中文版 | English
题名

载大麻二酚海藻酸锶水凝胶促骨修复和增强骨弹性/塑性力学性能

其他题名
CANNABINOL STRONTIUM ALGINATE HYDROGEL PROMOTE BONE HEALING AND ENHANCE THE ELASTIC/PLASTIC MECHANICAL PROPERTIES
姓名
姓名拼音
HU Liqiu
学号
11930748
学位类型
博士
学位专业
080101 一般力学与力学基础
学科门类/专业学位类别
08 工学
导师
唐斌
导师单位
生物医学工程系
论文答辩日期
2023-11-15
论文提交日期
2023-12-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

由于意外或者疾病导致的骨缺损修复一直是骨科临床上的重点和难点。 骨缺损会引发神经性疼和炎症性疼痛。对疼痛的治疗也是骨修复材料研发 所需解决的问题之一。尽管非甾体镇痛药能抑制炎症疼痛,但其会损害骨缺 损的愈合。阿片类药物能抑制神经性疼痛,但其具有神经依赖性。大麻二酚 是一种兼具抗炎镇痛和神经镇痛的小分子,不具有神经依赖性,且能促进骨 损伤愈合。本研究通过对制备的新型载大麻二酚海藻酸锶水凝胶(cannabinol strontium alginate hydrogel, SA@Sr-CBD)进行材料学表征和性质的探索,明 确其交联方式。将该水凝胶用于修复大鼠骨缺损,研究其促骨生成、促血管 生成、抗炎、镇痛、以及骨力学性能恢复的功效。CBD 能通过酚羟基与 SA 分子形成氢键或者范德华作用力存在于水凝胶中,还能以无定形态填充到水 凝胶中。SA@Sr-CBD 水凝胶热力学性质稳定、能长效释放 CBD、具有一定 的机械力学性能。股骨缺损的大鼠对热刺激表现出更高的敏感性和更差的运 动步态。大麻二酚海藻酸锶水凝胶能使疼痛的敏感性和运动步态正常。本研 究发现该水凝胶在体内和体外能通过多种机制促进骨愈合。SA@Sr-CBD 水 凝胶在细胞实验中表现出促进 OCN、OPN、ALP、RUNX2 和 CoL1α 基因和 蛋白的表达,促进成骨分化。同时促进 VEFG 基因和蛋白的表达,抑制炎症 基因 IL-6、IL-1β、NFKB、INOS 的表达,以及促进成血管。此外还能抑制 TNFα、IL-23、PGE2、COX2 炎症基因和抑制 MCSF、CTR 破骨基因的表达。 进而在修复大鼠骨缺损中表现出显著的促进新骨生成、促进新血管生成、以 及抗炎和镇痛的功效。这些作用最终导致更高的骨体积分数、更高的骨矿物 质密度和新形成骨骼的弹性/塑性力学性能和运动功能的改善。总之,本研究 数据表明 SA@Sr-CBD 水凝胶具有镇痛的功能,恢复骨骼机械力学性能,以 及显著促进大鼠骨缺损愈合的作用。

其他摘要

Repair of bone defects caused by accidents or diseases has always been a focus and difficulty in clinical orthopedics. Bone defects can cause neuropathic and inflammatory pain. The treatment of pain is also one of the issues that needs to be solved in the development of bone repair materials. Although nonsteroidal analgesics suppress inflammatory pain, they can impair the healing of bone defects. Opioids can inhibit neuropathic pain, but they are nerve -dependent. Cannabidiol is a small molecule with both anti-inflammatory analgesia and neural analgesia. It is not nerve-dependent and can promote the healing of bone injuries. In this study, the materials characterization and properties of the prepared new cannabinol strontium alginate hydrogel (SA@Sr-CBD) were prepared to clarify its cross-linking method. The hydrogel was used to repair bone defects in rats, and its effects on promoting osteogenesis, promoting angiogenesis, anti-inflammation, analgesia, and restoring bone mechanical properties were studied. CBD can form hydrogen bonds or van der Waals forces with SA molecules through phenolic hydroxyl groups and exist in the hydrogel, and it can also be filled into the hydrogel in an amorphous form. SA@Sr-CBD hydrogel has stable thermodynamic properties, can release CBD for a long time, and has certain mechanical and mechanical properties. Rats with femoral defects showed higher sensitivity to thermal stimulation and worse locomotor gait. Cannabidiol strontium alginate hydrogel normalizes pain sensitivity and motor gait. This study found that the hydrogel can promote bone healing through multiple mechanisms in vivo and in vitro. SA@Sr-CBD hydrogel showed in cell experiments that it promoted the expression of OCN, OPN, ALP, RUNX2 and CoL1α genes and proteins, and promoted osteogenic differentiation. At the same time, it promotes the expression of VEFG genes and proteins, inhibits the expression of inflammatory genes IL-6, IL-1β, NFKB, and INOS, and promotes angiogenesis. In addition, it can inhibit the expression of TNFα, IL-23, PGE2, and COX2 inflammatory genes and inhibit the expression of MCSF and CTR Abstract III osteoclast genes. It then showed significant effects in promoting new bone formation, promoting new blood vessel formation, and anti-inflammatory and analgesic effects in repairing bone defects in rats. These effects ultimately lead to higher bone volume fraction, higher bone mineral density, and improved elastic/plastic mechanical properties of newly formed bone and motor function. In conclusion, the data of this study show that SA@Sr-CBD hydrogel has analgesic function, restores bone mechanical properties, and significantly promotes bone defect healing in rats. 

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-12
参考文献列表

[1] Y. Li, S.K. Chen, L. Li, et al., Bone defect animal models for testing efficacy of bone substitute biomaterials, J Orthop Transl, 2015, 3(3): 95-104.
[2] N. Mamidi, F. Ijadi, M.H. Norahan, Leveraging the Recent Advancements in GelMA Scaffolds for Bone Tissue Engineering: An Assessment of Challenges and Opportunities, Biomacromolecules, 2023.
