[1] Y. Li, S.K. Chen, L. Li, et al., Bone defect animal models for testing efficacy of bone substitute biomaterials, J Orthop Transl, 2015, 3(3): 95-104.
[2] N. Mamidi, F. Ijadi, M.H. Norahan, Leveraging the Recent Advancements in GelMA Scaffolds for Bone Tissue Engineering: An Assessment of Challenges and Opportunities, Biomacromolecules, 2023.
[3] K.B. Fonseca, P.L. Granja, C.C. Barrias. Engineering proteolytically-degradable artificial extracellular matrices, Prog Polym Sci, 2014, 39(12): 2010 -2029.
[4] M.K. Subramaniyan, S. Thanigainathan, V. Elumalai, Fabrication and mechanical behavior of structurally graded material (ceramic-reinforced polylactic acid/polylactic acid) for integrated engineering application, P I Mech Eng E-J Pro, 2023.
[5] W. Ali, H. Ali, S. Gillani, et al., Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: a review, Environ Chem Lett, 2023, 21(3):1761-1786.
[6] A. Shearer, M. Montazerian, J.C. Mauro, Modern definition of bioactive glasses and glass-ceramics, J Non-Cryst Solids, 2023.
[7] H. Zhang, S.L. Wu, W.K. Chen, et al., Bone/cartilage targeted hydrogel: Strategies and applications, Bioact Mater, 2023, 23: 156-169.
[8] Y.X. Zhang, T.C. Wang, D.H. Zhang, et al., Thermosensitive hydrogel loaded with concentrated growth factors promote bone repair in segmental bone defects, Front Bioeng Biotech, 2022, 10:1039117.
[9] C. Li, H.Z. Lv, Y.W. Du, et al., "Biologically modified implantation as therapeutic bioabsorbable materials for bone defect repair", Regen Ther, 2021, 19:9-23.
[10] B. Wang, C.M. Feng, Y.M. Liu, et al., Recent advances in biofunctional guided bone regeneration materials for repairing defective alveolar and maxillofacial bone: A review, Jpn Dent Sci Rev, 2022, 58: 233-248.
[11] D.A. Wahjuningrum, Setyabudi, F. Cahyani, et al., Chitosan as Bone Scaffold and Graft Materials for Bone Regeneration: A Systematic Review, Malays J Fundam Appl, 2022, 18(5): 541-549.
[12] P.J. Hoskin, M.R.L. Stratford, L.K. Folkes, et al., Effect of local radiotherapy for bone pain on urinary markers of osteoclast activity, Lancet, 2000, 355(9213): 1428-1429.
[13] R. Sato, T. Matsuura, T. Akizuki, et al., Influence of the bone graft materials used for guided bone regeneration on subsequent peri-implant inflammation: an experimental ligature-induced peri-implantitis model in Beagle dogs, Int J Implant Dent, 2022, 8(1): 3.
[14] D.K. Khajuria, V. Karuppagounder, I. Nowak, et al., Cannabidiol and Cannabigerol, Nonpsychotropic Cannabinoids, as Analgesics that Effectively Manage Bone Fracture Pain and Promote Healing in Mice, J Bone Miner Res, 2023, 10: 1002.
[15] J. Mlost, M. Bryk, K. Starowicz, Cannabidiol for Pain Treatment: Focus on Pharmacology and Mechanism of Action, Int J Mol Sci, 2020, 21(22): 8870.
[16] D.H. Li, Z.L. Lin, Q.Y. Meng, et al., Cannabidiol administration reduces sublesional cancellous bone loss in rats with severe spinal cord injury, Eur J Pharmacol, 2017, 809: 13-19.
[17] N.M. Kogan, E. Melamed, E. Wasserman, et al., Cannabidiol, a Major Non - Psychotropic Cannabis Constituent Enhances Fracture Healing and Stimulates Lysyl Hydroxylase Activity in Osteoblasts, J Bone Miner Res, 2015, 30(10): 1905-1913.
[18] P.N. Tasker, H. MacDonald, W.D. Fraser, et al., Association of polymorphisms with bone mineral density in a population-based study of women from the UK, Osteoporosis Int, 2006, 17(7): 1078-1085.
[19] S.O. Zhang, Y.Q. Dong, M.K. Chen, et al., Recent developments in strontium-based biocomposites for bone regeneration, J Artif Organs, 2020, 23(3): 191-202.
[20] Y. Peng, F.B. Ma, L.Q. Hu, et al., Strontium based polysaccharides promote osteoblasts differentiation and mineralization, Int J Biol Macromol, 2022, 205: 761-771.
[21] F. De Benedetti, N. Rucci, A. Del Fattore, et al., Impaired skeletal development in interleukin-6-transgenic mice - A model for the impact of chronic inflammation on the growing skeletal system, Arthritis Rheum, 2006, 54(11): 3551-3563.
[22] H. Shimizu, H. Nakagami, S. Morita, et al., New Treatment of Periodontal Diseases by Using NF-κB Decoy Oligodeoxynucleotides Prevention of Bone Resorption and Promotion of Wound Healing, Antioxid Redox Sign, 2009, 11(9): 2065-2075.
