中文版 | English
题名

低低跟踪模式地球重力场反演与星座设计

其他题名
GRAVITY FIELD DETERMINATION AND CONSTELLATION DESIGN OF GRAVITY SATELLITE IN LOW-LOW TRACKING MODE
姓名
姓名拼音
YAN Zhengwen
学号
11930895
学位类型
博士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
冉将军
导师单位
地球与空间科学系
论文答辩日期
2023-11-10
论文提交日期
2023-12-22
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

   地球重力场恢复及气候探测卫星 (Gravity Recovery And Climate Experi-ment, GRACE) GRACE后续任务 (GRACE Follow-On, GRACE-FO) 具备高时空分辨率监测地球表层质量迁移的能力,为大地测量学、水文学、冰川学和地震学等地球科学注入新的活力。然而,如何从海量的重力卫星观测数据中提取出高时空分辨率的地表质量迁移信号,一直是卫星重力学的关注热点和研究难点。

   本文以低低卫星跟踪卫星测量模式的GRACE重力卫星数据反演地表质量迁移模型为主线框架,研究内容分为时变重力场球谐系数模型解算、时变重力场Mascon模型解算以及下一代重力卫星任务相关的星座设计与性能评估。

研究成果和创新点主要包含以下四方面:

1.     完善并改进了“基于低轨卫星数据解算地球重力场系统 球谐系数方案” (The ANalyst of Gravity Estimation with Low-orbit Satellites - Spherical Harmonic solution recovery, ANGELS-SH) 时变重力场解算系统:提高背景力模型的计算精度,使其媲美国外主流机构对背景力模型的解算精度;聚焦于短弧长法解算时变重力场球谐系数模型过程中若干关键参数进行了深入的分析与讨论。研究结果表明:本文解算的GCL-SH2022模型精度与国际官方解算机构发布的RL06版本球谐系数模型精度相当。

2.     建立了卫星观测量与Mascon参数的显式偏导数,基于短弧长法实现了从Level-1B数据反演Mascon时变重力场函数模型的构建与解算系统ANGELS-M的研发,填补了国内外短弧长法解算Mascon模型的研究空缺。此外,研究了时变重力场Mascon模型解算过程中若干关键问题:在常规背景力模型的基础上,镶嵌了额外两种背景力模型用以考虑冰川均衡所引发的动力学信号和由地球弹性形变所触发的时变重力信号;依据海陆及流域边界构建了更加符合物理规律的Mascon网格,并根据重力卫星的空间分辨率对网格尺度做出最优化选择。研究结果表明:本文解算的GCL-Mascon2023模型具备时变信号捕获的能力,其精度与国际官方解算机构发布的RL06版本Mascon模型精度相当。

3.     构建了兼顾空域和时域双重优化的目标函数,并引入差分进化算法对GRACE-FO和中国未来重力卫星任务组建的双极轨重力卫星星座进行优化设计,将解算时变重力场的时间分辨率提升了一倍。首次分析了双极轨重力卫星星座时间分辨率的提升对地球科学的潜在价值,研究结果表明:半月解能够提升亚湿润气候类型流域水文信号约36%精度;半月解能够在格陵兰冰盖质量平衡计算中减少约25%误差;半月解可以捕获之前被月解忽略地震同震位移的高频质量迁移信号,其精度约提高33%

4.     针对(近)极轨型重力卫星编队/星座解算的时变重力场受到较为严重相关噪声的干扰,在双极轨重力卫星星座基础上探索如何设计第三组重力卫星编队才能将三重力卫星组合星座的性能最大化。采用球形位错理论模拟计算了不同震级的地震同震信号,着重对三重力卫星组合星座进行了地震敏感性分析。研究结果表明:GRACE-FO随着地震震级的减小而逐渐达到其探测上限,三重力卫星组合星座的地震探测优势逐渐凸显,其在捕获Mw7.7左右地震的同震重力信号时具有60%左右的精度提升。

其他摘要

The Gravity Recovery And Climate Experiment (GRACE), and its successor mission, GRACE-Follow on (GRACE-FO), possess the unique ability to monitor the mass migration of the Earth's surface with high temporal and spatial resolution. It injects new vitality into various fields, including geodesy, hydrology, glaciology, and seismology. However, the challenge of accurately solving the mass transport model with high temporal and spatial resolution from the massive observation data of gravity satellites remains the research hotspot and difficulty in satellite gravimetry.