[3] K.B. Fonseca, P.L. Granja, C.C. Barrias. Engineering proteolytically-degradable artificial extracellular matrices, Prog Polym Sci, 2014, 39(12): 2010 -2029.
[4] M.K. Subramaniyan, S. Thanigainathan, V. Elumalai, Fabrication and mechanical behavior of structurally graded material (ceramic-reinforced polylactic acid/polylactic acid) for integrated engineering application, P I Mech Eng E-J Pro, 2023.
[5] W. Ali, H. Ali, S. Gillani, et al., Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: a review, Environ Chem Lett, 2023, 21(3):1761-1786.
[6] A. Shearer, M. Montazerian, J.C. Mauro, Modern definition of bioactive glasses and glass-ceramics, J Non-Cryst Solids, 2023.
[7] H. Zhang, S.L. Wu, W.K. Chen, et al., Bone/cartilage targeted hydrogel: Strategies and applications, Bioact Mater, 2023, 23: 156-169.
[8] Y.X. Zhang, T.C. Wang, D.H. Zhang, et al., Thermosensitive hydrogel loaded with concentrated growth factors promote bone repair in segmental bone defects, Front Bioeng Biotech, 2022, 10:1039117.
[9] C. Li, H.Z. Lv, Y.W. Du, et al., "Biologically modified implantation as therapeutic bioabsorbable materials for bone defect repair", Regen Ther, 2021, 19:9-23.
[10] B. Wang, C.M. Feng, Y.M. Liu, et al., Recent advances in biofunctional guided bone regeneration materials for repairing defective alveolar and maxillofacial bone: A review, Jpn Dent Sci Rev, 2022, 58: 233-248.
[11] D.A. Wahjuningrum, Setyabudi, F. Cahyani, et al., Chitosan as Bone Scaffold and Graft Materials for Bone Regeneration: A Systematic Review, Malays J Fundam Appl, 2022, 18(5): 541-549.
[12] P.J. Hoskin, M.R.L. Stratford, L.K. Folkes, et al., Effect of local radiotherapy for bone pain on urinary markers of osteoclast activity, Lancet, 2000, 355(9213): 1428-1429.
[13] R. Sato, T. Matsuura, T. Akizuki, et al., Influence of the bone graft materials used for guided bone regeneration on subsequent peri-implant inflammation: an experimental ligature-induced peri-implantitis model in Beagle dogs, Int J Implant Dent, 2022, 8(1): 3.
[14] D.K. Khajuria, V. Karuppagounder, I. Nowak, et al., Cannabidiol and Cannabigerol, Nonpsychotropic Cannabinoids, as Analgesics that Effectively Manage Bone Fracture Pain and Promote Healing in Mice, J Bone Miner Res, 2023, 10: 1002.
[15] J. Mlost, M. Bryk, K. Starowicz, Cannabidiol for Pain Treatment: Focus on Pharmacology and Mechanism of Action, Int J Mol Sci, 2020, 21(22): 8870.
[16] D.H. Li, Z.L. Lin, Q.Y. Meng, et al., Cannabidiol administration reduces sublesional cancellous bone loss in rats with severe spinal cord injury, Eur J Pharmacol, 2017, 809: 13-19.
[17] N.M. Kogan, E. Melamed, E. Wasserman, et al., Cannabidiol, a Major Non - Psychotropic Cannabis Constituent Enhances Fracture Healing and Stimulates Lysyl Hydroxylase Activity in Osteoblasts, J Bone Miner Res, 2015, 30(10): 1905-1913.
[18] P.N. Tasker, H. MacDonald, W.D. Fraser, et al., Association of polymorphisms with bone mineral density in a population-based study of women from the UK, Osteoporosis Int, 2006, 17(7): 1078-1085.
[19] S.O. Zhang, Y.Q. Dong, M.K. Chen, et al., Recent developments in strontium-based biocomposites for bone regeneration, J Artif Organs, 2020, 23(3): 191-202.
[20] Y. Peng, F.B. Ma, L.Q. Hu, et al., Strontium based polysaccharides promote osteoblasts differentiation and mineralization, Int J Biol Macromol, 2022, 205: 761-771.
[21] F. De Benedetti, N. Rucci, A. Del Fattore, et al., Impaired skeletal development in interleukin-6-transgenic mice - A model for the impact of chronic inflammation on the growing skeletal system, Arthritis Rheum, 2006, 54(11): 3551-3563.
[22] H. Shimizu, H. Nakagami, S. Morita, et al., New Treatment of Periodontal Diseases by Using NF-κB Decoy Oligodeoxynucleotides Prevention of Bone Resorption and Promotion of Wound Healing, Antioxid Redox Sign, 2009, 11(9): 2065-2075.
[23] W. Lu, C. Zhou, Y. Ma, et al., Improved osseointegration of strontium-modified titanium implants by regulating angiogenesis and macrophage polarization, Biomater Sci-Uk, 2022, 10(9): 2198-2214.
[24] Q.Q. Wan, W.P. Qin, Y.X. Ma, et al., Crosstalk between Bone and Nerves within Bone, Adv Sci, 2021, 8(7): 2003390.
[25] Y. Wang, C.X. Yang, J.Z. Wan, et al., Bone marrow adipocyte: Origin, biology and relationship with hematological malignancy, Int J Lab Hematol, 2023, 1-10.
[26] S.C. Manolagas, A.M. Parfitt, What old means to bone, Trends Endocrin Met, 2010, 21(6): 369-374.
[27] J.G. Letarouilly, O. Broux, A. Clabaut, New insights into the epigenetics of osteoporosis, Genomics, 2019, 111(4): 793-798.
[28] M.M. Durdan, R.D. Azaria, M.M. Weivoda, Novel insights into the coupling of osteoclasts and resorption to bone formation, Semin Cell Dev Biol, 2022, 123: 4-13.
[29] S.L. Dallas, L.F. Bonewald, Dynamics of the transition from osteoblast to osteocyte, Ann Ny Acad Sci, 2010,1192: 437-443.