[23] W. Lu, C. Zhou, Y. Ma, et al., Improved osseointegration of strontium-modified titanium implants by regulating angiogenesis and macrophage polarization, Biomater Sci-Uk, 2022, 10(9): 2198-2214.
[24] Q.Q. Wan, W.P. Qin, Y.X. Ma, et al., Crosstalk between Bone and Nerves within Bone, Adv Sci, 2021, 8(7): 2003390.
[25] Y. Wang, C.X. Yang, J.Z. Wan, et al., Bone marrow adipocyte: Origin, biology and relationship with hematological malignancy, Int J Lab Hematol, 2023, 1-10.
[26] S.C. Manolagas, A.M. Parfitt, What old means to bone, Trends Endocrin Met, 2010, 21(6): 369-374.
[27] J.G. Letarouilly, O. Broux, A. Clabaut, New insights into the epigenetics of osteoporosis, Genomics, 2019, 111(4): 793-798.
[28] M.M. Durdan, R.D. Azaria, M.M. Weivoda, Novel insights into the coupling of osteoclasts and resorption to bone formation, Semin Cell Dev Biol, 2022, 123: 4-13.
[29] S.L. Dallas, L.F. Bonewald, Dynamics of the transition from osteoblast to osteocyte, Ann Ny Acad Sci, 2010,1192: 437-443.
[30] J. Lassus, I. Tulikoura, Y.T. Konttinen, et al., Bone stress injuries of the lower extremity - A review, Acta Orthop Scand, 2002, 73(3): 359-368.
[31] W.H. Wang, K.W.K. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: A review, Bioact Mater, 2017, 2(4): 224-247.
[32] R.V.M. Groven, J. van Koll, M. Poeze, et al., miRNAs Related to Different Processes of Fracture Healing: An Integrative Overview, Front Surg, 2021, 8: 786564.
[33] E. Seeman, Bone quality: the material and structural basis of bone strength, J Bone Miner Metab, 2008, 26(1): 1-8.
[34] P. Kolar, K. Schmidt-Bleek, H. Schell, et al., The Early Fracture Hematoma and Its Potential Role in Fracture Healing, Tissue Eng Part B-Re, 2010, 16(4): 427-434.
[35] K. Prystaz, K. Kaiser, A. Kovtun, et al., Distinct Effects of IL-6 Classic and-Signaling in Bone Fracture Healing, Am J Pathol, 2018, 188(2): 474-490.
[36] L.C. Gerstenfeld, D.M. Cullinane, G.L. Barnes, et al., Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation, J Cell Biochem, 2003, 88(5): 873-884.
[37] C. Schlundt, T. El Khassawna, A. Serra, et al., Macrophages in bone fracture healing: Their essential role in endochondral ossification, Bone, 2018, 106: 78-89.
[38] B.K. Hall, T. Miyake, All for one and one for all: condensations and the initiation of skeletal development, Bioessays, 2000, 22(2): 138-147.
[39] O.D. de Lageneste, A. Julien, R. Abou-Khalil, et al., Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin, Nat Commun, 2018, 9(1): 773.
[40] J.S. Kenkre, J.H.D. Bassett, The bone remodelling cycle, Ann Clin Biochem, 2018, 55(3): 308-327.
[41] A. Schindeler, M.M. McDonald, P. Bokko, et al., Bone remodeling during fracture repair: The cellular picture, Semin Cell Dev Biol, 2008, 19(5): 459-466.
[42] Z.S. Ai-Aql, A.S. Alagl, D.T. Graves, et al., Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis, J Dent Res, 2008, 87(2): 107-118.
[43] R.C. Riddle, T.L. Clemens, Bone Cell Bioenergetics and Skeletal Energy Homeostasis, Physiol Rev, 2017, 97(2): 667-698.
[44] Z. Thompson, T. Miclau, D. Hu, et al., A model for intramembranous ossification during fracture healing, J Orthop Res, 2002, 20(5): 1091-1098.
[45] X. Shen, C. Wan, G. Ramaswamy, et al., Prolyl Hydroxylase Inhibitors Increase Neoangiogenesis and Callus Formation following Femur Fracture in Mice, J Orthop Res, 2009, 27(10): 1298-1305.
[46] G. Trudel, The biology and treatment of acute long-bones diaphyseal fractures: Overview of the current options for bone healing enhancement, Bone Rep, 2020, 12: 100249.
[47] F.M. Chen, X.H. Liu, Advancing biomaterials of human origin for tissue engineering, Prog Polym Sci, 2016, 53: 86-168.
[48] M. Maruyama, C. Rhee, T. Utsunomiya, et al., Modulation of the Inflammatory Response and Bone Healing, Front Endocrinol, 2020, 11: 386.
[49] J. Pajarinen, T. Lin, E. Gibon, et al., Mesenchymal stem cell-macrophage crosstalk and bone healing, Biomaterials, 2019, 196: 80-89.
[50] H. ElHawary, A. Baradaran, J. Abi-Rafeh, et al., Bone Healing and Inflammation: Principles of Fracture and Repair, Semin Plast Surg, 2021, 35(03): 198-203.
[51] J.N. Fullerton, D.W. Gilroy, Resolution of inflammation: a new therapeutic frontier, Nat Rev Drug Discov, 2016, 15(8): 551-567.