The dissertation takes the inversion of surface mass variations from the gravity satellite in low-low tracking mode (i.e., GRACE) as the main framework. It is mainly divided into recovering the temporal gravity field represented in terms of spherical harmonic coefficients and Mascon models, as well as constellation design and performance evaluation related to the next generation gravity mission.

The main work and contributions of this dissertation cover mainly:

  1. The self-developed ANalyst of Gravity Estimation with Low-orbit Satellites - Spherical Harmonic solution recovery software (ANGELS-SH) was further enhanced by improving the computational accuracy of the background force models. Additionally, this dissertation has addressed several key issues that arise during the spherical harmonic solutions recovery using the short-arc approach. The research results indicate that the GCL-SH2022 models solved in this dissertation are comparable in accuracy to the RL06 version of the spherical harmonic coefficient solutions released by international official institutions.
  2. In order to recover the Mascon solutions from level-1B data, this dissertation used explicit partial derivatives with analytical expression for mass concentration to relate the inter-satellite rangerate measurements to the individual mascons. This algorithm has addressed the research gap in the short-arc approach for recovering Mascon models both domestically and internationally. To that end, it comprehensively analyzes the key parameters required for implementing Mascon inversion using the short-arc approach. The dissertation addressed several critical issues in the Mascon solution recovery. In addition to the conventional background force model, two additional ones were incorporated to account for dynamic signals induced by glacial isostatic adjustment and temporal signals triggered by Earth's elastic deformation. Mascon grids, in greater conformity with physical laws, were developed by delineating the boundaries of seas, lands, and river basins, with an optimized selection of scales for land and ocean grids according to GRACE spatial resolution. The comprehensive analyses demonstrate that GCL-Mascon2023, recovered by this dissertation, achieves accuracy comparable to the Mascon models released by international official institutions in the RL06 version.
  3. The dissertation formulated an objective function that considers both spatial and temporal aspects and utilized the Differential Evolution algorithm to optimize the Dual GRACE-like Polar satellite Constellation, which combines GRACE-FO and the Chinese Future Gravity Mission. The optimized constellation doubled the temporal resolution of the estimated temporal gravity field. The potential value of improving temporal resolution through the Dual GRACE-like Polar satellite Constellation was analyzed in Earth sciences. The research results indicate that semi-monthly solutions can enhance the accuracy of hydrological signals in sub-humid climate regions by approximately 36%. Furthermore, semi-monthly solutions can improve the accuracy of glacier ablation signals by about 25% better than the monthly solutions. For postseismic gravitational deformation caused by instantaneous earthquakes, the semi-monthly solutions can capture mass transport signals previously ignored by the monthly solutions, which leads to accuracy being improved by about 33%.
  4. Due to the considerable impact of correlation noise on the gravity field determined by the polar-orbiting gravity satellite formation, there is a need to investigate the optimal design for the Third Inclined-pair satellite Formation based on the Dual GRACE-like Polar satellite Constellation. This exploration aims to enhance the overall performance of the Triple Gravity Satellite Constellation. This dissertation employed the spherical dislocation theory to model and compute earthquake coseismic signals of various magnitudes, concentrating on the seismic sensitivity analysis from the Triple Gravity Satellite Constellation. The research results indicate that GRACE-FO gradually reaches its detection limit as the magnitude of seismic events decreases. In contrast, the seismic detection advantage of the Triple Gravity Satellite Constellation becomes increasingly evident. It exhibits an accuracy improvement of approximately 60% in capturing co-seismic gravity signals for earthquakes around Mw7.7.
关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-12
参考文献列表

