[1] REN S, HE K, GIRSHICK R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems: volume 28. 2015.
[2] LIU W, ANGUELOV D, ERHAN D, et al. Ssd: Single shot multibox detector[C]//Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14. Springer, 2016: 21-37.
[3] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 779-788.
[4] SHUAI B, BERNESHAWI A G, MODOLO D, et al. Multi-object tracking with siamese track-rcnn[A]. 2020.
[5] WANG Z, ZHENG L, LIU Y, et al. Towards real-time multi-object tracking[C]//European Conference on Computer Vision. Springer, 2020: 107-122.
[6] WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]//2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017: 3645-3649.
[7] ZHU L, JI D, ZHU S, et al. Learning statistical texture for semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021:12537-12546.
[8] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
[9] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? the kitti vision benchmark suite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2012: 3354-3361.
[10] YU F, XIAN W, CHEN Y, et al. Bdd100k: A diverse driving video database with scalable annotation tooling: volume 2[A]. 2018: 6.
[11] CAESAR H, BANKITI V, LANG A H, et al. Nuscenes: A multimodal dataset for autonomous driving[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 11621-11631.
[12] HAHNER M, DAI D, SAKARIDIS C, et al. Semantic understanding of foggy scenes with purely synthetic data[C]//2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE, 2019: 3675-3681.
[13] XU R, XIANG H, XIA X, et al. Opv2v: An open benchmark dataset and fusion pipeline for perception with vehicle-to-vehicle communication[C]//2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022: 2583-2589.
[14] SHAH S, DEY D, LOVETT C, et al. Airsim: High-fidelity visual and physical simulation for autonomous vehicles[C]//Field and Service Robotics: Results of the 11th International Conference. Springer, 2018: 621-635.
[15] KIM S W, PHILION J, TORRALBA A, et al. Drivegan: Towards a controllable high-quality neural simulation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 5820-5829.
[16] ZHANG M, ZHANG Y, ZHANG L, et al. DeepRoad: GAN-based metamorphic testing and input validation framework for autonomous driving systems[C]//Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. 2018: 132-142.
[17] SAKARIDIS C, DAI D, VAN GOOL L. Semantic foggy scene understanding with synthetic data[J]. International Journal of Computer Vision, 2018, 126: 973-992.
[18] WRENNINGE M, UNGER J. Synscapes: A photorealistic synthetic dataset for street scene parsing[A]. 2018.
[19] HALDER S S, LALONDE J F, CHARETTE R D. Physics-based rendering for improving robustness to rain[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 10203-10212.
[20] PORAV H, BRULS T, NEWMAN P. I can see clearly now: Image restoration via de-raining[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 7087-7093.
[21] ALLETTO S, CARLIN C, RIGAZIO L, et al. Adherent raindrop removal with self-supervised attention maps and spatio-temporal generative adversarial networks[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). IEEE Computer Society, 2019: 2329-2338.
[22] DOSOVITSKIY A, ROS G, CODEVILLA F, et al. CARLA: An open urban driving simulator [C]//Conference on Robot Learning. PMLR, 2017: 1-16.
[23] ROS G, SELLART L, MATERZYNSKA J, et al. The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 3234-3243.
[24] SUN T, SEGU M, POSTELS J, et al. SHIFT: A synthetic driving dataset for continuous multi-task domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 21371-21382.
[25] LIU M Y, BREUEL T, KAUTZ J. Unsupervised image-to-image translation networks[C]// Advances in Neural Information Processing Systems: volume 30. 2017.
[26] LARSEN A B L, SØNDERBY S K, LAROCHELLE H, et al. Autoencoding beyond pixels using a learned similarity metric[C]//International Conference on Machine Learning. PMLR, 2016: 1558-1566.
[27] ZHANG Y, LING H, GAO J, et al. Datasetgan: Efficient labeled data factory with minimal human effort[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 10145-10155.
[28] LI X, KOU K, ZHAO B. Weather GAN: Multi-domain weather translation using generative adversarial networks[A]. 2021.
[29] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems: volume 27. 2014.
[30] HERTZMANN A, JACOBS C E, OLIVER N, et al. Image analogies[C]//SIGGRAPH. ACM, 2001: 327-340.
[31] ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017: 1125-1134.
[32] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 2223-2232.