[52] D.M. Mosser, J.P. Edwards, Exploring the full spectrum of macrophage activation, Nat Rev Immunol, 2008, 8(12), 958–969.
[53] K. Reville, J.K. Crean, S. Vivers, et al., Lipoxin A redistributes myosin IIA and Cdc42 in macrophages: Implications for phagocytosis of apoptotic leukocytes, J Immunol, 2006, 176(3): 1878-1888.
[54] M.K. Chang, L.J. Raggatt, K.A. Alexander, et al., Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo, J Immunol, 2008, 181(2): 1232-1244.
[55] P. Andrzejowski, P.V. Giannoudis, The 'diamond concept' for long bone non-union management, J Orthop Traumatol, 2019, 20(1): 21.
[56] B. Osta, G. Benedetti, P. Miossec, Classical and paradoxical effects of TNF-α on bone homeostasis, Front Immunol, 2014, 5: 48.
[57] L.H. Mangum, J.J. Avila, B.J. Hurtgen, et al., Burn and thoracic trauma alters fracture healing, systemic inflammation, and leukocyte kinetics in a rat model of polytrauma, J Orthop Surg Res, 2019,, 14(1):58.
[58] F. Grassi, L. Cattini, L. Gambari, et al., T cell subsets differently regulate osteogenic differentiation of human mesenchymal stromal cells, J Tissue Eng Regen M, 2016, 10(4): 305-314.
[59] S. Wendler, C. Schlundt, C.H. Bucher, et al., Immune Modulation to Enhance Bone Healing -A New Concept to Induce Bone Using Prostacyclin to Locally Modulate Immunity, Front Immunol, 2019, 10: 731.
[60] B.J. Hurtgen, C.L. Ward, K. Garg, et al., Severe muscle trauma triggers heightened and prolonged local musculoskeletal inflammation and impairs adjacent tibia fracture healing, J Musculoskel Neuron, 2016, 16(2): 122-134.
[61] R. Chiu, T. Ma, R.L. Smith, et al., Polymethylmethacrylate particles inhibit osteoblastic differentiation of bone marrow osteoprogenitor cells, J Biomed Mater Res A, 2006, 77a(4): 850-856.
[62] C. Shi, E.G. Pamer, Monocyte recruitment during infection and inflammation, Nat Rev Immunol, 2011, 11(11): 762-774.
[63] T.H. Lin, J. Pajarinen, T. Sato, et al., NF-κB decoy oligodeoxynucleotide mitigates wear particle-associated bone loss in the murine continuous infusion model, Acta Biomater, 2016, 41: 273-281.
[64] S.A. Zhu, J.X. Zhu, G.H. Zhen, et al., Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain, J Clin Invest, 2019, 129(3): 1076-1093.
[65] J. Zhao, D. Levy, The sensory innervation of the calvarial periosteum is nociceptive and contributes to headache-like behavior, Pain, 2014, 155(7): 1392-1400.
[66] S. Nencini, M. Ringuet, D.H. Kim, et al., Mechanisms of nerve growth factor signaling in bone nociceptors and in an animal model of inflammatory bone pain, Mol Pain, 2017, 13: 1744806917697011.
[67] S. Nencini, M. Ringuet, D.H. Kim, et al., GDNF, Neurturin, and Artemin Activate and Sensitize Bone Afferent Neurons and Contribute to Inflammatory Bone Pain, J Neurosci, 2018, 38(21): 4899-4911.
[68] J. Santy, C. Mackintosh, A phenomenological study of pain following fractured shaft of femur, J Clin Nurs, 2001, 10(4): 521-527.
[69] P. Moss, H.A.E. Benson, R. Will, et al., Patients With Knee Osteoarthritis Who Score Highly on the PainDETECT Questionnaire Present With Multimodality Hyperalgesia, Increased Pain, and Impaired Physical Function, Clin J Pain, 2018, 34(1): 15-21.
[70] S. Franz, S. Rammelt, D. Scharnweber, et al., Immune responses to implants - A review of the implications for the design of immunomodulatory biomaterials, Biomaterials, 2011, 32(28): 6692-6709.
[71] J. Reifenrath, N. Angrisani, N. Erdmann, et al., Degrading magnesium screws ZEK100: biomechanical testing, degradation analysis and soft-tissue biocompatibility in a rabbit model, Biomed Mater, 2013, 8(4): 045012.
[72] Y. Liu, L. Wang, T. Kikuiri, et al., Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α, Nat Med, 2011, 17(12): 1594-1601.
[73] J. Lee, H. Byun, S.K.M. Perikamana, et al., Current Advances in Immunomodulatory Biomaterials for Bone Regeneration, Adv Healthc Mater, 2019, 8(4): e1801106.
[74] Z.P. Kacarevic, P. Rider, S. Alkildani, et al., An introduction to bone tissue engineering, Int J Artif Organs, 2020, 43(2): 69-86.
[75] M.B. Sordi, A. Cruz, M.C. Fredel, et al., Three-dimensional bioactive hydrogel-based scaffolds for bone regeneration in implant dentistry, Mat Sci Eng C-Mater, 2021, 124: 112055.
[76] Z.T. Wang, Y.P. Zhong, S. He, et al., Application of the pH-Responsive PCL/PEG-Nar Nanofiber Membrane in the Treatment of Osteoarthritis, Front Bioeng Biotech, 2022, 10: 859442.