[1] 曾华霖. 重力场与重力勘探 [M]. 北京: 地质出版社, 2005.
[2] 宁津生. 卫星重力探测技术与地球重力场研究 [J]. 大地测量与地球动力学, 2002: 1-5.
[3] 闫政文, 谭捍东, 彭淼, 等. 基于交叉梯度约束的重力、磁法和大地电磁三维联合反演 [J]. 地球物理学报, 2020, 63: 736-752.
[4] 付广裕, 祝意青, 高尚华, 等. 川西地区实测自由空气重力异常与EGM2008模型结果的差异 [J]. 地球物理学报, 2013, 56: 3761-3769.
[5] 王林松, 马险, 陈超, 等. 重力基准快速测定与分析:以广西重力基点网及格值标定场重建为例 [J]. 地球物理学报, 2019, 62: 1885-1897.
[6] 韩建成, 陈石, 李红蕾, 等. 陆地高精度重力观测数据的应用研究进展 [J]. 地球与行星物理论评, 2022, 53: 17-34.
[7] 郭良辉, 孟小红, 石磊, 等. 优化滤波方法及其在中国大陆布格重力异常数据处理中的应用 [J]. 地球物理学报, 2012, 55: 4078-4088.
[8] 胡敏章, 李建成, 金涛勇, 等. 联合多源数据确定中国海及周边海底地形模型 [J]. 武汉大学学报(信息科学版), 2015, 40: 1266-1273.
[9] 闫政文. 重力、磁法和大地电磁法三维联合反演研究 [硕士论文]. 北京: 中国地质大学(北京) [D], 2019.
[10] 孙文科. 低轨道人造卫星(CHAMP、GRACE、GOCE)与高精度地球重力场——卫星重力大地测量的最新发展及其对地球科学的重大影响 [J]. 大地测量与地球动力学, 2002: 92-100.
[11] 宁津生, 王正涛. 地球重力场研究现状与进展 [J]. 测绘地理信息, 2013, 38: 1-7.
[12] Panet I, Flury J, Biancale R, et al. Earth System Mass Transport Mission (e.motion): A Concept for Future Earth Gravity Field Measurements from Space [J]. Surveys in Geophysics, 2013, 34(2): 141-163.
[13] 许厚泽. 卫星重力研究:21世纪大地测量研究的新热点 [J]. 测绘科学, 2001, (03): 1-3+2.
[14] Wiese D N, Bienstock B, Blackwood C, et al. The mass change designated observable study: overview and results [J]. Earth and Space Science, 2022, 9(8): e2022EA002311.
[15] Zektser I S, Everett L G. Groundwater resources of the world and their use [M]. Unesco, 2004.
[16] Siebert S, Burke J, Faures J-M, et al. Groundwater use for irrigation–a global inventory [J]. Hydrology and earth system sciences, 2010, 14(10): 1863-1880.
[17] Vörösmarty C J, Mcintyre P B, Gessner M O, et al. Global threats to human water security and river biodiversity [J]. nature, 2010, 467(7315): 555-561.
[18] Syed T H, Famiglietti J S, Chambers D P, et al. Satellite-based global-ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge [J]. Proceedings of the National Academy of Sciences, 2010, 107(42): 17916-17921.
[19] Rodell M. The observed state of the water cycle in the early 21st century. vol. 28 [J]. J Clim, 2015: 8289-8318.
[20] Famiglietti J, Cazenave A, Eicker A, et al. Satellites provide the big picture [J]. Science, 2015, 349(6249): 684-685.
[21] Rodell M, Famiglietti J S, Wiese D N, et al. Emerging trends in global freshwater availability [J]. Nature, 2018, 557(7707): 650-+.
[22] Luo J, Chen L S, Duan H Z, et al. TianQin: a space-borne gravitational wave detector [J]. Classical and Quantum Gravity, 2016, 33(3).
[23] 肖云, 杨元喜, 潘宗鹏, 等. 中国卫星跟踪卫星重力测量系统性能与应用 [J]. 科学通报, 2023, 68: 2655-2664.
[24] 宁津生, 王正涛, 超能芳. 国际新一代卫星重力探测计划研究现状与进展 [J]. 武汉大学学报(信息科学版), 2016, 41: 1-8.
[25] Reigber C, Schwintzer P, Lühr H. The CHAMP geopotential mission, in bollettino di geofisica teoretica ed applicata [J]. 1999.