[33] ZHANG Z, YANG L, ZHENG Y. Translating and segmenting multimodal medical volumes with cycle-and shape-consistency generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 9242-9251.
[34] XIE X, CHEN J, LI Y, et al. Self-supervised cyclegan for object-preserving image-to-image domain adaptation[C]//Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XX 16. Springer, 2020: 498-513.
[35] ZHU J Y, ZHANG R, PATHAK D, et al. Toward multimodal image-to-image translation[C]// Advances in Neural Information Processing Systems: volume 30. 2017.
[36] HUANG X, LIU M Y, BELONGIE S, et al. Multimodal unsupervised image-to-image translation[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 172-189.
[37] ULYANOV D, VEDALDI A, LEMPITSKY V. Instance normalization: The missing ingredient for fast stylization[A]. 2016.
[38] LEE H Y, TSENG H Y, HUANG J B, et al. Diverse image-to-image translation via disentangled representations[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 35-51.
[39] ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks[C]//International Conference on Machine Learning. PMLR, 2019: 7354-7363.
[40] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems: volume 30. 2017.
[41] LU Y, LIU J, ZHAO X, et al. Image translation with attention mechanism based on generative adversarial networks[C]//IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 2020: 364-369.
[42] ALAMI MEJJATI Y, RICHARDT C, TOMPKIN J, et al. Unsupervised attention-guided image-to-image translation[C]//Advances in Neural Information Processing Systems: volume 31. 2018.
[43] CHEN X, XU C, YANG X, et al. Attention-gan for object transfiguration in wild images[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 164-180.
[44] TANG H, LIU H, XU D, et al. Attentiongan: Unpaired image-to-image translation using attention-guided generative adversarial networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021.
[45] TANG H, XU D, SEBE N, et al. Attention-guided generative adversarial networks for unsupervised image-to-image translation[C]//2019 International Joint Conference on Neural Networks(IJCNN). IEEE, 2019: 1-8.
[46] EMAMI H, ALIABADI M M, DONG M, et al. Spa-gan: Spatial attention gan for image-to-image translation[J]. IEEE Transactions on Multimedia, 2020, 23: 391-401.
[47] KOMODAKIS N, ZAGORUYKO S. Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer[C]//International Conference on Learning Representations. 2017.
[48] KIM J, KIM M, KANG H, et al. U-GAT-IT: Unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation[C]//International Conference on Learning Representations. 2019.
[49] ZHOU B, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 2921-2929.
[50] YANG R, PENG C, WANG C, et al. CSAGAN: Channel and spatial attention-guided generative adversarial networks for unsupervised image-to-image translation[C]//2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2021: 3258-3265.
[51] WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 3-19.
[52] TANG H, BAI S, SEBE N. Dual attention gans for semantic image synthesis[C]//Proceedings of the 28th ACM International Conference on Multimedia. 2020: 1994-2002.
[53] MA S, FU J, CHEN C W, et al. Da-gan: Instance-level image translation by deep attention generative adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 5657-5666.
[54] MO S, CHO M, SHIN J. InstaGAN: Instance-aware image-to-image translation[C]//ICLR 2019. ICLR committee, 2019.
[55] SHEN Z, HUANG M, SHI J, et al. Towards instance-level image-to-image translation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 3683-3692.
[56] BHATTACHARJEE D, KIM S, VIZIER G, et al. Dunit: Detection-based unsupervised image-to-image translation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 4787-4796.
[57] KINGMA D P, WELLING M. Auto-encoding variational bayes[A]. 2013.
[58] ZHANG W, LIU Y, DONG C, et al. Ranksrgan: Generative adversarial networks with ranker for image super-resolution[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 3096-3105.
[59] WANG Y, PERAZZI F, MCWILLIAMS B, et al. A fully progressive approach to single-image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2018: 864-873.
[60] YUAN Y, LIU S, ZHANG J, et al. Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2018: 701-710.
[61] LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 4681-4690.
[62] JOHNSON J, ALAHI A, FEI-FEI L. Perceptual losses for real-time style transfer and super-resolution[C]//Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14. Springer, 2016: 694-711.
[63] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
[64] CHEN X, DUAN Y, HOUTHOOFT R, et al. Infogan: Interpretable representation learning by information maximizing generative adversarial nets[C]//Advances in Neural Information Processing Systems: volume 29. 2016.
