[1] Klocke F, Brinksmeier E, Evans C, et al. High-Speed Grinding-Fundamentals and State of the Art in Europe, Japan, and the USA[J]. CIRP Annals, 1997, 46(2): 715-724.
[2] Zener C, Hollomon J H. Effect of Strain Rate Upon Plastic Flow of Steel[J]. J. Appl. Phys, 1944, 15(1): 22-32.
[3] Zhang B, Yin J. The ‘skin effect’ of subsurface damage distribution in materials subjected to high-speed machining[J]. International Journal of Extreme Manufacturing, 2019, 1(1): 012007.
[4] Meyers M A. Dynamic behavior of materials[M]. John Wiley & Sons, 1994.
[5] 王礼立, 胡时胜, 杨黎明, 等. 材料动力学[M]. 合肥: 中国科学技术大学出版社, 2017.
[6] Salomon C J. Process for machining metals of similar acting materials when being worked by cutting tools: 523594[P]. 1931.
[7] Longbottom J M, Lanham J D. A review of research related to Salomon’s hypothesis on cutting speeds and temperatures[J]. International Journal of Machine Tools and Manufacture, 2006, 46(14): 1740-1747.
[8] Bifano T G, Dow T A, Scattergood R O. Ductile-Regime Grinding: A New Technology for Machining Brittle Materials[J]. Journal of Engineering for Industry, 1991, 113(2): 184-189.
[9] Zhang B, Tokura H, Yoshikawa M. Study on surface cracking of alumina scratched by single-point diamonds[J]. Journal of Materials Science, 1988, 23(9): 3214-3224.
[10] Samuels J, Roberts S G, Hirsch P B. The brittle–ductile transition in silicon. I. Experiments[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1989, 421(1860): 1-23.
[11] Hirsch P B, Roberts S G, Samuels J. The brittle-ductile transition in silicon. II. Interpretation[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1989, 421(1860): 25-53.
[12] 张诗曼, 黄树涛, 许立福, 等. 高速铣削高强度钢切屑形态及影响因素研究[J]. 工具技术, 2021, 55(12): 19-24.
[13] 王敏杰, 王阳, 魏兆成, 等. 切削过程绝热剪切带的滑移线场研究[J]. 机械工程学报, 2022, 58(7): 11.
[14] 李志刚, 李淑欣, 余丰, 等. 试样形状对轴承钢绝热剪切带微观组织的影响[J]. 爆炸与冲击, 2023, 43(4): 53-63.
[15] Wright T W. The physics and mathematics of adiabatic shear bands[M]. Cambridge University Press, 2002.
[16] Davies M A, Burns T J, Evans C J. On the Dynamics of Chip Formation in Machining Hard Metals[J]. CIRP Annals, 1997, 46(1): 25-30.
[17] Ma W, Chen X, Shuang F. The chip-flow behaviors and formation mechanisms in the orthogonal cutting process of Ti6Al4V alloy[J]. Journal of the Mechanics and Physics of Solids, 2017, 98: 245-270.
[18] Cai S L, Dai L H. Suppression of repeated adiabatic shear banding by dynamic large strain extrusion machining[J]. Journal of the Mechanics and Physics of Solids, 2014, 73: 84-102.
[19] Ye G G, Xue S F, Ma W, et al. Cutting AISI 1045 steel at very high speeds[J]. International Journal of Machine Tools and Manufacture, 2012, 56: 1-9.
[20] Sutter G, List G. Very high speed cutting of Ti–6Al–4V titanium alloy–change in morphology and mechanism of chip formation[J]. International Journal of Machine Tools and Manufacture, 2013, 66: 37-43.
[21] Zhang J, He B, Zhang B. Failure mode change and material damage with varied machining speeds: a review[J]. International Journal of Extreme Manufacturing, 2023, 5(2): 022003.
[22] Bai Y L. Thermo-plastic instability in simple shear[J]. Journal of the Mechanics and Physics of Solids, 1982, 30(4): 195-207.
[23] Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering fracture mechanics, 1985, 21(1): 31-48.
[24] Klopp R W, Clifton R J, Shawki T G. Pressure-shear impact and the dynamic viscoplastic response of metals[J]. Mechanics of Materials, 1985, 4(3): 375-385.
[25] Messerschmidt U. Dislocation dynamics during plastic deformation: Vol. 129[M]. Springer Science & Business Media, 2010.