[30] J. Lassus, I. Tulikoura, Y.T. Konttinen, et al., Bone stress injuries of the lower extremity - A review, Acta Orthop Scand, 2002, 73(3): 359-368.
[31] W.H. Wang, K.W.K. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: A review, Bioact Mater, 2017, 2(4): 224-247.
[32] R.V.M. Groven, J. van Koll, M. Poeze, et al., miRNAs Related to Different Processes of Fracture Healing: An Integrative Overview, Front Surg, 2021, 8: 786564.
[33] E. Seeman, Bone quality: the material and structural basis of bone strength, J Bone Miner Metab, 2008, 26(1): 1-8.
[34] P. Kolar, K. Schmidt-Bleek, H. Schell, et al., The Early Fracture Hematoma and Its Potential Role in Fracture Healing, Tissue Eng Part B-Re, 2010, 16(4): 427-434.
[35] K. Prystaz, K. Kaiser, A. Kovtun, et al., Distinct Effects of IL-6 Classic and-Signaling in Bone Fracture Healing, Am J Pathol, 2018, 188(2): 474-490.
[36] L.C. Gerstenfeld, D.M. Cullinane, G.L. Barnes, et al., Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation, J Cell Biochem, 2003, 88(5): 873-884.
[37] C. Schlundt, T. El Khassawna, A. Serra, et al., Macrophages in bone fracture healing: Their essential role in endochondral ossification, Bone, 2018, 106: 78-89.
[38] B.K. Hall, T. Miyake, All for one and one for all: condensations and the initiation of skeletal development, Bioessays, 2000, 22(2): 138-147.
[39] O.D. de Lageneste, A. Julien, R. Abou-Khalil, et al., Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin, Nat Commun, 2018, 9(1): 773.
[40] J.S. Kenkre, J.H.D. Bassett, The bone remodelling cycle, Ann Clin Biochem, 2018, 55(3): 308-327.
[41] A. Schindeler, M.M. McDonald, P. Bokko, et al., Bone remodeling during fracture repair: The cellular picture, Semin Cell Dev Biol, 2008, 19(5): 459-466.
[42] Z.S. Ai-Aql, A.S. Alagl, D.T. Graves, et al., Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis, J Dent Res, 2008, 87(2): 107-118.
[43] R.C. Riddle, T.L. Clemens, Bone Cell Bioenergetics and Skeletal Energy Homeostasis, Physiol Rev, 2017, 97(2): 667-698.
[44] Z. Thompson, T. Miclau, D. Hu, et al., A model for intramembranous ossification during fracture healing, J Orthop Res, 2002, 20(5): 1091-1098.
[45] X. Shen, C. Wan, G. Ramaswamy, et al., Prolyl Hydroxylase Inhibitors Increase Neoangiogenesis and Callus Formation following Femur Fracture in Mice, J Orthop Res, 2009, 27(10): 1298-1305.
[46] G. Trudel, The biology and treatment of acute long-bones diaphyseal fractures: Overview of the current options for bone healing enhancement, Bone Rep, 2020, 12: 100249.
[47] F.M. Chen, X.H. Liu, Advancing biomaterials of human origin for tissue engineering, Prog Polym Sci, 2016, 53: 86-168.
[48] M. Maruyama, C. Rhee, T. Utsunomiya, et al., Modulation of the Inflammatory Response and Bone Healing, Front Endocrinol, 2020, 11: 386.
[49] J. Pajarinen, T. Lin, E. Gibon, et al., Mesenchymal stem cell-macrophage crosstalk and bone healing, Biomaterials, 2019, 196: 80-89.
[50] H. ElHawary, A. Baradaran, J. Abi-Rafeh, et al., Bone Healing and Inflammation: Principles of Fracture and Repair, Semin Plast Surg, 2021, 35(03): 198-203.
[51] J.N. Fullerton, D.W. Gilroy, Resolution of inflammation: a new therapeutic frontier, Nat Rev Drug Discov, 2016, 15(8): 551-567.
[52] D.M. Mosser, J.P. Edwards, Exploring the full spectrum of macrophage activation, Nat Rev Immunol, 2008, 8(12), 958–969.
[53] K. Reville, J.K. Crean, S. Vivers, et al., Lipoxin A redistributes myosin IIA and Cdc42 in macrophages: Implications for phagocytosis of apoptotic leukocytes, J Immunol, 2006, 176(3): 1878-1888.
[54] M.K. Chang, L.J. Raggatt, K.A. Alexander, et al., Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo, J Immunol, 2008, 181(2): 1232-1244.
[55] P. Andrzejowski, P.V. Giannoudis, The 'diamond concept' for long bone non-union management, J Orthop Traumatol, 2019, 20(1): 21.
[56] B. Osta, G. Benedetti, P. Miossec, Classical and paradoxical effects of TNF-α on bone homeostasis, Front Immunol, 2014, 5: 48.
[57] L.H. Mangum, J.J. Avila, B.J. Hurtgen, et al., Burn and thoracic trauma alters fracture healing, systemic inflammation, and leukocyte kinetics in a rat model of polytrauma, J Orthop Surg Res, 2019,, 14(1):58.
[58] F. Grassi, L. Cattini, L. Gambari, et al., T cell subsets differently regulate osteogenic differentiation of human mesenchymal stromal cells, J Tissue Eng Regen M, 2016, 10(4): 305-314.
[59] S. Wendler, C. Schlundt, C.H. Bucher, et al., Immune Modulation to Enhance Bone Healing -A New Concept to Induce Bone Using Prostacyclin to Locally Modulate Immunity, Front Immunol, 2019, 10: 731.
[60] B.J. Hurtgen, C.L. Ward, K. Garg, et al., Severe muscle trauma triggers heightened and prolonged local musculoskeletal inflammation and impairs adjacent tibia fracture healing, J Musculoskel Neuron, 2016, 16(2): 122-134.