[77] X.H. Liu, P.X. Ma, The nanofibrous architecture of poly(L-lactic acid)-based functional copolymers, Biomaterials, 2010, 31(2): 259-269.
[78] L.A. Ribeiro, K.D. Sievert, Acellular matrix in urethral reconstruction, Adv Drug Deliver Rev, 2015, 82-83: 38-46.
[79] N.M. Vacanti, H. Cheng, P.S. Hill, et al., Localized Delivery of Dexamethasone from Electrospun Fibers Reduces the Foreign Body Response, Biomacromolecules, 2012, 13(10): 3031-3038.
[80] M.P. Lutolf, J.A. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering, Nat Biotechnol, 2005, 23(1): 47-55.
[81] X.H. Guo, P. Song, F. Li, et al., Research Progress of Design Drugs and Composite Biomaterials in Bone Tissue Engineering, Int J Nanomed, 2023, 18: 3595-3622.
[82] W.L. Stoppel, C.E. Ghezzi, S.L. McNamara, et al., Clinical Applications of Naturally Derived Biopolymer-Based Scaffolds for Regenerative Medicine, Ann Biomed Eng, 2015;43(3):657-680.
[83] A.N. Renth, M.S. Detamore, Leveraging "Raw Materials'' as Building Blocks and Bioactive Signals in Regenerative Medicine, Tissue Eng Part B-Re, 2012, 18(5): 341-362.
[84] W.J. Chung, J.W. Oh, K. Kwak, et al., Biomimetic self-templating supramolecular structures, Nature, 2011, 478(7369): 364-368.
[85] D. Chow, M.L. Nunalee, D.W. Lim, et al., Peptide-based biopolymers in biomedicine and biotechnology, Mat Sci Eng R, 2008, 62(4): 125-155.
[86] P.B. Malafaya, G.A. Silva, R.L. Reis, Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications, Adv Drug Deliver Rev, 2007, 59(4-5): 207-233.
[87] S. Yue, H. He, B. Li, et al., Hydrogel as a Biomaterial for Bone Tissue Engineering: A Review, Nanomaterials-Basel, 2020, 10(8): :1511.
[88] W.J. Chung, J.W. Oh, K. Kwak, et al., Biomimetic self-templating supramolecular structures, Nature, 2011, 478(7369): 364-368.
[89] D. Chow, M.L. Nunalee, D.W. Lim, et al., Peptide-based biopolymers in biomedicine and biotechnology, Mat Sci Eng R, 2008, 62(4): 125-155.
[90] P.B. Malafaya, G.A. Silva, R.L. Reis, Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications, Adv Drug Deliver Rev, 2007, 59(4-5): 207-233.
[91] S. Yue, H. He, B. Li, et al., Hydrogel as a Biomaterial for Bone Tissue Engineering: A Review, Nanomaterials-Basel, 2020, 10(8): 1511.
[92] W.F. Lin, M. Kluzek, N. Iuster, et al., Cartilage-inspired, lipid-based boundary-lubricated hydrogels, Science, 2020, 370(6514): 335-338.
[93] M.I. Neves, M. Araújo, L. Moroni, et al., Glycosaminoglycan-Inspired Biomaterials for the Development of Bioactive Hydrogel Networks, Molecules, 2020, 25(4): 978.
[94] W.K. Hu, Z.J. Wang, Y. Xiao, et al., Advances in crosslinking strategies of biomedical hydrogels, Biomater Sci-Uk, 2019, 7(3): 843-855.
[95] L. Voorhaar, R. Hoogenboom, Supramolecular polymer networks: hydrogels and bulk materials, Chem Soc Rev, 2016, 45(14): 4013-4031.
[96] X. Xue, Y. Hu, S.C. Wang, et al., Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering, Bioact Mater, 2022, 12: 327 -339.
[97] A.A. Zadpoor, Bone tissue regeneration: the role of scaffold geometry, Biomater Sci-Uk, 2015, 3(2): 231-245.
[98] Q.Y. Zeng, Y. Han, H.Y. Li, et al., Bioglass/alginate composite hydrogel beads as cell carriers for bone regeneration, J Biomed Mater Res B, 2014, 102(1): 42-51.
[99] A. Kirillova, T.R. Yeazel, D. Asheghali, et al., Fabrication of Biomedical Scaffolds Using Biodegradable Polymers, Chem Rev, 2021, 121(18): 11238 -11304.
[100] X.Y. Liu, S.S. Sun, N. Wang, et al., Therapeutic application of hydrogels for bone-related diseases, Front Bioeng Biotech, 2022, 10: 998988.
[101] T. Nonoyama, Y.W. Lee, K. Ota, et al., Instant Thermal Switching from Soft Hydrogel to Rigid Plastics Inspired by Thermophile Proteins, Adv Mater, 2020, 32(4): e1905878.
[102] H.T. Pan, H.C. Gao, Q.T. Li, et al., Engineered macroporous hydrogel scaffolds pickering emulsions stabilized by MgO nanoparticles promote bone regeneration, J Mater Chem B, 2020, 8(28): 6100-6114.
