 Thin Films by Tuning the Epitaxial Strain[J]. ACS Applied Materials & Interfaces, 2018, 10(12): 10211-10219.
[234] Hu Z, Grazioli C, Knupfer M, et al. Difference in Spin State and Covalence between La1−xSrxCoO3 and La2−xSrxLi0.5Co0.5O4[J]. Journal of Alloys and Compounds, 2002, 343(1): 5-13.
[235] Lu Q, Chen Y, Bluhm H, et al. Electronic Structure Evolution of SrCoOx during Electrochemically Driven Phase Transition Probed by in Situ X-ray Spectroscopy[J]. The Journal of Physical Chemistry C, 2016, 120(42): 24148-24157.
[236] Bi Y, Tao J, Wu Y, et al. Reversible Planar Gliding and Microcracking in a Single-Crystalline Ni-Rich Cathode[J]. Science, 2020, 370: 1313–1317.
[237] Pacchioni G. Oxygen Vacancy: the Invisible Agent on Oxide Surfaces[J]. ChemPhysChem, 2003, 4(10): 1041-1047.
[238] Hu S, Zhu Y, Han W, et al. High-Conductive Protonated Layered Oxides from H2O Vapor-Annealed Brownmillerites[J]. Advanced Materials, 2021, 33: 2104623.
[239] Hu S, Han W, Li X, et al. Converting Brownmillerite to Alternate Layers of Oxygen‐Deficient and Conductive Nano‐Sheets with Enhanced Thermoelectric Properties[J]. Advanced Energy Materials, 2022, 12: 2201469.
[240] Zhang N, Li X, Ye H, et al. Oxide Defect Engineering Enables to Couple Solar Energy into Oxygen Activation[J]. Journal of the American Chemical Society, 2016, 138(28): 8928-8935.
[241] Zhu Y, Zhang L, Zhao B, et al. Improving the Activity for Oxygen Evolution Reaction by Tailoring Oxygen Defects in Double Perovskite Oxides[J]. Advanced Functional Materials, 2019, 29(34): 1901783.
[242] Li D, Li M, Zahid F, et al. Oxygen Vacancy Filament Formation in TiO2: A Kinetic Monte Carlo Study[J]. Journal of Applied Physics, 2012, 112(7): 073512.
[243] Choi W S, Jeen H, Lee J H, et al. Reversal of the Lattice Structure in SrCoOx Epitaxial Thin Films Studied by Real-Time Optical Spectroscopy and First-Principles Calculations[J]. Physical Review Letters, 2013, 111(9): 097401.
[244] Zhang J, Zheng H, Malliakas C D, et al. Brownmillerite Ca2Co2O5: Synthesis, Stability, and Re-entrant Single Crystal to Single Crystal Structural Transitions[J]. Chemistry of Materials, 2014, 26(24): 7172-7182.
[245] Liu G, Li X, Wang Y, et al. Nanoscale Domains of Ordered Oxygen-Vacancies in LaCoO3 Films[J]. Applied Surface Science, 2017, 425: 121-129.
[246] Walter J, Bose S, Cabero M, et al. Perpendicular Magnetic Anisotropy via Strain-Engineered Oxygen Vacancy Ordering in Epitaxial La1−xSrxCoO3−δ[J]. Physical Review Materials, 2018, 2(11): 111404.
[247] Yang Y, Ma C, Liu M, et al. Creating a Low-Symmetry Insulating, Ferroelectric, and Antiferromagnetic Material From a High-Symmetrical Metallic Ferromagnet via Defect Engineering: The Case of LaBaCo2O5+δ Compounds[J]. Physical Review B, 2017, 95(16): 165132.
[248] Lufaso M W, Woodward P M. Jahn-Teller Distortions, Cation Ordering and Octahedral Tilting in Perovskites[J]. Acta Crystallographica Section B, 2004, 60(1): 10-20.
[249] Kresse G, Furthmuller J. Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set[J]. Physical Review B, 1996, 54(16): 11170.
[250] Sun J, Ruzsinszky A, Perdew J P. Strongly Constrained and Appropriately Normed Semilocal Density Functional[J]. Physical Review Letters, 2015, 115(3): 036402.
[251] Kim B J, Koh H, Rotenberg E, et al. Distinct Spinon and Holon Dispersions in Photoemission Spectral Functions from One-Dimensional SrCuO2[J]. Nature Physics, 2006, 2(6): 397-401.