[61] R. Chiu, T. Ma, R.L. Smith, et al., Polymethylmethacrylate particles inhibit osteoblastic differentiation of bone marrow osteoprogenitor cells, J Biomed Mater Res A, 2006, 77a(4): 850-856.
[62] C. Shi, E.G. Pamer, Monocyte recruitment during infection and inflammation, Nat Rev Immunol, 2011, 11(11): 762-774.
[63] T.H. Lin, J. Pajarinen, T. Sato, et al., NF-κB decoy oligodeoxynucleotide mitigates wear particle-associated bone loss in the murine continuous infusion model, Acta Biomater, 2016, 41: 273-281.
[64] S.A. Zhu, J.X. Zhu, G.H. Zhen, et al., Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain, J Clin Invest, 2019, 129(3): 1076-1093.
[65] J. Zhao, D. Levy, The sensory innervation of the calvarial periosteum is nociceptive and contributes to headache-like behavior, Pain, 2014, 155(7): 1392-1400.
[66] S. Nencini, M. Ringuet, D.H. Kim, et al., Mechanisms of nerve growth factor signaling in bone nociceptors and in an animal model of inflammatory bone pain, Mol Pain, 2017, 13: 1744806917697011.
[67] S. Nencini, M. Ringuet, D.H. Kim, et al., GDNF, Neurturin, and Artemin Activate and Sensitize Bone Afferent Neurons and Contribute to Inflammatory Bone Pain, J Neurosci, 2018, 38(21): 4899-4911.
[68] J. Santy, C. Mackintosh, A phenomenological study of pain following fractured shaft of femur, J Clin Nurs, 2001, 10(4): 521-527.
[69] P. Moss, H.A.E. Benson, R. Will, et al., Patients With Knee Osteoarthritis Who Score Highly on the PainDETECT Questionnaire Present With Multimodality Hyperalgesia, Increased Pain, and Impaired Physical Function, Clin J Pain, 2018, 34(1): 15-21.
[70] S. Franz, S. Rammelt, D. Scharnweber, et al., Immune responses to implants - A review of the implications for the design of immunomodulatory biomaterials, Biomaterials, 2011, 32(28): 6692-6709.
[71] J. Reifenrath, N. Angrisani, N. Erdmann, et al., Degrading magnesium screws ZEK100: biomechanical testing, degradation analysis and soft-tissue biocompatibility in a rabbit model, Biomed Mater, 2013, 8(4): 045012.
[72] Y. Liu, L. Wang, T. Kikuiri, et al., Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α, Nat Med, 2011, 17(12): 1594-1601.
[73] J. Lee, H. Byun, S.K.M. Perikamana, et al., Current Advances in Immunomodulatory Biomaterials for Bone Regeneration, Adv Healthc Mater, 2019, 8(4): e1801106.
[74] Z.P. Kacarevic, P. Rider, S. Alkildani, et al., An introduction to bone tissue engineering, Int J Artif Organs, 2020, 43(2): 69-86.
[75] M.B. Sordi, A. Cruz, M.C. Fredel, et al., Three-dimensional bioactive hydrogel-based scaffolds for bone regeneration in implant dentistry, Mat Sci Eng C-Mater, 2021, 124: 112055.
[76] Z.T. Wang, Y.P. Zhong, S. He, et al., Application of the pH-Responsive PCL/PEG-Nar Nanofiber Membrane in the Treatment of Osteoarthritis, Front Bioeng Biotech, 2022, 10: 859442.
[77] X.H. Liu, P.X. Ma, The nanofibrous architecture of poly(L-lactic acid)-based functional copolymers, Biomaterials, 2010, 31(2): 259-269.
[78] L.A. Ribeiro, K.D. Sievert, Acellular matrix in urethral reconstruction, Adv Drug Deliver Rev, 2015, 82-83: 38-46.
[79] N.M. Vacanti, H. Cheng, P.S. Hill, et al., Localized Delivery of Dexamethasone from Electrospun Fibers Reduces the Foreign Body Response, Biomacromolecules, 2012, 13(10): 3031-3038.
[80] M.P. Lutolf, J.A. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering, Nat Biotechnol, 2005, 23(1): 47-55.
[81] X.H. Guo, P. Song, F. Li, et al., Research Progress of Design Drugs and Composite Biomaterials in Bone Tissue Engineering, Int J Nanomed, 2023, 18: 3595-3622.
[82] W.L. Stoppel, C.E. Ghezzi, S.L. McNamara, et al., Clinical Applications of Naturally Derived Biopolymer-Based Scaffolds for Regenerative Medicine, Ann Biomed Eng, 2015;43(3):657-680.
[83] A.N. Renth, M.S. Detamore, Leveraging "Raw Materials'' as Building Blocks and Bioactive Signals in Regenerative Medicine, Tissue Eng Part B-Re, 2012, 18(5): 341-362.
[84] W.J. Chung, J.W. Oh, K. Kwak, et al., Biomimetic self-templating supramolecular structures, Nature, 2011, 478(7369): 364-368.
[85] D. Chow, M.L. Nunalee, D.W. Lim, et al., Peptide-based biopolymers in biomedicine and biotechnology, Mat Sci Eng R, 2008, 62(4): 125-155.
[86] P.B. Malafaya, G.A. Silva, R.L. Reis, Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications, Adv Drug Deliver Rev, 2007, 59(4-5): 207-233.
[87] S. Yue, H. He, B. Li, et al., Hydrogel as a Biomaterial for Bone Tissue Engineering: A Review, Nanomaterials-Basel, 2020, 10(8): :1511.
[88] W.J. Chung, J.W. Oh, K. Kwak, et al., Biomimetic self-templating supramolecular structures, Nature, 2011, 478(7369): 364-368.
[89] D. Chow, M.L. Nunalee, D.W. Lim, et al., Peptide-based biopolymers in biomedicine and biotechnology, Mat Sci Eng R, 2008, 62(4): 125-155.
[90] P.B. Malafaya, G.A. Silva, R.L. Reis, Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications, Adv Drug Deliver Rev, 2007, 59(4-5): 207-233.
