中文版 | English
题名

钴基类赫斯勒合金半导体研究

其他题名
RESEARCH ON CO-BASED HEUSLER-LIKE ALLOY SEMICONDUCTOR
姓名
姓名拼音
ZHONG Ke
学号
12032040
学位类型
硕士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
张文清
导师单位
材料科学与工程系
论文答辩日期
2023-11-22
论文提交日期
2023-12-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  窄带隙半导体的热导率相较于金属更低,而电导率相较于绝缘体更高,这使得窄带隙半导体材料通常具备优异的热电效应品质因子。对这类材料的研究对发现具有卓越性能的热电材料具有重要意义。作为一类重要的窄带隙半导体材料,赫斯勒合金中包含了众多具备出色热电性能的材料体系。赫斯勒合金是由氯化钠子晶格和硫化锌子晶格嵌套形成的晶体结构的化合物。根据化学计量比的不同,1:1:1比例的赫斯勒合金被称为半赫斯勒合金,而2:1:1比例的赫斯勒合金被称为全赫斯勒合金。然而,赫斯勒合金的窄带隙数量有限,限制了人们对其热电性能的进一步挖掘。

  为解决这一问题,本工作推广了传统赫斯勒合金半导体的18电子数规则和24电子数规则,将其应用于化学计量比为1+x:1:1(0的钴基类赫斯勒合金中。这一新设计规则预测了20价电子数的Co1.33YZ22价电子数的Co1.67YZ。这些不依赖于18电子数规则和24电子数规则半导体体系被称为非整数化学计量比的类赫斯勒合金半导体。本文着重讨论了Co1.33YZ体系。通过对26个符合新设计规则的Co1.33YZ体系进行第一性原理计算的高通量筛选,本工作发现了20余种可能形成窄带隙体的钴基类赫斯勒合金。由于赫斯勒合金的费米面附近主要由轨道电子占据,我们也对其磁性进行了深入研究。进一步的分析表明,这些可能的半导体中,11个形成了能带半导体,9个形成了具备新颖磁性反铁磁化合物。

  此次研究工作揭示了类赫斯勒合金体系中由结构和原子占据方式所导致的产生带隙与新颖磁性的核心机制——钴原子对之间的e-eg轨道交叠机制。这一机制通过双原子双轨道模型得到了清晰的定量描述,同时说明了具有新颖磁性的体系可能导致关联效应。本文论的研究结果为实验研究强关联体系的热电性能提供了理论依据,并将有助于进一步探索具备优异性能的新型非证书化学计量比类赫斯勒合金半导体。

其他摘要

    Narrow-gap semiconductors have lower thermal conductivity than metals and higher electrical conductivity than insulators, which enhances their thermoelectric figure of merit. The research on narrow-gap semiconductors is essential to the discovery of high-performance thermoelectric materials. Heusler alloys are an important class of materials in the study of thermoelectric materials. narrow-gap Heusler semiconductors are found to perform well in thermoelectricity. The crystal structure of Heusler alloys is a nesting of Na-Cl sublattice and ZnS sublattice. According to the difference of stoichiometry, the Heusler alloys are classified as half Heusler with stoichiometry 1:1:1 and full Heusler with stoichiometry 2:1:1. However, the number of narrow-gap semiconductors in Heusler alloys is few, which barricades people’s further investigation.

    To solve this problem, we generalize the 18 and 24 electron rules to design the traditional Heusler semiconductors and apply the new rule into Co-based Heusler-like alloys with stoichiometry 1+x:1:1(0 . The systems consistent with the new rule are 20-VEC Co1.33YZ and 22-VEC Co1.67YZ. Since the formation of semiconductors in these systems is no longer constrained by 18 and 24 electron rules, they are named as off-stoichiometry Heusler-like alloys. In this work, we focus on Co1.33YZ. The high-throughput screening of the designed 26 Co1.33YZ systems, we found more than 20 possible narrow-gap semiconductors. Due to the dominating occupancy of electrons near the Fermi surface in Heusler-like systems, we carefully investigate the magnetic properties. The study of magnetism shows that there are 11 band insulators and 9 antiferromagnetic compounds with novel magnetism.