[252] Mizokawa T, Wakisaka Y, Sudayama T, et al. Role of Oxygen Holes in LixCoO2 Revealed by Soft X-Ray Spectroscopy[J]. Physical Review Letters, 2013, 111(5): 056404.
[253] Jiang P, Prendergast D, Borondics F, et al. Experimental and Theoretical Investigation of the Electronic Structure of Cu2O and CuO Thin Films on Cu(110) Using X-Ray Photoelectron and Absorption Sspectroscopy[J]. The Journal of Chemical Physics, 2013, 138(2): 024704.
[254] An Q, Meng M, Wang Z, et al. Realization of Monophased LaCoOx Films with Ordered Oxygen Vacancies[J]. Physica Status Solidi A, 2019, 217(1): 1900848.
[255] Han W, Hu S, Liu Q, et al. Strain-Induced Microstructure Damage in SrCoO3−δ Thin Films during the Oxygen Evolution Reaction[J]. ACS Applied Energy Materials, 2021, 4(11): 12696-12702.
[256] Antipin D, Risch M. Trends of Epitaxial Perovskite Oxide Films Catalyzing the Oxygen Evolution Reaction in Alkaline Media[J]. Journal of Physics: Energy, 2020, 2(3): 032003.
[257] Matsumoto Y, Yamada S, Nishida T, et al. Oxygen Evolution on La1−xSrxFe1−yCoyO3 Series Oxides[J]. Journal of The Electrochemical Society, 1980, 127(11): 2360.
[258] Bocca C, Barbucci A, Delucchi M, et al. Nickel-Cobalt Oxide-Coated Electrodes: Influence of the Preparation Technique on Oxygen Evolution Reaction (OER) in an Alkaline Solution[J]. International Journal of Hydrogen Energy, 1999, 24: 21-26.
[259] Tong Y, Guo Y, Chen P, et al. Spin-State Regulation of Perovskite Cobaltite to Realize Enhanced Oxygen Evolution Activity[J]. Chem, 2017, 3(5): 812-821.
[260] Stoerzinger K A, Renshaw Wang X, Hwang J, et al. Speciation and Electronic Structure of La1−xSrxCoO3−δ During Oxygen Electrolysis[J]. Topics in Catalysis, 2018, 61(20): 2161-2174.
[261] Wang C, Zeng L, Guo W, et al. Enhancing Oxygen and Hydrogen Evolution Activities of Perovskite Oxide LaCoO3 via Effective Doping of Platinum[J]. RSC Advances, 2019, 9(61): 35646-35654.
[262] Stoerzinger K A, Qiao L, Biegalski M D, et al. Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2 and RuO2[J]. The Journal of Physical Chemistry Letters, 2014, 5(10): 1636-1641.
[263] Buvat G, Eslamibidgoli M J, Youssef A H, et al. Effect of IrO6 Octahedron Distortion on the OER Activity at (100) IrO2 Thin Film[J]. ACS Catalysis, 2019, 10(1): 806-817.
[264] Weber M L, Baeumer C, Mueller D N, et al. Electrolysis of Water at Atomically Tailored Epitaxial Cobaltite Surfaces[J]. Chemistry of Materials, 2019, 31(7): 2337-2346.
[265] Lippert T, Montenegro M J, Döbeli M, et al. Perovskite Thin Films Deposited by Pulsed Laser Ablation as Model Systems for Electrochemical Applications[J]. Progress in Solid State Chemistry, 2007, 35(2): 221-231.
[266] Wang L, Du Y, Chang L, et al. Band Alignment and Electrocatalytic Activity at the p-n La0.88Sr0.12FeO3/SrTiO3(001) Heterojunction[J]. Applied Physics Letters, 2018, 112(26): 261601.
[267] Bak J, Bin Bae H, Chung S-Y. Atomic-Scale Perturbation of Oxygen Octahedra via Surface Ion Exchange in Perovskite Nickelates Boosts Water Oxidation[J]. Nature Communications, 2019, 10(1): 2713.
[268] Wang L, Stoerzinger K A, Chang L, et al. Strain Effect on Oxygen Evolution Reaction Activity of Epitaxial NdNiO3 Thin Films[J]. ACS Applied Materials & Interfaces, 2019, 11(13): 12941-12947.
[269] Liu J, Jia E, Wang L, et al. Tuning the Electronic Structure of LaNiO3 through Alloying with Strontium to Enhance Oxygen Evolution Activity[J]. Advanced Science, 2019, 6(19): 1901073.