[26] Hull D, Bacon D J. Introduction to dislocations[M]. Butterworth-Heinemann, 2001.
[27] Regazzoni G, Kocks U F, Follansbee P S. Dislocation kinetics at high strain rates[J]. Acta Metallurgica, 1987, 35(12): 2865-2875.
[28] Follansbee P S, Kocks U F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable[J]. Acta Metallurgica, 1988, 36(1): 81-93.
[29] Wedberg D, Lindgren L E. Modelling flow stress of AISI 316L at high strain rates[J]. Mechanics of Materials, 2015, 91: 194-207.
[30] Hoge K G, Mukherjee A K. The temperature and strain rate dependence of the flow stress of tantalum[J]. Journal of Materials Science, 1977, 12(8): 1666-1672.
[31] Zerilli F J, Armstrong R W. The effect of dislocation drag on the stress-strain behavior of F.C.C. metals[J]. Acta Metallurgica, 1992, 40(8): 1803-1808.
[32] Gao C Y, Zhang L C. Constitutive modelling of plasticity of fcc metals under extremely high strain rates[J]. International Journal of Plasticity, 2012, 32-33: 121-133.
[33] Rice J R, Tracey D M. On the ductile enlargement of voids in triaxial stress fields[J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3): 201-217.
[34] Huang Y. Accurate dilatation rates for spherical voids in triaxial stress fields[J]. Journal of Applied Mechanics, Transactions ASME, 1991, 58: 1084-1086.
[35] Seppälä E T, Belak J, Rudd R E. Effect of stress triaxiality on void growth in dynamic fracture of metals: A molecular dynamics study[J]. Physical Review B, 2004, 69(13): 134101.
[36] Seppälä E T, Belak J, Rudd R E. Three-dimensional molecular dynamics simulations of void coalescence during dynamic fracture of ductile metals[J]. Physical Review B, 2005, 71(6): 064112.
[37] Marian J, Knap J, Ortiz M. Nanovoid cavitation by dislocation emission in aluminum[J]. Physical Review Letters, 2004, 93(16): 165503.
[38] Marian J, Knap J, Ortiz M. Nanovoid deformation in aluminum under simple shear[J]. Acta Materialia, 2005, 53(10): 2893-2900.
[39] Gurson A L. Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media[J]. Journal of Engineering Materials and Technology, 1977, 99(1): 2-15.
[40] Johnson J N. Dynamic fracture and spallation in ductile solids[J]. Journal of Applied Physics, 1981, 52(4): 2812-2825.
[41] Seaman L, Curran D R, Shockey D A. Computational models for ductile and brittle fracture[J]. Journal of Applied Physics, 1976, 47(11): 4814-4826.
[42] Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar[J]. Acta Metallurgica, 1984, 32(1): 157-169.
[43] Rogers H C. Adiabatic plastic deformation[J]. Annual Review of Materials Science, 1979, 9(1): 283-311.
[44] Oxley P L B, Shaw M C. Mechanics of machining: an analytical approach to assessing machinability[J]. 1990.
[45] Antoun T, Curran D R, Seaman L, et al. Spall fracture[M]. Springer Science & Business Media, 2003.
[46] Rankine W J M. On the thermodynamic theory of waves of finite longitudinal disturbance[J]. Philosophical Transactions of the Royal Society of London, 1870(160): 277-288.
[47] Salas M D. The curious events leading to the theory of shock waves[J]. Shock Waves, 2007, 16(6): 477-487.
[48] Anderson T L. Fracture mechanics: fundamentals and applications[M]. CRC press, 2017.
[49] Griffith A A, Taylor G I. VI. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1997, 221(582-593): 163-198.
[50] CE I. Stresses in a plate due to the presence of cracks and sharp corners[J]. Trans Inst Naval Archit, 1913, 55: 219-241.
[51] Westergaard H M. Bearing pressures and cracks: Bearing pressures through a slightly waved surface or through a nearly flat part of a cylinder, and related problems of cracks[J]. 1939.
[52] Thouless M D, Evans A G, Ashby M F, et al. The edge cracking and spalling of brittle plates[J]. Acta Metallurgica, 1987, 35(6): 1333-1341.
[53] Kendall K, Cottrell A H. Complexities of compression failure[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1997, 361(1705): 245-263.