[103] M.A.E. Cruz, C.B. Tovani, B.Z. Favarin, et al., Synthesis of Sr-morin complex and its response: decrease in osteoclast differentiation while sustaining osteoblast mineralization ability, J Mater Chem B, 2019, 7(5): 823-829.
[104] Q.C. Li, D.G. Barret, P.B. Messersmith, et al., Controlling Hydrogel Mechanics Bio-Inspired Polymer-Nanoparticle Bond Dynamics, Acs Nano, 2016, 10(1): 1317-1324.
[105] W.C. Yang, Y. Yang, J.Y. Yang, et al., Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway, Int J Mol Med, 2016, 37(4): 1075-1082.
[106] E. Pishavar, H.R. Luo, M. Naserifar, et al., Advanced Hydrogels as Exosome Delivery Systems for Osteogenic Differentiation of MSCs: Application in Bone Regeneration, Int J Mol Sci, 2021, 22(12): 6203.
[107] Y.S. Qiao, X.Z. Liu, X.C. Zhou, et al., Gelatin Templated Polypeptide Co-Cross-Linked Hydrogel for Bone Regeneration, Adv Healthc Mater, 2020, 9(1):e1901239.
[108] T.T. Yu, H.F. Wang, Y.F. Zhang, et al., The Delivery of RNA-Interference Therapies Based on Engineered Hydrogels for Bone Tissue Regeneration, Front Bioeng Biotech, 2020, 8: 445.
[109] B. Kolodziejska, N. Stepien, J. Kolmas, The Influence of Strontium on Bone Tissue Metabolism and Its Application in Osteoporosis Treatment, Int J Mol Sci, 2021, 22(12): 6564.
[110] Y.F. Li, J.H. Li, S.S. Zhu, et al., Effects of strontium on proliferation and differentiation of rat bone marrow mesenchymal stem cells, Biochem Bioph Res Co, 2012, 418(4): 725-730.
[111] C.X. Gao, K. Zhao, Y.P. Wu, et al., Fabrication of strontium/calcium containing poly(-glutamic acid) - organosiloxane fibrous hybrid materials for osteoporotic bone regeneration, Rsc Adv, 2018, 8(45): 25745-25753.
[112] H.S. Shi, X.L. Ye, J. Zhang, et al., A thermostability perspective on enhancing physicochemical and cytological characteristics of octacalcium phosphate by doping iron and strontium, Bioact Mater, 2021, 6(5): 1267-1282.
[113] C.T. Wong, W.W. Lu, W.K. Chan, et al., In vivo cancellous bone remodeling on a strontium-containing hydroxyapatite (Sr-HA) bioactive cement, J Biomed Mater Res A, 2004, 68(3): 513-521.
[114] I.V. Fadeeva, D.V. Deyneko, A.A. Forysenkova, et al., Strontium Substituted β-Tricalcium Phosphate Ceramics: Physiochemical Properties and Cytocompatibility, Molecules, 2022, 27(18): 6085.
[115] R.D. Prabha, M. Ding, P. Bollen, et al., Strontium ion reinforced bioceramic scaffold for load bearing bone regeneration, Materials Science and Engineering C-Materials for Biological Applications, Mater Sci Eng C Mater Biol Appl, 2020, 109: 110427
[116] J.M. Nichols, B.L.F. Kaplan, Immune Responses Regulated by Cannabidiol, Cannabis Cannabinoid, 2020, 5(1): 12-31.
[117] D.A. Bunsick, J. Matsukubo, M.R. Szewczuk, Cannabinoids Transmogrify Cancer Metabolic Phenotype via Epigenetic Reprogramming and a Novel CBD Biased G Protein-Coupled Receptor Signaling Platform, Cancers, 2023, 15(4): 1030.
[118] B.L.F. Kaplan, A.E.B. Springs, N.E. Kaminski, The profile of immune modulation by cannabidiol (CBD) involves deregulation of nuclear factor of activated T cells (NFAT), Biochem Pharmacol, 2008, 76(6): 726-737.
[119] I. Khuja, Z. Yekhtin, R. Or, et al., Cannabinoids Reduce Inflammation but Inhibit Lymphocyte Recovery in Murine Models of Bone Marrow Transplantation, Int J Mol Sci, 2019, 20(3): 668.
[120] T. Bisogno, L. Hanus, L. De Petrocellis, et al., Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide, Brit J Pharmacol, 2001, 134(4): 845-852.
[121] S.Y. Cao, S.K. Kang, H.B. Mao, et al., Defining molecular glues with a dual-nanobody cannabidiol sensor, Nat Commun, 2022, 13(1): 815.
[122] D.G. Couch, C. Tasker, E. Theophilidou, et al., Cannabidiol and palmitoylethanolamide are anti-inflammatory in the acutely inflamed human colon, Clin Sci, 2017, 131(21): 2611-2626.
[123] E.J. Carrier, J.A. Auchampach, C.J. Hillard, Inhibition of an equilibrative nucleoside transporter by cannabidiol: A mechanism of cannabinoid immunosuppression, P Natl Acad Sci, 2006,103(20): 7895-7900.
[124] R. Ramer, K. Heinemann, J. Merkord, et al., COX-2 and PPAR-γ Confer Cannabidiol-Induced Apoptosis of Human Lung Cancer Cells, Mol Cancer Ther, 2013,12(1): 69-82.