    These results prevail the core mechanism, e-eg orbital interplays, which is caused by the Heusler-like structure and the atom occupancy patterns. Through the 2-site 2-orbital model, this mechanism is described quantitatively and clearly. Meanwhile, the potential correlation effect is also found. This work will provide reliable theoretical basis and help the discovery of new high-performance thermoelectric materials.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-12
参考文献列表

[1] DEB A, SAKURAI Y. Electronic structure of the Cu2MnAl Heusler alloy [J]. Journal of Physics: Condensed Matter, 2000, 12: 2997.
[2] MUBARAK A A, TARIQ S, HAMIOUD F, et al. Thermal, electro-magnetic and thermoelectric investigation of CoNb1−xTixSn(x = 0, 0.75, 0.5, 1) half-Heusler alloy [J]. Journal of Physics: Condensed Matter, 2019, 31(50): 505705.
[3] MOGES K, HONDA Y, LIU H-X, et al. Enhanced half-metallicity of off-stoichiometric quaternary Heusler alloy Co2(Mn,Fe)Si investigated through saturation magnetization and tunneling magnetoresistance [J]. Physical Review B, 2016, 93(13): 134403.
[4] DE GROOT R A, MUELLER F M, ENGEN P G V, et al. New Class of Materials: Half-Metallic Ferromagnets [J]. Physical Review Letters, 1983, 50(25): 2024-7.
[5] NISHINO Y, KATO M, ASANO S, et al. Semiconductorlike Behavior of Electrical Resistivity in Heusler-type 〖"Fe" 〗_2 VAl Compound [J]. Physical Review Letters, 1997, 79(10): 1909-12.
[6] CASPER F, GRAF T, CHADOV S, et al. Half-Heusler compounds: Novel materials for energy and spintronic applications [J]. Semiconductor Science and Technology - SEMICOND SCI TECHNOL, 2012, 27.
[7] GRAF T, FELSER C, PARKIN S S. Simple rules for the understanding of Heusler compounds [J]. Progress in solid state chemistry, 2011, 39(1): 1-50.
[8] HICKS D, OSES C, GOSSETT E, et al. AFLOW-SYM: platform for the complete, automatic and self-consistent symmetry analysis of crystals [J]. Acta Crystallographica Section A, 2018, 74(3): 184-203.
[9] FULDE P. Introduction to the theory of heavy fermions [J]. Journal of Physics F: Metal Physics, 1988, 18(4): 601.
[10] HEWSON A C. The Kondo Problem to Heavy Fermions [M]. Cambridge: Cambridge University Press, 1993.
[11] LIU H-X, KAWAMI T, MOGES K, et al. Influence of film composition in quaternary Heusler alloy Co2(Mn, Fe)Si thin films on tunnelling magnetoresistance of Co2(Mn, Fe)Si/MgO-based magnetic tunnel junctions [J]. Journal of Physics D: Applied Physics, 2015, 48(16): 164001.
[12] ZHOU M, CHEN L, FENG C, et al. Moderate-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds Ti1−xTaxCoSb [J]. Journal of Applied Physics, 2007, 101(11): 113714.
[13] PONNAMBALAM V, ALBONI P N, EDWARDS J, et al. Thermoelectric properties of p-type half-Heusler alloys Zr1−xTixCoSnySb1−y (0.0[14] GüRTH M, ROGL G, ROMAKA V V, et al. Thermoelectric high ZT half-Heusler alloys Ti1−x−yZrxHfyNiSn (0 ≤ x ≤ 1; 0 ≤ y ≤ 1) [J]. Acta Materialia, 2016, 104: 210-22.
[15] VASUNDHARA M, SRINIVAS V, RAO V V. Electronic transport in Heusler-type alloys 〖"Fe" 〗_2 〖"VAl" 〗_(1-x) M_(x ) (M="B" ,"In" ,"Si" ) [J]. Physical Review B, 2008, 77(22): 224415.
[16] TAN S, NAN P, XIA K, et al. Sublattice Short-Range Order and Modified Electronic Structure in Defective Half-Heusler Nb0.8CoSb [J]. The Journal of Physical Chemistry C, 2020, 125(1): 1125-33.
[17] RUAN Y, ZHONG K, ZHANG Y, et al. Off‐Stoichiometry Quaternary Heusler‐Like Semiconductors with Magnetism and Disorder [J]. Advanced Functional Materials, 2022, 32(51): 2209233.
[18] WANG L, DONG Z, TAN S, et al. Discovery of a Slater–Pauling Semiconductor ZrRu1.5Sb with Promising Thermoelectric Properties [J]. Advanced Functional Materials, 2022, 32(25): 2200438.