[91] S. Yue, H. He, B. Li, et al., Hydrogel as a Biomaterial for Bone Tissue Engineering: A Review, Nanomaterials-Basel, 2020, 10(8): 1511.
[92] W.F. Lin, M. Kluzek, N. Iuster, et al., Cartilage-inspired, lipid-based boundary-lubricated hydrogels, Science, 2020, 370(6514): 335-338.
[93] M.I. Neves, M. Araújo, L. Moroni, et al., Glycosaminoglycan-Inspired Biomaterials for the Development of Bioactive Hydrogel Networks, Molecules, 2020, 25(4): 978.
[94] W.K. Hu, Z.J. Wang, Y. Xiao, et al., Advances in crosslinking strategies of biomedical hydrogels, Biomater Sci-Uk, 2019, 7(3): 843-855.
[95] L. Voorhaar, R. Hoogenboom, Supramolecular polymer networks: hydrogels and bulk materials, Chem Soc Rev, 2016, 45(14): 4013-4031.
[96] X. Xue, Y. Hu, S.C. Wang, et al., Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering, Bioact Mater, 2022, 12: 327 -339.
[97] A.A. Zadpoor, Bone tissue regeneration: the role of scaffold geometry, Biomater Sci-Uk, 2015, 3(2): 231-245.
[98] Q.Y. Zeng, Y. Han, H.Y. Li, et al., Bioglass/alginate composite hydrogel beads as cell carriers for bone regeneration, J Biomed Mater Res B, 2014, 102(1): 42-51.
[99] A. Kirillova, T.R. Yeazel, D. Asheghali, et al., Fabrication of Biomedical Scaffolds Using Biodegradable Polymers, Chem Rev, 2021, 121(18): 11238 -11304.
[100] X.Y. Liu, S.S. Sun, N. Wang, et al., Therapeutic application of hydrogels for bone-related diseases, Front Bioeng Biotech, 2022, 10: 998988.
[101] T. Nonoyama, Y.W. Lee, K. Ota, et al., Instant Thermal Switching from Soft Hydrogel to Rigid Plastics Inspired by Thermophile Proteins, Adv Mater, 2020, 32(4): e1905878.
[102] H.T. Pan, H.C. Gao, Q.T. Li, et al., Engineered macroporous hydrogel scaffolds pickering emulsions stabilized by MgO nanoparticles promote bone regeneration, J Mater Chem B, 2020, 8(28): 6100-6114.
[103] M.A.E. Cruz, C.B. Tovani, B.Z. Favarin, et al., Synthesis of Sr-morin complex and its response: decrease in osteoclast differentiation while sustaining osteoblast mineralization ability, J Mater Chem B, 2019, 7(5): 823-829.
[104] Q.C. Li, D.G. Barret, P.B. Messersmith, et al., Controlling Hydrogel Mechanics Bio-Inspired Polymer-Nanoparticle Bond Dynamics, Acs Nano, 2016, 10(1): 1317-1324.
[105] W.C. Yang, Y. Yang, J.Y. Yang, et al., Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway, Int J Mol Med, 2016, 37(4): 1075-1082.
[106] E. Pishavar, H.R. Luo, M. Naserifar, et al., Advanced Hydrogels as Exosome Delivery Systems for Osteogenic Differentiation of MSCs: Application in Bone Regeneration, Int J Mol Sci, 2021, 22(12): 6203.
[107] Y.S. Qiao, X.Z. Liu, X.C. Zhou, et al., Gelatin Templated Polypeptide Co-Cross-Linked Hydrogel for Bone Regeneration, Adv Healthc Mater, 2020, 9(1):e1901239.
[108] T.T. Yu, H.F. Wang, Y.F. Zhang, et al., The Delivery of RNA-Interference Therapies Based on Engineered Hydrogels for Bone Tissue Regeneration, Front Bioeng Biotech, 2020, 8: 445.
[109] B. Kolodziejska, N. Stepien, J. Kolmas, The Influence of Strontium on Bone Tissue Metabolism and Its Application in Osteoporosis Treatment, Int J Mol Sci, 2021, 22(12): 6564.
[110] Y.F. Li, J.H. Li, S.S. Zhu, et al., Effects of strontium on proliferation and differentiation of rat bone marrow mesenchymal stem cells, Biochem Bioph Res Co, 2012, 418(4): 725-730.
[111] C.X. Gao, K. Zhao, Y.P. Wu, et al., Fabrication of strontium/calcium containing poly(-glutamic acid) - organosiloxane fibrous hybrid materials for osteoporotic bone regeneration, Rsc Adv, 2018, 8(45): 25745-25753.
[112] H.S. Shi, X.L. Ye, J. Zhang, et al., A thermostability perspective on enhancing physicochemical and cytological characteristics of octacalcium phosphate by doping iron and strontium, Bioact Mater, 2021, 6(5): 1267-1282.
[113] C.T. Wong, W.W. Lu, W.K. Chan, et al., In vivo cancellous bone remodeling on a strontium-containing hydroxyapatite (Sr-HA) bioactive cement, J Biomed Mater Res A, 2004, 68(3): 513-521.
[114] I.V. Fadeeva, D.V. Deyneko, A.A. Forysenkova, et al., Strontium Substituted β-Tricalcium Phosphate Ceramics: Physiochemical Properties and Cytocompatibility, Molecules, 2022, 27(18): 6085.
[115] R.D. Prabha, M. Ding, P. Bollen, et al., Strontium ion reinforced bioceramic scaffold for load bearing bone regeneration, Materials Science and Engineering C-Materials for Biological Applications, Mater Sci Eng C Mater Biol Appl, 2020, 109: 110427
[116] J.M. Nichols, B.L.F. Kaplan, Immune Responses Regulated by Cannabidiol, Cannabis Cannabinoid, 2020, 5(1): 12-31.