[65] ULYANOV D, VEDALDI A, LEMPITSKY V. Improved texture networks: Maximizing quality and diversity in feed-forward stylization and texture synthesis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 6924-6932.
[66] HUANG X, BELONGIE S. Arbitrary style transfer in real-time with adaptive instance normalization[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017:1501-1510.
[67] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 7794-7803.
[68] GIRSHICK R. Fast r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015: 1440-1448.
[69] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014: 580-587.
[70] DAI J, LI Y, HE K, et al. R-fcn: Object detection via region-based fully convolutional networks[C]//Advances in Neural Information Processing Systems: volume 29. 2016.
[71] REDMON J, FARHADI A. Yolov3: An incremental improvement[A]. 2018.
[72] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[A]. 2020.
[73] JOCHER G, STOKEN A, BOROVEC J, et al. ultralytics/yolov5: v5. 0-YOLOv5-P6 1280 models, AWS, Supervise. ly and YouTube integrations[J]. Zenodo, 2021.
[74] ZHOU X, ZHUO J, KRAHENBUHL P. Bottom-up object detection by grouping extreme and center points[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 850-859.
[75] TIAN Z, SHEN C, CHEN H, et al. FCOS: A simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44(4): 1922-1933.
[76] KONG T, SUN F, LIU H, et al. Foveabox: Beyound anchor-based object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 7389-7398.
[77] YUN S, HAN D, OH S J, et al. Cutmix: Regularization strategy to train strong classifiers with localizable features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 6023-6032.
[78] KARRAS T, AILA T, LAINE S, et al. Progressive growing of GANs for improved quality, stability, and variation[C]//International Conference on Learning Representations. 2018.
[79] WU Y, ZHANG R, YANAI K. Attention guided unsupervised image-to-image translation with progressively growing strategy[C]//Asian Conference on Pattern Recognition. Springer, 2019: 85-99.
[80] WANG T C, LIU M Y, ZHU J Y, et al. High-resolution image synthesis and semantic manipulation with conditional gans[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 8798-8807.
[81] KAMRAN S A, HOSSAIN K F, TAVAKKOLI A, et al. RV-GAN: Segmenting retinal vascular structure in fundus paintings using a novel multi-scale generative adversarial network[C]//Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VIII 24. Springer, 2021: 34-44.
[82] FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 3146-3154.
[83] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 2881-2890.
[84] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 34. 2020: 12993-13000.
[85] XU H, GAO Y, YU F, et al. End-to-end learning of driving models from large-scale video datasets[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 2174-2182.
[86] SUN P, KRETZSCHMAR H, DOTIWALLA X, et al. Scalability in perception for autonomous driving: Waymo open dataset[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 2446-2454.
[87] SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training gans[J]. Advances in Neural Information Processing Systems, 2016, 29.
[88] HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local nash equilibrium[C]//Advances in Neural Information Processing Systems: volume 30. 2017.
[89] BIńKOWSKI M, SUTHERLAND D J, ARBEL M, et al. Demystifying MMD GANs[C]//International Conference on Learning Representations. 2018.
[90] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 2818-2826.
[91] PASZKE A, GROSS S, MASSA F, et al. Pytorch: An imperative style, high-performance deep learning library[C]//Advances in Neural Information Processing Systems: volume 32. 2019.
[92] FARAHANI A, VOGHOEI S, RASHEED K, et al. A brief review of domain adaptation[J]. Advances in Data Science and Information Engineering: Proceedings from ICDATA 2020 and IKE 2020, 2021: 877-894.
[93] KINGMA D P, BA J. Adam: A method for stochastic optimization[A]. 2014.
[94] SHARMA A, TAN R T. Nighttime visibility enhancement by increasing the dynamic range and suppression of light effects[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 11977-11986.
[95] JEONG S, KIM Y, LEE E, et al. Memory-guided unsupervised image-to-image translation[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 6558-6567.
[96] KIM S, BAEK J, PARK J, et al. InstaFormer: Instance-aware image-to-image translation with transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 18321-18331.
[97] GUO X, LI Y, LING H. LIME: Low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26(2).
[98] LI Y, BROWN M S. Single image layer separation using relative smoothness[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014: 2752-2759.
[99] ZHANG X, NG R, CHEN Q. Single image reflection separation with perceptual losses[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 4786-4794.
[100] CHEN Q, KOLTUN V. Photographic image synthesis with cascaded refinement networks[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 1511-1520.
修改评论