[54] Ashby M F, Hallam (Née Cooksley) S D. The failure of brittle solids containing small cracks under compressive stress states[J]. Acta Metallurgica, 1986, 34(3): 497-510.
[55] Lawn B R, Marshall D B. Hardness, Toughness, and Brittleness: An Indentation Analysis[J]. Journal of the American Ceramic Society, 1979, 62(7-8): 347-350.
[56] Lawn B, Wilshaw R. Indentation fracture: principles and applications[J]. Journal of Materials Science, 1975, 10(6): 1049-1081.
[57] Lawn B R, Swain M V. Microfracture beneath point indentations in brittle solids[J]. Journal of Materials Science, 1975, 10(1): 113-122.
[58] Huang H, Lawn B R, Cook R F, et al. Critique of materials-based models of ductile machining in brittle solids[J]. Journal of the American Ceramic Society, 2020, 103(11): 6096-6100.
[59] Zarudi I, Zhang L C, Cheong W C D, et al. The difference of phase distributions in silicon after indentation with Berkovich and spherical indenters[J]. Acta Materialia, 2005, 53(18): 4795-4800.
[60] Zarudi I, Zhang L C. Effect of ultraprecision grinding on the microstructural change in silicon monocrystals[J]. Journal of Materials Processing Technology, 1998, 84(1): 149-158.
[61] Feng J, Huang X, Yang S, et al. Speed effect on the material behavior in high-speed scratching of BK7 glass[J]. Ceramics International, 2021, 47(14): 19978-19988.
[62] Schinker M G. Subsurface damage mechanisms at high-speed ductile machining of optical glasses[J]. Precision Engineering, 1991, 13(3): 208-218.
[63] Yang M, Li C, Zhang Y, et al. Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions[J]. International Journal of Machine Tools and Manufacture, 2017, 122: 55-65.
[64] Lee Y J, Senthil Kumar A, Wang H. Beneficial stress of a coating on ductile-mode cutting of single-crystal brittle material[J]. International Journal of Machine Tools and Manufacture, 2021, 168: 103787.
[65] Gu X, Wang H, Zhao Q, et al. Effect of cutting tool geometries on the ductile-brittle transition of monocrystalline sapphire[J]. International Journal of Mechanical Sciences, 2018, 148: 565-577.
[66] Yan J, Asami T, Harada H, et al. Crystallographic effect on subsurface damage formation in silicon microcutting[J]. CIRP Annals, 2012, 61(1): 131-134.
[67] Axinte D, Butler-Smith P, Akgun C, et al. On the influence of single grit micro-geometry on grinding behavior of ductile and brittle materials[J]. International Journal of Machine Tools and Manufacture, 2013, 74: 12-18.
[68] Mitrofanov A V, Babitsky V I, Silberschmidt V V. Finite element analysis of ultrasonically assisted turning of Inconel 718[J]. Journal of Materials Processing Technology, 2004, 153-154: 233-239.
[69] Umbrello D, M’Saoubi R, Outeiro J C. The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel[J]. International Journal of Machine Tools and Manufacture, 2007, 47(3): 462-470.
[70] Shrot A, Bäker M. Determination of Johnson–Cook parameters from machining simulations[J]. Computational Materials Science, 2012, 52(1): 298-304.
[71] Molinari A, Soldani X, Miguélez M H. Adiabatic shear banding and scaling laws in chip formation with application to cutting of Ti–6Al–4V[J]. Journal of the Mechanics and Physics of Solids, 2013, 61(11): 2331-2359.
[72] 董朝阳. 热塑性复合材料干摩擦滑动界面粘着与转移行为机理实验研究[D]. 重庆大学, 2021.
[73] Stillinger F H, Weber T A. Computer simulation of local order in condensed phases of silicon[J]. Physical Review B, 1985, 31(8): 5262-5271.
[74] Tersoff J. Chemical order in amorphous silicon carbide[J]. Physical Review B, 1994, 49(23): 16349.
[75] 苟勇军. 基于分子动力学的单晶钨切削亚表面损伤研究[D]. 大连理工大学, 2023.
[76] Abdulkadir L N, Abou-El-Hossein K, Jumare A I, et al. Review of molecular dynamics/experimental study of diamond-silicon behavior in nanoscale machining[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98(1): 317-371.
