[1] DEB A, SAKURAI Y. Electronic structure of the Cu2MnAl Heusler alloy [J]. Journal of Physics: Condensed Matter, 2000, 12: 2997.
[2] MUBARAK A A, TARIQ S, HAMIOUD F, et al. Thermal, electro-magnetic and thermoelectric investigation of CoNb1−xTixSn(x = 0, 0.75, 0.5, 1) half-Heusler alloy [J]. Journal of Physics: Condensed Matter, 2019, 31(50): 505705.
[3] MOGES K, HONDA Y, LIU H-X, et al. Enhanced half-metallicity of off-stoichiometric quaternary Heusler alloy Co2(Mn,Fe)Si investigated through saturation magnetization and tunneling magnetoresistance [J]. Physical Review B, 2016, 93(13): 134403.
[4] DE GROOT R A, MUELLER F M, ENGEN P G V, et al. New Class of Materials: Half-Metallic Ferromagnets [J]. Physical Review Letters, 1983, 50(25): 2024-7.
[5] NISHINO Y, KATO M, ASANO S, et al. Semiconductorlike Behavior of Electrical Resistivity in Heusler-type 〖"Fe" 〗_2 VAl Compound [J]. Physical Review Letters, 1997, 79(10): 1909-12.
[6] CASPER F, GRAF T, CHADOV S, et al. Half-Heusler compounds: Novel materials for energy and spintronic applications [J]. Semiconductor Science and Technology - SEMICOND SCI TECHNOL, 2012, 27.
[7] GRAF T, FELSER C, PARKIN S S. Simple rules for the understanding of Heusler compounds [J]. Progress in solid state chemistry, 2011, 39(1): 1-50.
[8] HICKS D, OSES C, GOSSETT E, et al. AFLOW-SYM: platform for the complete, automatic and self-consistent symmetry analysis of crystals [J]. Acta Crystallographica Section A, 2018, 74(3): 184-203.
[9] FULDE P. Introduction to the theory of heavy fermions [J]. Journal of Physics F: Metal Physics, 1988, 18(4): 601.
[10] HEWSON A C. The Kondo Problem to Heavy Fermions [M]. Cambridge: Cambridge University Press, 1993.
[11] LIU H-X, KAWAMI T, MOGES K, et al. Influence of film composition in quaternary Heusler alloy Co2(Mn, Fe)Si thin films on tunnelling magnetoresistance of Co2(Mn, Fe)Si/MgO-based magnetic tunnel junctions [J]. Journal of Physics D: Applied Physics, 2015, 48(16): 164001.
[12] ZHOU M, CHEN L, FENG C, et al. Moderate-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds Ti1−xTaxCoSb [J]. Journal of Applied Physics, 2007, 101(11): 113714.
[13] PONNAMBALAM V, ALBONI P N, EDWARDS J, et al. Thermoelectric properties of p-type half-Heusler alloys Zr1−xTixCoSnySb1−y (0.0[14] GüRTH M, ROGL G, ROMAKA V V, et al. Thermoelectric high ZT half-Heusler alloys Ti1−x−yZrxHfyNiSn (0 ≤ x ≤ 1; 0 ≤ y ≤ 1) [J]. Acta Materialia, 2016, 104: 210-22.
[15] VASUNDHARA M, SRINIVAS V, RAO V V. Electronic transport in Heusler-type alloys 〖"Fe" 〗_2 〖"VAl" 〗_(1-x) M_(x ) (M="B" ,"In" ,"Si" ) [J]. Physical Review B, 2008, 77(22): 224415.
[16] TAN S, NAN P, XIA K, et al. Sublattice Short-Range Order and Modified Electronic Structure in Defective Half-Heusler Nb0.8CoSb [J]. The Journal of Physical Chemistry C, 2020, 125(1): 1125-33.
[17] RUAN Y, ZHONG K, ZHANG Y, et al. Off‐Stoichiometry Quaternary Heusler‐Like Semiconductors with Magnetism and Disorder [J]. Advanced Functional Materials, 2022, 32(51): 2209233.
[18] WANG L, DONG Z, TAN S, et al. Discovery of a Slater–Pauling Semiconductor ZrRu1.5Sb with Promising Thermoelectric Properties [J]. Advanced Functional Materials, 2022, 32(25): 2200438.