[125] E.B. Russo, A. Burnett, B. Hall, et al., Agonistic properties of cannabidiol at 5-HT1a receptors, Neurochem Res, 2005, 30(8): 1037-1043.
[126] M. Kathmann, K. Flau, A. Redmer, et al., Cannabidiol is an allosteric modulator at mu- and delta-opioid receptors, N-S Arch Pharmacol, 2006, 372(5): 354-361.
[127] J. Cousijn, A.E. Núñez, F.M. Filbey, Time to acknowledge the mixed effects of cannabis on health: a summary and critical review of the NASEM 2017 report on the health effects of cannabis and cannabinoids, Addiction, 2018,113(5): 958-966.
[128] A. Juknat, N. Rimmerman, R. Levy, et al., Cannabidiol affects the expression of genes involved in zinc homeostasis in BV-2 microglial cells, Neurochem Int, 2012, 61(6): 923-930.
[129] N.B. Petrescu, A. Jurj, O. Soritau, et al., Cannabidiol and Vitamin D3 Impact on Osteogenic Differentiation of Human Dental Mesenchymal Stem Cells, Medicina-Lithuania, 2020, 56(11): 607-615.
[130] E. Donnelly, D.S. Meredith, J.T. Nguyen, et al., Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures, J Bone Miner Res, 2012, 27(3): 672-678.
[131] M. Kremer, E. Salvat, A. Muller, et al., Antidepressants and Gabapentinoids in Neuropathic Pain: Mechanistic Insights, Neuroscience , 2016, 338: 183-206.
[132] B. Jouffre, A. Acramel, Y. Jacquot, et al., GPER involvement in inflammatory pain, Steroids, 2023, 200.
[133] Z. Wang, L. Yang, L.F. Xu, et al., Central and peripheral mechanism of MOTS-c attenuates pain hypersensitivity in a mice model of inflammatory pain, Neurol Res, 2023.
[134] S.E.E. Mills, K.P. Nicolson, B.H. Smith, Chronic pain: a review of its epidemiology and associated factors in population-based studies, Brit J Anaesth, 2019, 123(2): E273-E283.
[135] J. Manzanares, M.D. Julian, A. Carrascosa, Role of the cannabinoid system in pain control and therapeutic implications for the management of acute and chronic pain episodes, Curr Neuropharmacol, 2006, 4(3): 239-257.
[136] W. Notcutt, M. Price, R. Miller, et al., Initial experiences with medicinal extracts of cannabis for chronic pain: Results from 34 'N of 1' studies, Anaesthesia, 2004, 59(5): 440-452.
[137] R.G. Pertwee, The diverse CB and CB receptor pharmacology of three plant cannabinoids:: Δ-tetrahydrocannabinol, cannabidiol and Δ-tetrahydrocannabivarin, Brit J Pharmacol, 2008, 153(2): 199-215.
[138] H. Johal, T. Devji, Y.P. Chang, et al., Cannabinoids in Chronic Non-Cancer Pain: A Systematic Review and Meta-Analysis, Clin Med Insights, 2020, 13: 110-117.
[139] S. Reakasame, A.R. Boccaccini, Oxidized Alginate-Based Hydrogels for Tissue Engineering Applications: A Review, Biomacromolecules, 2018, 19(1), 3-21.
[140] S.N. Pawar, K.J. Edgar, Alginate derivatization: A review of chemistry, properties and applications, Biomaterials, 2012, 33(11): 3279-3305.
[141] K.M. Zia, F. Zia, M. Zuber, et al., Alginate based polyurethanes: A review of recent advances and perspective, Int J Biol Macromol, 2015, 79: 377-387.
[142] M. Zhang, X. Zhao, Alginate hydrogel dressings for advanced wound management, Int J Biol Macromol, 2020, 162: 1414-1428.
[143] D. Chen, E. Amstad, C.X. Zhao, et al., Biocompatible Amphiphilic Hydrogel-Solid Dimer Particles as Colloidal Surfactants, Acs Nano, 2017, 11(12): 11978-11985.
[144] T. Chen, Y.J. Chen, H.U. Rehman, et al., Ultratough, Self-Healing, and Tissue-Adhesive Hydrogel for Wound Dressing, Acs Appl Mater Inter, 2018, 10(39): 33523-33531.
[145] M.Y. Dai, Y. Liu, B.Z. Ju, et al., Preparation of thermoresponsive alginate/starch ether composite hydrogel and its application to the removal of Cu(II) from aqueous solution, Bioresource Technol, 2019, 294: 110-119.
[146] V. Jayachandran, S.S. Murugan, P.A. Dalavi, et al., Alginate -based Composite Microspheres: Preparations and Applications for Bone Tissue Engineering, Curr Pharm Design, 2022, 28(13): 1067-1081.
[147] D.J. Park, B.H. Choi, S.J. Zhu, et al., Injectable bone using chitosan - alginate gel/mesenchymal stem cells/BMP-2 composites, J Cranio Maxill Surg, 2005, 33(1): 50-54.
[148] F.X. Zhang, P. Liu, W. Ding, et al., Injectable Mussel-Inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration, Biomaterials, 2021, 278: 118-227.