[270] Wang L, Stoerzinger K A, Chang L, et al. Tuning Bifunctional Oxygen Electrocatalysts by Changing the A-Site Rare-Earth Element in Perovskite Nickelates[J]. Advanced Functional Materials, 2018, 28(39): 1803712.
[271] Scholz J, Risch M, Stoerzinger K A, et al. Rotating Ring–Disk Electrode Study of Oxygen Evolution at a Perovskite Surface: Correlating Activity to Manganese Concentration[J]. The Journal of Physical Chemistry C, 2016, 120(49): 27746-27756.
[272] Roddatis V, Lole G, Jooss C. In Situ Preparation of Pr1-xCaxMnO3 and La1-xSrxMnO3 Catalysts Surface for High-Resolution Environmental Transmission Electron Microscopy[J]. Catalysts, 2019, 9(9): 751.
[273] Tang R, Nie Y, Kawasaki J K, et al. Oxygen Evolution Reaction Electrocatalysis on SrIrO3 Grown Using Molecular Beam Epitaxy[J]. Journal of Materials Chemistry A, 2016, 4(18): 6831-6836.
[274] Hu S, Han W, Hu S, et al. Voltage-Controlled Oxygen Non-Stoichiometry in SrCoO3−δ Thin Films[J]. Chemistry of Materials, 2019, 31(16): 6117-6123.
[275] Paraskevopoulos M, Hemberger J, Krimmel A, et al. Magnetic Ordering and Spin-State Transition in R0.67Sr0.33CoO3[J]. Physical Review B, 2001, 63(22): 224416.
[276] Stauffer D D, Leighton C. Magnetic Phase Behavior of the Ferrimagnetic Doped Cobaltite Nd1−xSrxCoO3[J]. Physical Review B, 2004, 70(21): 214414.
[277] Khare A, Shin D, Yoo T S, et al. Topotactic Metal–Insulator Transition in Epitaxial SrFeOx Thin Films[J]. Advanced Materials, 2017, 29(37): 1606566.
[278] Masset A C, Michel C, Maignan A, et al. Misfit-Layered Cobaltite with an Anisotropic Giant Magnetoresistance: Ca3Co4O9[J]. Physical Review B, 2000, 62(1): 166-175.
[279] Dahéron L, Dedryvère R, Martinez H, et al. Electron Transfer Mechanisms upon Lithium Deintercalation from LiCoO2 to CoO2 Investigated by XPS[J]. Chemistry of Materials, 2008, 20(2): 583-590.
[280] Bergmann A, Jones T E, Martinez Moreno E, et al. Unified Structural Motifs of the Catalytically Active State of Co(oxyhydr)oxides during the Electrochemical Oxygen Evolution Reaction[J]. Nature Catalysis, 2018, 1(9): 711-719.
[281] Bediako D K, Surendranath Y, Nocera D G. Mechanistic Studies of the Oxygen Evolution Reaction Mediated by a Nickel–Borate Thin Film Electrocatalyst[J]. Journal of the American Chemical Society, 2013, 135(9): 3662-3674.
[282] Poetzsch D, Merkle R, Maier J. Stoichiometry Variation in Materials with Three Mobile Carriers—Thermodynamics and Transport Kinetics Exemplified for Protons, Oxygen Vacancies, and Holes[J]. Advanced Functional Materials, 2015, 25(10): 1542-1557.
[283] Paul B, Björk E M, Kumar A, et al. Nanoporous Ca3Co4O9 Thin Films for Transferable Thermoelectrics[J]. ACS Applied Energy Materials, 2018, 1(5): 2261-2268.
[284] Boullay P, Seshadri R, Studer F, et al. Chemical and Physical Aspects of the Misfit Layer Oxides Tlα[(Sr1-yCay)O]1+x(CoO2)[J]. Chemistry of Materials, 1998, 10(1): 92-102.
[285] Bonaccorso F, Colombo L, Yu G, et al. Graphene, Related Two-Dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage[J]. Science, 2015, 347(6217): 1246501.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/633382
专题理学院_物理系
推荐引用方式
GB/T 7714
韩文乔. 钴酸锶薄膜的结构调控及其性质研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930736-韩文乔-物理系.pdf(12191KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[韩文乔]的文章
百度学术
百度学术中相似的文章
[韩文乔]的文章
必应学术
必应学术中相似的文章
[韩文乔]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。