[117] D.A. Bunsick, J. Matsukubo, M.R. Szewczuk, Cannabinoids Transmogrify Cancer Metabolic Phenotype via Epigenetic Reprogramming and a Novel CBD Biased G Protein-Coupled Receptor Signaling Platform, Cancers, 2023, 15(4): 1030.
[118] B.L.F. Kaplan, A.E.B. Springs, N.E. Kaminski, The profile of immune modulation by cannabidiol (CBD) involves deregulation of nuclear factor of activated T cells (NFAT), Biochem Pharmacol, 2008, 76(6): 726-737.
[119] I. Khuja, Z. Yekhtin, R. Or, et al., Cannabinoids Reduce Inflammation but Inhibit Lymphocyte Recovery in Murine Models of Bone Marrow Transplantation, Int J Mol Sci, 2019, 20(3): 668.
[120] T. Bisogno, L. Hanus, L. De Petrocellis, et al., Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide, Brit J Pharmacol, 2001, 134(4): 845-852.
[121] S.Y. Cao, S.K. Kang, H.B. Mao, et al., Defining molecular glues with a dual-nanobody cannabidiol sensor, Nat Commun, 2022, 13(1): 815.
[122] D.G. Couch, C. Tasker, E. Theophilidou, et al., Cannabidiol and palmitoylethanolamide are anti-inflammatory in the acutely inflamed human colon, Clin Sci, 2017, 131(21): 2611-2626.
[123] E.J. Carrier, J.A. Auchampach, C.J. Hillard, Inhibition of an equilibrative nucleoside transporter by cannabidiol: A mechanism of cannabinoid immunosuppression, P Natl Acad Sci, 2006,103(20): 7895-7900.
[124] R. Ramer, K. Heinemann, J. Merkord, et al., COX-2 and PPAR-γ Confer Cannabidiol-Induced Apoptosis of Human Lung Cancer Cells, Mol Cancer Ther, 2013,12(1): 69-82.
[125] E.B. Russo, A. Burnett, B. Hall, et al., Agonistic properties of cannabidiol at 5-HT1a receptors, Neurochem Res, 2005, 30(8): 1037-1043.
[126] M. Kathmann, K. Flau, A. Redmer, et al., Cannabidiol is an allosteric modulator at mu- and delta-opioid receptors, N-S Arch Pharmacol, 2006, 372(5): 354-361.
[127] J. Cousijn, A.E. Núñez, F.M. Filbey, Time to acknowledge the mixed effects of cannabis on health: a summary and critical review of the NASEM 2017 report on the health effects of cannabis and cannabinoids, Addiction, 2018,113(5): 958-966.
[128] A. Juknat, N. Rimmerman, R. Levy, et al., Cannabidiol affects the expression of genes involved in zinc homeostasis in BV-2 microglial cells, Neurochem Int, 2012, 61(6): 923-930.
[129] N.B. Petrescu, A. Jurj, O. Soritau, et al., Cannabidiol and Vitamin D3 Impact on Osteogenic Differentiation of Human Dental Mesenchymal Stem Cells, Medicina-Lithuania, 2020, 56(11): 607-615.
[130] E. Donnelly, D.S. Meredith, J.T. Nguyen, et al., Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures, J Bone Miner Res, 2012, 27(3): 672-678.
[131] M. Kremer, E. Salvat, A. Muller, et al., Antidepressants and Gabapentinoids in Neuropathic Pain: Mechanistic Insights, Neuroscience , 2016, 338: 183-206.
[132] B. Jouffre, A. Acramel, Y. Jacquot, et al., GPER involvement in inflammatory pain, Steroids, 2023, 200.
[133] Z. Wang, L. Yang, L.F. Xu, et al., Central and peripheral mechanism of MOTS-c attenuates pain hypersensitivity in a mice model of inflammatory pain, Neurol Res, 2023.
[134] S.E.E. Mills, K.P. Nicolson, B.H. Smith, Chronic pain: a review of its epidemiology and associated factors in population-based studies, Brit J Anaesth, 2019, 123(2): E273-E283.
[135] J. Manzanares, M.D. Julian, A. Carrascosa, Role of the cannabinoid system in pain control and therapeutic implications for the management of acute and chronic pain episodes, Curr Neuropharmacol, 2006, 4(3): 239-257.
[136] W. Notcutt, M. Price, R. Miller, et al., Initial experiences with medicinal extracts of cannabis for chronic pain: Results from 34 'N of 1' studies, Anaesthesia, 2004, 59(5): 440-452.
[137] R.G. Pertwee, The diverse CB and CB receptor pharmacology of three plant cannabinoids:: Δ-tetrahydrocannabinol, cannabidiol and Δ-tetrahydrocannabivarin, Brit J Pharmacol, 2008, 153(2): 199-215.
[138] H. Johal, T. Devji, Y.P. Chang, et al., Cannabinoids in Chronic Non-Cancer Pain: A Systematic Review and Meta-Analysis, Clin Med Insights, 2020, 13: 110-117.
[139] S. Reakasame, A.R. Boccaccini, Oxidized Alginate-Based Hydrogels for Tissue Engineering Applications: A Review, Biomacromolecules, 2018, 19(1), 3-21.
[140] S.N. Pawar, K.J. Edgar, Alginate derivatization: A review of chemistry, properties and applications, Biomaterials, 2012, 33(11): 3279-3305.
[141] K.M. Zia, F. Zia, M. Zuber, et al., Alginate based polyurethanes: A review of recent advances and perspective, Int J Biol Macromol, 2015, 79: 377-387.
[142] M. Zhang, X. Zhao, Alginate hydrogel dressings for advanced wound management, Int J Biol Macromol, 2020, 162: 1414-1428.
[143] D. Chen, E. Amstad, C.X. Zhao, et al., Biocompatible Amphiphilic Hydrogel-Solid Dimer Particles as Colloidal Surfactants, Acs Nano, 2017, 11(12): 11978-11985.
[144] T. Chen, Y.J. Chen, H.U. Rehman, et al., Ultratough, Self-Healing, and Tissue-Adhesive Hydrogel for Wound Dressing, Acs Appl Mater Inter, 2018, 10(39): 33523-33531.