[77] Hahn E N, Germann T C, Ravelo R, et al. On the ultimate tensile strength of tantalum[J]. Acta Materialia, 2017, 126: 313-328.
[78] 卢守相, 杨秀轩, 张建秋, 等. 关于硬脆材料去除机理与加工损伤的理性思考[J]. 机械工程学报, 2022, 58(15): 31-45.
[79] Yan Y D, Dong S, Sun T. 3D force components measurement in AFM scratching tests[J]. Ultramicroscopy, 2005, 105(1): 62-71.
[80] Yan Y D, Sun T, Liang Y C, et al. Effects of scratching directions on AFM-based abrasive abrasion process[J]. Tribology International, 2009, 42(1): 66-70.
[81] Briscoe B J, Delfino A, Pelillo E. Single-pass pendulum scratching of poly (styrene) and poly (methylmethacrylate)[J]. Wear, 1999, 225: 319-328.
[82] Zhang Z, Guo D, Wang B, et al. A novel approach of high speed scratching on silicon wafers at nanoscale depths of cut[J]. Scientific Reports, 2015, 5(1): 1-9.
[83] 刘瑞娟, 聂卓赟, 邵辉, 等. 基于扩张状态观测器的迟滞非线性系统辨识[J]. 仪器仪表学报, 2017, 38(8): 8.
[84] 曹腾, 李晓牛, 王柏权, 等. 单相压电电机驱动的高精度孔径光阑设计[J]. 中国机械工程, 2022, 33(20): 6.
[85] Liu Q, Liao Z, Axinte D. Temperature effect on the material removal mechanism of soft-brittle crystals at nano/micron scale[J]. International Journal of Machine Tools and Manufacture, 2020, 159: 103620.
[86] Huang H, Li X, Mu D, et al. Science and art of ductile grinding of brittle solids[J]. International Journal of Machine Tools and Manufacture, 2021, 161: 103675.
[87] Zhang S, Zong W. Micro defects on diamond tool cutting edge affecting the ductile-mode machining of KDP crystal[J]. Micromachines, 2020, 11(12): 1102.
[88] O’Connor B P, Marsh E R, Couey J A. On the effect of crystallographic orientation on ductile material removal in silicon[J]. Precision Engineering, 2005, 29(1): 124-132.
[89] Huang W, Yan J. Chip-free surface patterning of toxic brittle polycrystalline materials through micro/nanoscale burnishing[J]. International Journal of Machine Tools and Manufacture, 2021, 162: 103688.
[90] Mohammadi H, Ravindra D, Kode S K, et al. Experimental work on micro laser-assisted diamond turning of silicon (111)[J]. Journal of Manufacturing Processes, 2015, 19: 125-128.
[91] Liu C, Chen X, Ke J, et al. Numerical investigation on subsurface damage in nanometric cutting of single-crystal silicon at elevated temperatures[J]. Journal of Manufacturing Processes, 2021, 68: 1060-1071.
[92] Chen X, Liu C, Ke J, et al. Subsurface damage and phase transformation in laser-assisted nanometric cutting of single crystal silicon[J]. Materials & Design, 2020, 190: 108524.
[93] Li C, Li X, Wu Y, et al. Deformation mechanism and force modelling of the grinding of YAG single crystals[J]. International Journal of Machine Tools and Manufacture, 2019, 143: 23-37.
[94] Huang H, Yin L, Zhou L. High speed grinding of silicon nitride with resin bond diamond wheels[J]. Journal of Materials Processing Technology, 2003, 141(3): 329-336.
[95] Malkin S, Guo C. Grinding technology: theory and application of machining with abrasives[M]. Industrial Press Inc., 2008.
[96] Giannuzzi L A, Stevie F A. A review of focused ion beam milling techniques for TEM specimen preparation[J]. Micron, 1999, 30(3): 197-204.
[97] Izumi H, Kita T, Arai S, et al. The origin of fatigue fracture in single-crystal silicon[J]. Journal of Materials Science, 2022, 57(18): 8557-8566.
[98] Berendsen H J, Postma J van, Van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath[J]. The Journal of chemical physics, 1984, 81(8): 3684-3690.
[99] Lee B, Rudd R E. First-principles study of the Young’s modulus of Si 〈001〉 nanowires[J]. Physical Review B, 2007, 75(4): 041305.
[100] Hauch J A, Holland D, Marder M P, et al. Dynamic Fracture in Single Crystal Silicon[J]. Physical Review Letters, 1999, 82(19): 3823-3826.