[149] Y. Man, P. Wang, Y.W. Guo, et al., Angiogenic and osteogenic potential of platelet-rich plasma and adipose-derived stem cell laden alginate microspheres, Biomaterials, 2012, 33(34): 8802-8811.
[150] D. Ji, J.M. Park, M.S. Oh, et al., Superstrong, superstiff, and conductive alginate hydrogels, Nat Commun, 2022, 13(1): 223-229.
[151] A.J. Josiah, S.K. Pillai, W. Cordier, et al., Cannabidiol-Mediated Green Synthesis, Characterization, and Cytotoxicity of Metal Nanoparticles in Human Keratinocyte Cells, Acs Omega, 2021, 6(43): 29078-29090.
[152] J.C. Qi, Z. Zheng, L.Q. Hu, et al., Development and characterization of cannabidiol-loaded alginate copper hydrogel for repairing open bone defects in, Colloid Surface B, 2022, 212: 330-339.
[153] Z. Zheng, J.C. Qi, L.Q. Hu, et al., A cannabidiol-containing alginate based hydrogel as novel multifunctional wound dressing for promoting wound healing, Biomater Adv, 2022, 134: 118-229.
[154] A.P. Matarazzo, L.M.S. Elisei, F.C. Carvalho, et al., Mucoadhesive nanostructured lipid carriers as a cannabidiol nasal delivery system for the treatment of neuropathic pain, Eur J Pharm Sci, 2021, 159: 449-458.
[155] A. Abu-Nada, A. Abdala, G. McKay, Isotherm and Kinetic Modeling of Strontium Adsorption on Graphene Oxide, Nanomaterials-Basel, 2021, 11(11): 229-239.
[156] J. Radwan-Praglowska, L. Janus, M. Piatkowski, et al., Development of Stimuli-Responsive Chitosan/ZnO NPs Transdermal Systems for Controlled Cannabidiol Delivery, Polymers-Basel, 2021, 13(2): 113-129.
[157] E.G. Andriotis, P.K. Monou, A. Louka, et al., Development of food grade 3D printable ink based on pectin containing cannabidiol/cyclodextrin inclusion complexes, Drug Dev Ind Pharm, 2020, 46(10): 1569-1577.
[158] Q. Zhou, H.F. Kang, M. Bielec, et al., Influence of different divalent ions cross-linking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing, Carbohyd Polym, 2018, 197: 292-304.
[159] M. Solinas, P. Massi, A.R. Cantelmo, et al., Cannabidiol inhibits angiogenesis by multiple mechanisms, Brit J Pharmacol, 2012, 167(6): 1218-1231.
[160] R.D. Prabha, B.P. Nair, N. Ditzel, et al., Strontium functionalized scaffold for bone tissue engineering, Materials Science and Engineering C-Materials for Biological Applications, 2019, 94: 509-515.
[161] C. Fu, H.T. Bai, J.Q. Zhu, et al., Enhanced cell proliferation and osteogenic differentiation in electrospun PLGA/hydroxyapatite nanofibre scaffolds incorporated with graphene oxide, Plos One, 2017, 12(11): 779-790.
[162] F.B. Ma, Y.J. Zhang, L.Q. Hu, et al., Strontium polysaccharide modulates osteogenesis-angiogenesis for bone regeneration, Int J Biol Macromol, 2021, 181: 452-461.
[163] X. Qin, Q. Jiang, H. Komori, et al., Runt-related transcription factor-2 (Runx2) is required for bone matrix protein gene expression in committed osteoblasts in mice, J Bone Miner Res, 2021, 36(10): 2081-2095.
[164] W.X. Qiu, X.L. Ma, X. Lin, et al., Deficiency of Macf1 in osterix expressing cells decreases bone formation by Bmp2/Smad/Runx2 pathway, J Cell Mol Med, 2020, 24(1): 317-327.
[165] Y. Shan, L. Wang, G.F. Li, et al., Methylation of bone SOST impairs SP7, RUNX2, and ERα transactivation in patients with postmenopausal osteoporosis, Biochem Cell Biol, 2019, 97(4): 369-374.
[166] R.S. Kadzik, K.E. Homa, D.R. Kovar, F-Actin Cytoskeleton Network Self-Organization Through Competition and Cooperation, Annu Rev Cell Dev Bi, 2020, 36: 35-60.
[167] K.A. DeMali, Vinculin - a dynamic regulator of cell adhesion, Trends Biochem Sci, 2004, 29(11): 565-567.
[168] Y.Y. Zhang, Y.H. Xing, J. Li, et al., Osteogenesis-Related Behavior of MC3T3-E1 Cells on Substrates with Tunable Stiffness, Biomed Res Int, 2018 (2018): 339-350.
[169] J.Y. Si, C.W. Wang, D.H. Zhang, et al., Osteopontin in Bone Metabolism and Bone Diseases, Med Sci Monitor, 2020, 26: 229-250.
[170] T. Komori, Whole Aspect of Runx2 Functions in Skeletal Development, Int J Mol Sci, 2022, 23(10): 190-200.
[171] R. Singh, A. Letai, K. Sarosiek, Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins, Nat Rev Mol Cell Bio, 2019,20(3): 175-193.