[19] NOBATA T, NAKAMOTO G, KURISU M, et al. Neutron diffraction study on the Heusler compound Co1.50TiSn and its nitrogenation products [J]. Journal of Alloys and Compounds, 2002, 347(1): 86-90.
[20] ZAYED M K, ELABBAR A A, YASSIN O A. First principles calculations of structural, magnetic and electronic properties of Co2TiZ (Z = Si and Sn) Heusler alloys using LSDA+U method: Effect of U [J]. Journal of Alloys and Compounds, 2018, 737: 790-7.
[21] YURYEV S O, YUSHCHUK S I, MOKLYAK V V, et al. Peculiarities of crystal structure and superfine interactions in alloys Ti-Co-Sn [J]. Physics and Chemistry of Solid State, 2020, 21(4): 645-9.
[22] 李正中. 固体理论 [M]. 高等敎育出版社, 2002:329-340.
[23] HOHENBERG P, KOHN W. Inhomogeneous Electron Gas [J]. Physical Review, 1964, 136(3B): B864-B71.
[24] KOHN W, SHAM L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Physical Review, 1965, 140(4A): A1133-A8.
[25] PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple [J]. Physical Review Letters, 1996, 77(18): 3865-8.
[26] LANGRETH D C, MEHL M J. Beyond the local-density approximation in calculations of ground-state electronic properties [J]. Physical Review B, 1983, 28(4): 1809-34.
[27] HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened Coulomb potential [J]. The Journal of Chemical Physics, 2003, 118(18): 8207-15.
[28] BECKE A D. Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction [J]. The Journal of Chemical Physics, 1992, 96(3): 2155-60.
[29] TAO J, PERDEW J P, STAROVEROV V N, et al. Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids [J]. Physical Review Letters, 2003, 91(14): 146401.
[30] SUN J, RUZSINSZKY A, PERDEW J P. Strongly Constrained and Appropriately Normed Semilocal Density Functional [J]. Physical Review Letters, 2015, 115(3): 036402.
[31] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals [J]. Physical Review B, 1993, 47(1): 558-61.
[32] BLUM V, GEHRKE R, HANKE F, et al. Ab initio molecular simulations with numeric atom-centered orbitals [J]. Computer Physics Communications, 2009, 180(11): 2175-96.
[33] GAO W, LIU Z, BABA T, et al. Significant off-stoichiometry effect leading to the N-type conduction and ferromagnetic properties in titanium doped Fe2VAl thin films [J]. Acta Materialia, 2020, 200: 848-56.
[34] NAGHIBOLASHRAFI N, HEGDE V I, SHAMBHU K C, et al. Structural and magnetic analyses of the FexCo1−xTiSb alloy system: Fe0.5Co0.5TiSb as a prototypical half-Heusler compound [J]. Journal of Alloys and Compounds, 2020, 822: 153408.
[35] NISHINO Y, TAMADA Y. Doping effects on thermoelectric properties of the off-stoichiometric Heusler compounds Fe2− xV1+ xAl [J]. Journal of Applied Physics, 2014, 115(12): 123707.
[36] MIKAMI M, INUKAI M, MIYAZAKI H, et al. Effect of off-stoichiometry on the thermoelectric properties of heusler-type Fe_2 VAl sintered alloys [J]. Journal of Electronic Materials, 2016, 45(3): 1284-9.
[37] MIYAZAKI H, TANAKA S, IDE N, et al. Thermoelectric properties of Heusler-type off-stoichiometric Fe2V1+xAl1−x alloys [J]. Materials Research Express, 2013, 1(1): 015901.
[38] NISHINO Y, KATO H, KATO M, et al. Effect of off-stoichiometry on the transport properties of the Heusler-type Fe2VAl compound [J]. Physical Review B, 2001, 63(23): 233303.
[39] NISHINO Y, SUMI H, MIZUTANI U. Transport and magnetic properties of the Heusler-type Fe2− xV1+xAl system (− 0.01⩽ x⩽ 0.08) [J]. Physical Review B, 2005, 71(9): 094425.
[40] HUANG H, YANG L, XIONG Y, et al. MCo1.5Sn (M = Ti, Zr, and Hf) ternary compounds: a class of three-quarter Heusler compounds [J]. Materials Today Physics, 2020, 15: 100251.