[145] M.Y. Dai, Y. Liu, B.Z. Ju, et al., Preparation of thermoresponsive alginate/starch ether composite hydrogel and its application to the removal of Cu(II) from aqueous solution, Bioresource Technol, 2019, 294: 110-119.
[146] V. Jayachandran, S.S. Murugan, P.A. Dalavi, et al., Alginate -based Composite Microspheres: Preparations and Applications for Bone Tissue Engineering, Curr Pharm Design, 2022, 28(13): 1067-1081.
[147] D.J. Park, B.H. Choi, S.J. Zhu, et al., Injectable bone using chitosan - alginate gel/mesenchymal stem cells/BMP-2 composites, J Cranio Maxill Surg, 2005, 33(1): 50-54.
[148] F.X. Zhang, P. Liu, W. Ding, et al., Injectable Mussel-Inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration, Biomaterials, 2021, 278: 118-227.
[149] Y. Man, P. Wang, Y.W. Guo, et al., Angiogenic and osteogenic potential of platelet-rich plasma and adipose-derived stem cell laden alginate microspheres, Biomaterials, 2012, 33(34): 8802-8811.
[150] D. Ji, J.M. Park, M.S. Oh, et al., Superstrong, superstiff, and conductive alginate hydrogels, Nat Commun, 2022, 13(1): 223-229.
[151] A.J. Josiah, S.K. Pillai, W. Cordier, et al., Cannabidiol-Mediated Green Synthesis, Characterization, and Cytotoxicity of Metal Nanoparticles in Human Keratinocyte Cells, Acs Omega, 2021, 6(43): 29078-29090.
[152] J.C. Qi, Z. Zheng, L.Q. Hu, et al., Development and characterization of cannabidiol-loaded alginate copper hydrogel for repairing open bone defects in, Colloid Surface B, 2022, 212: 330-339.
[153] Z. Zheng, J.C. Qi, L.Q. Hu, et al., A cannabidiol-containing alginate based hydrogel as novel multifunctional wound dressing for promoting wound healing, Biomater Adv, 2022, 134: 118-229.
[154] A.P. Matarazzo, L.M.S. Elisei, F.C. Carvalho, et al., Mucoadhesive nanostructured lipid carriers as a cannabidiol nasal delivery system for the treatment of neuropathic pain, Eur J Pharm Sci, 2021, 159: 449-458.
[155] A. Abu-Nada, A. Abdala, G. McKay, Isotherm and Kinetic Modeling of Strontium Adsorption on Graphene Oxide, Nanomaterials-Basel, 2021, 11(11): 229-239.
[156] J. Radwan-Praglowska, L. Janus, M. Piatkowski, et al., Development of Stimuli-Responsive Chitosan/ZnO NPs Transdermal Systems for Controlled Cannabidiol Delivery, Polymers-Basel, 2021, 13(2): 113-129.
[157] E.G. Andriotis, P.K. Monou, A. Louka, et al., Development of food grade 3D printable ink based on pectin containing cannabidiol/cyclodextrin inclusion complexes, Drug Dev Ind Pharm, 2020, 46(10): 1569-1577.
[158] Q. Zhou, H.F. Kang, M. Bielec, et al., Influence of different divalent ions cross-linking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing, Carbohyd Polym, 2018, 197: 292-304.
[159] M. Solinas, P. Massi, A.R. Cantelmo, et al., Cannabidiol inhibits angiogenesis by multiple mechanisms, Brit J Pharmacol, 2012, 167(6): 1218-1231.
[160] R.D. Prabha, B.P. Nair, N. Ditzel, et al., Strontium functionalized scaffold for bone tissue engineering, Materials Science and Engineering C-Materials for Biological Applications, 2019, 94: 509-515.
[161] C. Fu, H.T. Bai, J.Q. Zhu, et al., Enhanced cell proliferation and osteogenic differentiation in electrospun PLGA/hydroxyapatite nanofibre scaffolds incorporated with graphene oxide, Plos One, 2017, 12(11): 779-790.
[162] F.B. Ma, Y.J. Zhang, L.Q. Hu, et al., Strontium polysaccharide modulates osteogenesis-angiogenesis for bone regeneration, Int J Biol Macromol, 2021, 181: 452-461.
[163] X. Qin, Q. Jiang, H. Komori, et al., Runt-related transcription factor-2 (Runx2) is required for bone matrix protein gene expression in committed osteoblasts in mice, J Bone Miner Res, 2021, 36(10): 2081-2095.
[164] W.X. Qiu, X.L. Ma, X. Lin, et al., Deficiency of Macf1 in osterix expressing cells decreases bone formation by Bmp2/Smad/Runx2 pathway, J Cell Mol Med, 2020, 24(1): 317-327.
[165] Y. Shan, L. Wang, G.F. Li, et al., Methylation of bone SOST impairs SP7, RUNX2, and ERα transactivation in patients with postmenopausal osteoporosis, Biochem Cell Biol, 2019, 97(4): 369-374.
[166] R.S. Kadzik, K.E. Homa, D.R. Kovar, F-Actin Cytoskeleton Network Self-Organization Through Competition and Cooperation, Annu Rev Cell Dev Bi, 2020, 36: 35-60.
[167] K.A. DeMali, Vinculin - a dynamic regulator of cell adhesion, Trends Biochem Sci, 2004, 29(11): 565-567.
[168] Y.Y. Zhang, Y.H. Xing, J. Li, et al., Osteogenesis-Related Behavior of MC3T3-E1 Cells on Substrates with Tunable Stiffness, Biomed Res Int, 2018 (2018): 339-350.
[169] J.Y. Si, C.W. Wang, D.H. Zhang, et al., Osteopontin in Bone Metabolism and Bone Diseases, Med Sci Monitor, 2020, 26: 229-250.
[170] T. Komori, Whole Aspect of Runx2 Functions in Skeletal Development, Int J Mol Sci, 2022, 23(10): 190-200.