[19] NOBATA T, NAKAMOTO G, KURISU M, et al. Neutron diffraction study on the Heusler compound Co1.50TiSn and its nitrogenation products [J]. Journal of Alloys and Compounds, 2002, 347(1): 86-90.
[20] ZAYED M K, ELABBAR A A, YASSIN O A. First principles calculations of structural, magnetic and electronic properties of Co2TiZ (Z = Si and Sn) Heusler alloys using LSDA+U method: Effect of U [J]. Journal of Alloys and Compounds, 2018, 737: 790-7.
[21] YURYEV S O, YUSHCHUK S I, MOKLYAK V V, et al. Peculiarities of crystal structure and superfine interactions in alloys Ti-Co-Sn [J]. Physics and Chemistry of Solid State, 2020, 21(4): 645-9.
[22] 李正中. 固体理论 [M]. 高等敎育出版社, 2002:329-340.
[23] HOHENBERG P, KOHN W. Inhomogeneous Electron Gas [J]. Physical Review, 1964, 136(3B): B864-B71.
[24] KOHN W, SHAM L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Physical Review, 1965, 140(4A): A1133-A8.
[25] PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple [J]. Physical Review Letters, 1996, 77(18): 3865-8.
[26] LANGRETH D C, MEHL M J. Beyond the local-density approximation in calculations of ground-state electronic properties [J]. Physical Review B, 1983, 28(4): 1809-34.
[27] HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened Coulomb potential [J]. The Journal of Chemical Physics, 2003, 118(18): 8207-15.
[28] BECKE A D. Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction [J]. The Journal of Chemical Physics, 1992, 96(3): 2155-60.
[29] TAO J, PERDEW J P, STAROVEROV V N, et al. Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids [J]. Physical Review Letters, 2003, 91(14): 146401.
[30] SUN J, RUZSINSZKY A, PERDEW J P. Strongly Constrained and Appropriately Normed Semilocal Density Functional [J]. Physical Review Letters, 2015, 115(3): 036402.
[31] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals [J]. Physical Review B, 1993, 47(1): 558-61.
[32] BLUM V, GEHRKE R, HANKE F, et al. Ab initio molecular simulations with numeric atom-centered orbitals [J]. Computer Physics Communications, 2009, 180(11): 2175-96.
[33] GAO W, LIU Z, BABA T, et al. Significant off-stoichiometry effect leading to the N-type conduction and ferromagnetic properties in titanium doped Fe2VAl thin films [J]. Acta Materialia, 2020, 200: 848-56.
[34] NAGHIBOLASHRAFI N, HEGDE V I, SHAMBHU K C, et al. Structural and magnetic analyses of the FexCo1−xTiSb alloy system: Fe0.5Co0.5TiSb as a prototypical half-Heusler compound [J]. Journal of Alloys and Compounds, 2020, 822: 153408.
[35] NISHINO Y, TAMADA Y. Doping effects on thermoelectric properties of the off-stoichiometric Heusler compounds Fe2− xV1+ xAl [J]. Journal of Applied Physics, 2014, 115(12): 123707.
[36] MIKAMI M, INUKAI M, MIYAZAKI H, et al. Effect of off-stoichiometry on the thermoelectric properties of heusler-type Fe_2 VAl sintered alloys [J]. Journal of Electronic Materials, 2016, 45(3): 1284-9.
[37] MIYAZAKI H, TANAKA S, IDE N, et al. Thermoelectric properties of Heusler-type off-stoichiometric Fe2V1+xAl1−x alloys [J]. Materials Research Express, 2013, 1(1): 015901.
[38] NISHINO Y, KATO H, KATO M, et al. Effect of off-stoichiometry on the transport properties of the Heusler-type Fe2VAl compound [J]. Physical Review B, 2001, 63(23): 233303.
[39] NISHINO Y, SUMI H, MIZUTANI U. Transport and magnetic properties of the Heusler-type Fe2− xV1+xAl system (− 0.01⩽ x⩽ 0.08) [J]. Physical Review B, 2005, 71(9): 094425.
[40] HUANG H, YANG L, XIONG Y, et al. MCo1.5Sn (M = Ti, Zr, and Hf) ternary compounds: a class of three-quarter Heusler compounds [J]. Materials Today Physics, 2020, 15: 100251.