[172] F.B. Ma, Y.M. Ge, N. Liu, et al., fabrication of a composite hydrogel with tunable mechanical properties for cartilage tissue engineering, J Mater Chem B, 2019, 7(15: 2463-2473.
[173] I. Mortada, R. Mortada, Dental pulp stem cells and osteogenesis: an update, Cytotechnology, 2018, 70(5): 1479-1486.
[174] A. Vallée, Y. Lecarpentier, R. Guillevin, et al., Effects of cannabidiol interactions with Wnt/β-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer's disease, Acta Bioch Bioph Sin, 2017, 49(10): 853-866.
[175] L.Z. Hong, X.Y. Zhao, H.L. Zhang, p53-mediated neuronal cell death in ischemic brain injury, Neurosci Bull, 2010, 26(3): 232-240.
[176] L.A. DiPietro, Angiogenesis and wound repair: when enough is enough, J Leukocyte Biol, 2016, 100(5): 979-984.
[177] S. Böckmann, B. Hinz, Cannabidiol Promotes Endothelial Cell Survival by Heme Oxygenase-1-Mediated Autophagy, Cells-Basel, 2020, 9(7): 887-897.
[178] R. Ramer, S. Fischer, M. Haustein, et al., Cannabinoids inhibit angiogenic capacities of endothelial cells via release of tissue inhibitor of matrix metalloproteinases-1 from lung cancer cells, Biochem Pharmacol, 2014, 91(2):202-216.
[179] K. Wright, N. Rooney, M. Feeney, et al., Differential expression of cannabinoid receptors in the human colon: Cannabinoids promote epithelial wound healing, Gastroenterology, 2005, 129(2): 437-453.
[180] R.M. Krohn, S.A. Parsons, J. Fichna, et al., Abnormal cannabidiol attenuates experimental colitis in mice, promotes wound healing and inhibits neutrophil recruitment, J Inflamm-Lond, 2016, 13: 110-119.
[181] Y.M. Wang, X. Wang, Y. Yang, et al., Comparison of the in vitro Anti-Inflammatory Effect of Cannabidiol to Dexamethasone, Clin Cosmet Inv Derm, 2022, 15: 1959-1967.
[182] A. Sica, A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, J Clin Invest, 2012, 122(3): 787-795.
[183] S. Gordon, F.O. Martinez, Alternative Activation of Macrophages: Mechanism and Functions, Immunity, 2010, 32(5): 593-604.
[184] P.F. Li, Z.F. Hao, J.Y. Wu, et al., Comparative Proteomic Analysis of Polarized Human THP-1 and Mouse RAW264.7 Macrophages, Front Immunol, 2021, 12: 110-117.
[185] T. Genovese, M. Cordaro, R. Siracusa, et al., Molecular and Biochemical Mechanism of Cannabidiol in the Management of the Inflammatory and Oxidative Processes Associated with Endometriosis, Int J Mol Sci, 2022, 23(10): 112-120.
[186] B. St-Jacques, W.Y. Ma, Peripheral prostaglandin E2 prolongs the sensitization of nociceptive dorsal root ganglion neurons possibly by facilitating the synthesis and anterograde axonal trafficking of EP4 receptors, Exp Neurol, 2014, 261: 354-366.
[187] N.S. Krieger, W.R. Parker, K.M. Alexander, et al., Prostaglandins regulate acid-induced cell-mediated bone resorption, Am J Physiol-Renal, 2000, 279(6):F1077-F1082.
[188] W. Zou, X. Li, N. Li, et al., A comparative study of autogenous, allograft and artificial bone substitutes on bone regeneration and immunotoxicity in rat femur defect model, Regen Biomater, 2021, 8(1): 109-120.
[189] H. Chang, H.B. Xiang, Z.L. Yao, et al., Strontium-substituted calcium sulfate hemihydrate/hydroxyapatite scaffold enhances bone regeneration by recruiting bone mesenchymal stromal cells, J Biomater Appl, 2020, 35(1): 97-107.
[190] K.A. Alexander, M.K. Chang, E.R. Maylin, et al., Osteal Macrophages Promote In Vivo Intramembranous Bone Healing in a Mouse Tibial Injury Model, J Bone Miner Res, 2011, 26(7): 1517-1532.
[191] M.J. van Amerongen, M.C. Harmsen, N. van Rooijen, et al., Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice, Am J Pathol, 2007, 170(3): 818-829.
[192] A. Parihar, T.D. Eubank, A.I. Doseff, Monocytes and Macrophages Regulate Immunity through Dynamic Networks of Survival and Cell Death, J Innate Immun, 2010, 2(3): 204-215.
[193] E. Olmsted-Davis, J. Mejia, E. Salisbury, et al., A Population of M2 Macrophages Associated With Bone Formation, Front Immunol, 2021, 12: 990-999.
[194] J.A. Martin, B.C. Heiderscheit, A hierarchical clustering approach for examining the relationship between pelvis-proximal femur geometry and bone stress injury in runners, J Biomech, 2023, 160.
[195] P.C. Ma, R.F. Mo, H.B. Liao, et al., Gut microbiota depletion by antibiotics ameliorates somatic neuropathic pain induced by nerve injury, chemotherapy, and diabetes in mice, J Neuroinflamm, 2022, 19(1) 169-17.
修改评论