[101] Erhart P, Albe K. Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide[J]. Physical Review B, 2005, 71(3): 035211.
[102] Agrawal P M, Raff L M, Komanduri R. Monte Carlo simulations of void-nucleated melting of silicon via modification in the Tersoff potential parameters[J]. Physical Review B, 2005, 72(12): 125206.
[103] Thompson A P, Plimpton S J, Mattson W. General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions[J]. The Journal of chemical physics, 2009, 131(15): 154107.
[104] Maras E, Trushin O, Stukowski A, et al. Global transition path search for dislocation formation in Ge on Si(001)[J]. Computer Physics Communications, 2016, 205: 13-21.
[105] Hansen J P, McDonald I R. Theory of simple liquids[J]. Physics Today, 1988, 41(10): 89-90.
[106] Wu Z, Liu W, Zhang L, et al. Amorphization and dislocation evolution mechanisms of single crystalline 6H-SiC[J]. Acta Materialia, 2020, 182: 60-67.
[107] Tsujino M, Sano T, Ozaki N, et al. Quenching of High-Pressure Phases of Silicon Using Femtosecond Laser-driven Shock Wave[J]. The Review of Laser Engineering, 2008, 36.
[108] Voronin G A, Pantea C, Zerda T W, et al. In situ x-ray diffraction study of silicon at pressures up to 15.5 GPa and temperatures up to 1073 K[J]. Physical Review B, 2003, 68(2): 020102.
[109] Bowden F P, Brunton J H, Field J E, et al. Controlled fracture of brittle solids and interruption of electrical current[J]. Nature, 1967, 216: 38-42.
[110] Molinari A. Collective behavior and spacing of adiabatic shear bands[J]. Journal of the Mechanics and Physics of Solids, 1997, 45(9): 1551-1575.
[111] Wright T W, Ockendon H. A scaling law for the effect of inertia on the formation of adiabatic shear bands[J]. International Journal of Plasticity, 1996, 12(7): 927-934.
[112] Nesterenko V F, Meyers M A, Wright T W. Self-organization in the initiation of adiabatic shear bands[J]. Acta Materialia, 1998, 46(1): 327-340.
[113] Lovinger Z, Rikanati A, Rosenberg Z, et al. Electro-magnetic collapse of thick-walled cylinders to investigate spontaneous shear localization[J]. International Journal of Impact Engineering, 2011, 38(11): 918-929.
[114] Shaw M C, Cookson J O. Metal cutting principles: Vol. 2[M]. New York: Oxford university, 2005.
[115] Longbottom J M, Lanham J D. A review of research related to Salomon’s hypothesis on cutting speeds and temperatures[J]. International Journal of Machine Tools and Manufacture, 2006, 46(14): 1740-1747.
[116] Davies M A, Ueda T, M’Saoubi R, et al. On The Measurement of Temperature in Material Removal Processes[J]. CIRP Annals, 2007, 56(2): 581-604.
[117] Ueda T, Hosokawa A, Yamada K. Effect of Oil Mist on Tool Temperature in Cutting[J]. Journal of Manufacturing Science and Engineering, 2005, 128(1): 130-135.
[118] Ranc N, Pina V, Sutter G, et al. Temperature Measurement by Visible Pyrometry: Orthogonal Cutting Application[J]. Journal of Heat Transfer, 2005, 126(6): 931-936.
[119] Sutter G, Faure L, Molinari A, et al. An experimental technique for the measurement of temperature fields for the orthogonal cutting in high speed machining[J]. International Journal of Machine Tools and Manufacture, 2003, 43(7): 671-678.
[120] Malkin S, Hwang T W. Grinding Mechanisms for Ceramics[J]. CIRP Annals, 1996, 45(2): 569-580.
[121] Yang M, Li C, Zhang Y, et al. Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions[J]. Ceramics International, 2019, 45(12): 14908-14920.
[122] Zheng Z, Huang K, Lin C, et al. An analytical force and energy model for ductile-brittle transition in ultra-precision grinding of brittle materials[J]. International Journal of Mechanical Sciences, 2022, 220: 107107.
[123] Cotterell B, Rice J R. Slightly curved or kinked cracks[J]. International Journal of Fracture, 1980, 16(2): 155-169.