[41] ZELENKA F, BROŽ P, VŘEŠŤáL J, et al. Study of thermal stability of half-Heusler alloys TiFe1.33Sb and TixNb1-xFeSb (x = 0, 0.15) by differential thermal analysis and Knudsen effusion method [J]. Calphad, 2021, 74: 102292.
[42] TAVASSOLI A, GRYTSIV A, ROGL G, et al. The half Heusler system Ti1+ xFe1.33−xSb–TiCoSb with Sb/Sn substitution: phase relations, crystal structures and thermoelectric properties [J]. Dalton Transactions, 2018, 47(3): 879-97.
[43] IBRIR M, LAKEL S, BERRI S, et al. Ab initio study of structural, electronic, magnetic alloys: XTiSb (X = Co, Ni and Fe) [J]. AIP Conference Proceedings, 2015, 1653(1): 020046.
[44] DONG Z, LUO J, WANG C, et al. Half-Heusler-like compounds with wide continuous compositions and tunable p- to n-type semiconducting thermoelectrics [J]. Nature Communications, 2022, 13(1): 35.
[45] MOTT N F. The Basis of the Electron Theory of Metals, with Special Reference to the Transition Metals [J]. Proceedings of the Physical Society Section A, 1949, 62(7): 416.
[46] FäTH M, AARTS J, MENOVSKY A A, et al. Tunneling spectroscopy on the correlation effects in FeSi [J]. Physica B: Condensed Matter, 1999, 259-261: 860-1.
[47] KRISTANOVSKI O, RICHTER R, KRIVENKO I, et al. Quantum many-body intermetallics: Phase stability of Fe_3 Al and small-gap formation in Fe_2 VAl [J]. Physical Review B, 2017, 95(4): 045114.
[48] KUNEŠ J, KŘáPEK V. Disproportionation and Metallization at Low-Spin to High-Spin Transition in Multiorbital Mott Systems [J]. Physical Review Letters, 2011, 106(25): 256401.
[49] SHOUROV E H, STROHBEEN P J, DU D, et al. Electronic correlations in the semiconducting half-Heusler compound FeVSb [J]. Physical Review B, 2021, 103(4): 045134.
[50] BEENAKKER C W J, STARING A A M. Theory of the thermopower of a quantum dot [J]. Physical Review B, 1992, 46(15): 9667-76.
[51] GOODING R J, VOS K J E, LEUNG P W. Theory of electron-hole asymmetry in doped 〖"CuO" 〗_2 planes [J]. Physical Review B, 1994, 50(17): 12866-75.
[52] TASKIN A A, ANDO Y. Electron-Hole Asymmetry in 〖"GdBaCo" 〗_2 "O" _(5+x): Evidence for Spin Blockade of Electron Transport in a Correlated Electron System [J]. Physical Review Letters, 2005, 95(17): 176603.
[53] GOURGOUT A, GRISSONNANCHE G, LALIBERTé F, et al. Seebeck Coefficient in a Cuprate Superconductor: Particle-Hole Asymmetry in the Strange Metal Phase and Fermi Surface Transformation in the Pseudogap Phase [J]. Physical Review X, 2022, 12(1): 011037.
[54] KANCHARLA S S, OKAMOTO S. Band insulator to Mott insulator transition in a bilayer Hubbard model [J]. Physical Review B, 2007, 75(19): 193103.
[55] PHILLIPS P. Colloquium: Identifying the propagating charge modes in doped Mott insulators [J]. Reviews of Modern Physics, 2010, 82(2): 1719-42.
[56] GEORGES A, MEDICI L D, MRAVLJE J. Strong Correlations from Hund’s Coupling [J]. Annual Review of Condensed Matter Physics, 2013, 4(1): 137-78.
[57] BAG S, GARG A, KRISHNAMURTHY H R. Phase diagram of the half-filled ionic Hubbard model [J]. Physical Review B, 2015, 91(23): 235108.
[58] HOANG A-T, NGUYEN T-H-Y, LE D-A. Electronic phase diagram in the half-filled ionic Hubbard model with site-dependent interactions [J]. Physica B: Condensed Matter, 2018, 531: 110-3.
[59] CHUNG M-H. Phase transitions in the one-dimensional ionic Hubbard model [J]. Journal of the Korean Physical Society, 2021, 78(8): 700-5.
修改评论