[41] ZELENKA F, BROŽ P, VŘEŠŤáL J, et al. Study of thermal stability of half-Heusler alloys TiFe1.33Sb and TixNb1-xFeSb (x = 0, 0.15) by differential thermal analysis and Knudsen effusion method [J]. Calphad, 2021, 74: 102292.
[42] TAVASSOLI A, GRYTSIV A, ROGL G, et al. The half Heusler system Ti1+ xFe1.33−xSb–TiCoSb with Sb/Sn substitution: phase relations, crystal structures and thermoelectric properties [J]. Dalton Transactions, 2018, 47(3): 879-97.
[43] IBRIR M, LAKEL S, BERRI S, et al. Ab initio study of structural, electronic, magnetic alloys: XTiSb (X = Co, Ni and Fe) [J]. AIP Conference Proceedings, 2015, 1653(1): 020046.
[44] DONG Z, LUO J, WANG C, et al. Half-Heusler-like compounds with wide continuous compositions and tunable p- to n-type semiconducting thermoelectrics [J]. Nature Communications, 2022, 13(1): 35.
[45] MOTT N F. The Basis of the Electron Theory of Metals, with Special Reference to the Transition Metals [J]. Proceedings of the Physical Society Section A, 1949, 62(7): 416.
[46] FäTH M, AARTS J, MENOVSKY A A, et al. Tunneling spectroscopy on the correlation effects in FeSi [J]. Physica B: Condensed Matter, 1999, 259-261: 860-1.
[47] KRISTANOVSKI O, RICHTER R, KRIVENKO I, et al. Quantum many-body intermetallics: Phase stability of Fe_3 Al and small-gap formation in Fe_2 VAl [J]. Physical Review B, 2017, 95(4): 045114.
[48] KUNEŠ J, KŘáPEK V. Disproportionation and Metallization at Low-Spin to High-Spin Transition in Multiorbital Mott Systems [J]. Physical Review Letters, 2011, 106(25): 256401.
[49] SHOUROV E H, STROHBEEN P J, DU D, et al. Electronic correlations in the semiconducting half-Heusler compound FeVSb [J]. Physical Review B, 2021, 103(4): 045134.
[50] BEENAKKER C W J, STARING A A M. Theory of the thermopower of a quantum dot [J]. Physical Review B, 1992, 46(15): 9667-76.
[51] GOODING R J, VOS K J E, LEUNG P W. Theory of electron-hole asymmetry in doped 〖"CuO" 〗_2 planes [J]. Physical Review B, 1994, 50(17): 12866-75.
[52] TASKIN A A, ANDO Y. Electron-Hole Asymmetry in 〖"GdBaCo" 〗_2 "O" _(5+x): Evidence for Spin Blockade of Electron Transport in a Correlated Electron System [J]. Physical Review Letters, 2005, 95(17): 176603.
[53] GOURGOUT A, GRISSONNANCHE G, LALIBERTé F, et al. Seebeck Coefficient in a Cuprate Superconductor: Particle-Hole Asymmetry in the Strange Metal Phase and Fermi Surface Transformation in the Pseudogap Phase [J]. Physical Review X, 2022, 12(1): 011037.
[54] KANCHARLA S S, OKAMOTO S. Band insulator to Mott insulator transition in a bilayer Hubbard model [J]. Physical Review B, 2007, 75(19): 193103.
[55] PHILLIPS P. Colloquium: Identifying the propagating charge modes in doped Mott insulators [J]. Reviews of Modern Physics, 2010, 82(2): 1719-42.
[56] GEORGES A, MEDICI L D, MRAVLJE J. Strong Correlations from Hund’s Coupling [J]. Annual Review of Condensed Matter Physics, 2013, 4(1): 137-78.
[57] BAG S, GARG A, KRISHNAMURTHY H R. Phase diagram of the half-filled ionic Hubbard model [J]. Physical Review B, 2015, 91(23): 235108.
[58] HOANG A-T, NGUYEN T-H-Y, LE D-A. Electronic phase diagram in the half-filled ionic Hubbard model with site-dependent interactions [J]. Physica B: Condensed Matter, 2018, 531: 110-3.
[59] CHUNG M-H. Phase transitions in the one-dimensional ionic Hubbard model [J]. Journal of the Korean Physical Society, 2021, 78(8): 700-5.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/633391
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
钟珂. 钴基类赫斯勒合金半导体研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032040-钟珂-材料科学与工程系(3915KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[钟珂]的文章
百度学术
百度学术中相似的文章
[钟珂]的文章
必应学术
必应学术中相似的文章
[钟珂]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。