[124] Lankarani H M, Nikravesh P E. Continuous contact force models for impact analysis in multibody systems[J]. Nonlinear Dynamics, 1994, 5(2): 193-207.
[125] Hunt K H, Crossley F R E. Coefficient of Restitution Interpreted as Damping in Vibroimpact[J]. Journal of Applied Mechanics, 1975, 42(2): 440-445.
[126] Yi T, Li L, Kim C J. Microscale material testing of single crystalline silicon: process effects on surface morphology and tensile strength[J]. Sensors and Actuators A: Physical, 2000, 83(1): 172-178.
[127] Komanduri R, Schroeder T, Hazra J, et al. On the Catastrophic Shear Instability in High-Speed Machining of an AISI 4340 Steel[J]. Journal of Engineering for Industry, 1982, 104(2): 121-131.
[128] Ye G G, Xue S F, Jiang M Q, et al. Modeling periodic adiabatic shear band evolution during high speed machining Ti-6Al-4V alloy[J]. International Journal of Plasticity, 2013, 40: 39-55.
[129] Sutter G, Ranc N. Flash temperature measurement during dry friction process at high sliding speed[J]. Wear, 2010, 268(11-12): 1237-1242.
[130] Huang X, Ren Y, Zhou Z, et al. Experimental study on white layers in high-speed grinding of AISI52100 hardened steel[J]. Journal of Mechanical Science and Technology, 2015, 29(3): 1257-1263.
[131] Zhou L, Shimizu J, Muroya A, et al. Material removal mechanism beyond plastic wave propagation rate[J]. Precision Engineering, 2003, 27(2): 109-116.
[132] Wang B, Liu Z, Su G, et al. Investigations of critical cutting speed and ductile-to-brittle transition mechanism for workpiece material in ultra-high speed machining[J]. International Journal of Mechanical Sciences, 2015, 104: 44-59.
[133] Tersoff J. Chemical order in amorphous silicon carbide[J]. Physical Review B, 1994, 49(23): 16349.
[134] Fortner J, Lannin J S. Radial distribution functions of amorphous silicon[J]. Physical Review B, 1989, 39(8): 5527.
[135] Laaziri K, Kycia S, Roorda S, et al. High resolution radial distribution function of pure amorphous silicon[J]. Physical review letters, 1999, 82(17): 3460.
[136] Zhao S, Kad B, Hahn E N, et al. Pressure and shear-induced amorphization of silicon[J]. Extreme Mechanics Letters, 2015, 5: 74-80.
[137] Ye G G, Jiang M Q, Xue S F, et al. On the instability of chip flow in high-speed machining[J]. Mechanics of Materials, 2018, 116: 104-119.
[138] Xu Y, Zhang J, Bai Y, et al. Shear localization in dynamic deformation: microstructural evolution[J]. Metallurgical and materials transactions A, 2008, 39(4): 811-843.
[139] Sun K, Yu X, Tan C, et al. Effect of microstructure on adiabatic shear band bifurcation in Ti–6Al–4V alloys under ballistic impact[J]. Materials Science and Engineering: A, 2014, 595: 247-256.
[140] Yang Y, Jiang L. Self-organization of adiabatic shear bands in ZK60 Magnesium alloy[J]. Materials Science and Engineering: A, 2016, 655: 321-330.
[141] Zhao S, Hahn E N, Kad B, et al. Amorphization and nanocrystallization of silicon under shock compression[J]. Acta Materialia, 2016, 103: 519-533.
[142] Melosh H J. Impact cratering : a geologic process[M]//New York : Oxford University Press ; Oxford : Clarendon Press. 1989.
[143] Murr L E, A. Quinones S, Ferreyra T E, et al. The low-velocity-to-hypervelocity penetration transition for impact craters in metal targets[J]. Materials Science and Engineering: A, 1998, 256(1): 166-182.
[144] Goto T, Sato T, Syono Y. Reduction of shear strength and phase-transition in shock-loaded silicon[J]. Japanese Journal of Applied Physics, 1982, 21(6A): L369.
[145] Gust W H, Royce E B. Axial yield strengths and two successive phase transition stresses for crystalline silicon[J]. Journal of Applied Physics, 1971, 42(5): 1897-1905.
[146] Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity— I. Theory[J]. Journal of the Mechanics and Physics of Solids, 1999, 47(6): 1239-1263.
修改评论