[171] R. Singh, A. Letai, K. Sarosiek, Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins, Nat Rev Mol Cell Bio, 2019,20(3): 175-193.
[172] F.B. Ma, Y.M. Ge, N. Liu, et al., fabrication of a composite hydrogel with tunable mechanical properties for cartilage tissue engineering, J Mater Chem B, 2019, 7(15: 2463-2473.
[173] I. Mortada, R. Mortada, Dental pulp stem cells and osteogenesis: an update, Cytotechnology, 2018, 70(5): 1479-1486.
[174] A. Vallée, Y. Lecarpentier, R. Guillevin, et al., Effects of cannabidiol interactions with Wnt/β-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer's disease, Acta Bioch Bioph Sin, 2017, 49(10): 853-866.
[175] L.Z. Hong, X.Y. Zhao, H.L. Zhang, p53-mediated neuronal cell death in ischemic brain injury, Neurosci Bull, 2010, 26(3): 232-240.
[176] L.A. DiPietro, Angiogenesis and wound repair: when enough is enough, J Leukocyte Biol, 2016, 100(5): 979-984.
[177] S. Böckmann, B. Hinz, Cannabidiol Promotes Endothelial Cell Survival by Heme Oxygenase-1-Mediated Autophagy, Cells-Basel, 2020, 9(7): 887-897.
[178] R. Ramer, S. Fischer, M. Haustein, et al., Cannabinoids inhibit angiogenic capacities of endothelial cells via release of tissue inhibitor of matrix metalloproteinases-1 from lung cancer cells, Biochem Pharmacol, 2014, 91(2):202-216.
[179] K. Wright, N. Rooney, M. Feeney, et al., Differential expression of cannabinoid receptors in the human colon: Cannabinoids promote epithelial wound healing, Gastroenterology, 2005, 129(2): 437-453.
[180] R.M. Krohn, S.A. Parsons, J. Fichna, et al., Abnormal cannabidiol attenuates experimental colitis in mice, promotes wound healing and inhibits neutrophil recruitment, J Inflamm-Lond, 2016, 13: 110-119.
[181] Y.M. Wang, X. Wang, Y. Yang, et al., Comparison of the in vitro Anti-Inflammatory Effect of Cannabidiol to Dexamethasone, Clin Cosmet Inv Derm, 2022, 15: 1959-1967.
[182] A. Sica, A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, J Clin Invest, 2012, 122(3): 787-795.
[183] S. Gordon, F.O. Martinez, Alternative Activation of Macrophages: Mechanism and Functions, Immunity, 2010, 32(5): 593-604.
[184] P.F. Li, Z.F. Hao, J.Y. Wu, et al., Comparative Proteomic Analysis of Polarized Human THP-1 and Mouse RAW264.7 Macrophages, Front Immunol, 2021, 12: 110-117.
[185] T. Genovese, M. Cordaro, R. Siracusa, et al., Molecular and Biochemical Mechanism of Cannabidiol in the Management of the Inflammatory and Oxidative Processes Associated with Endometriosis, Int J Mol Sci, 2022, 23(10): 112-120.
[186] B. St-Jacques, W.Y. Ma, Peripheral prostaglandin E2 prolongs the sensitization of nociceptive dorsal root ganglion neurons possibly by facilitating the synthesis and anterograde axonal trafficking of EP4 receptors, Exp Neurol, 2014, 261: 354-366.
[187] N.S. Krieger, W.R. Parker, K.M. Alexander, et al., Prostaglandins regulate acid-induced cell-mediated bone resorption, Am J Physiol-Renal, 2000, 279(6):F1077-F1082.
[188] W. Zou, X. Li, N. Li, et al., A comparative study of autogenous, allograft and artificial bone substitutes on bone regeneration and immunotoxicity in rat femur defect model, Regen Biomater, 2021, 8(1): 109-120.
[189] H. Chang, H.B. Xiang, Z.L. Yao, et al., Strontium-substituted calcium sulfate hemihydrate/hydroxyapatite scaffold enhances bone regeneration by recruiting bone mesenchymal stromal cells, J Biomater Appl, 2020, 35(1): 97-107.
[190] K.A. Alexander, M.K. Chang, E.R. Maylin, et al., Osteal Macrophages Promote In Vivo Intramembranous Bone Healing in a Mouse Tibial Injury Model, J Bone Miner Res, 2011, 26(7): 1517-1532.
[191] M.J. van Amerongen, M.C. Harmsen, N. van Rooijen, et al., Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice, Am J Pathol, 2007, 170(3): 818-829.
[192] A. Parihar, T.D. Eubank, A.I. Doseff, Monocytes and Macrophages Regulate Immunity through Dynamic Networks of Survival and Cell Death, J Innate Immun, 2010, 2(3): 204-215.
[193] E. Olmsted-Davis, J. Mejia, E. Salisbury, et al., A Population of M2 Macrophages Associated With Bone Formation, Front Immunol, 2021, 12: 990-999.
[194] J.A. Martin, B.C. Heiderscheit, A hierarchical clustering approach for examining the relationship between pelvis-proximal femur geometry and bone stress injury in runners, J Biomech, 2023, 160.
[195] P.C. Ma, R.F. Mo, H.B. Liao, et al., Gut microbiota depletion by antibiotics ameliorates somatic neuropathic pain induced by nerve injury, chemotherapy, and diabetes in mice, J Neuroinflamm, 2022, 19(1) 169-17.

所在学位评定分委会
力学
国内图书分类号
R318.08
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/633384
专题工学院_生物医学工程系
推荐引用方式
GB/T 7714
胡丽秋. 载大麻二酚海藻酸锶水凝胶促骨修复和增强骨弹性/塑性力学性能[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930748-胡丽秋-生物医学工程系(5539KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[胡丽秋]的文章
百度学术
百度学术中相似的文章
[胡丽秋]的文章
必应学术
必应学术中相似的文章
[胡丽秋]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。