[26] Reigber C, Schwintzer P, Neumayer K-H, et al. The CHAMP-only Earth gravity field model EIGEN-2 [J]. Advances in Space Research, 2003, 31(8): 1883-1888.
[27] VISSER P., MOORE P. Integrated Space Geodetic Systems and Satellite Dynamics [M]. 2003: 1889-1895.
[28] Baur O. Greenland mass variation from time-variable gravity in the absence of GRACE [J]. Geophysical Research Letters, 2013, 40(16): 4289-4293.
[29] Flechtner F, Sneeuw N, Schuh W. Observation of the system earth from space: CHAMP, GRACE, GOCE and future missions [M]. Springer, 2014.
[30] Tapley B D, Bettadpur S, Watkins M, et al. The gravity recovery and climate experiment: Mission overview and early results [J]. Geophysical Research Letters, 2004, 31(9).
[31] Tapley B D, Watkins M M, Flechtner F, et al. Contributions of GRACE to understanding climate change [J]. Nature Climate Change, 2019, 9(5): 358-369.
[32] Chen J L, Cazenave A, Dahle C, et al. Applications and Challenges of GRACE and GRACE Follow-On Satellite Gravimetry [J]. Surveys in Geophysics, 2022, 43(1): 305-345.
[33] Landerer F W, Flechtner F M, Save H, et al. Extending the Global Mass Change Data Record: GRACE Follow-On Instrument and Science Data Performance [J]. Geophysical Research Letters, 2020, 47(12).
[34] Dunn C, Bertiger W, Bar-Sever Y, et al. Instrument of GRACE GPS augments gravity measurements [J]. GPS world, 2003, 14(2): 16-29.
[35] Tregoning P, Watson C, Ramillien G, et al. Detecting hydrologic deformation using GRACE and GPS [J]. Geophysical Research Letters, 2009, 36.
[36] Jacob T, Wahr J, Pfeffer W T, et al. Recent contributions of glaciers and ice caps to sea level rise [J]. Nature, 2012, 482(7386): 514-518.
[37] Ran J J, Ditmar P, Klees R, et al. Statistically optimal estimation of Greenland Ice Sheet mass variations from GRACE monthly solutions using an improved mascon approach [J]. Journal of Geodesy, 2018, 92(3): 299-319.
[38] Han S C, Sauber J, Luthcke S B, et al. Implications of postseismic gravity change following the great 2004 Sumatra-Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data [J]. Journal of Geophysical Research-Solid Earth, 2008, 113(B11).
[39] Fuchs M J, Hooper A, Broerse T, et al. Distributed fault slip model for the 2011 Tohoku-Oki earthquake from GNSS and GRACE/GOCE satellite gravimetry [J]. Journal of Geophysical Research-Solid Earth, 2016, 121(2): 1114-1130.
[40] 赵倩, 姜卫平, 徐新禹, 等. 卫星编队用于消除海潮模型混频误差影响的可行性研究 [J]. 中国科学:地球科学, 2015, 45: 169-176.
[41] Reubelt T, Sneeuw N, Iran Pour S, et al. The ESA project SC4MGV" Assessment of Satellite Constellations for Monitoring the Variations in Earth's Gravity Field"-overview, objectives and first results; proceedings of the EGU General Assembly Conference Abstracts, F, 2014 [C].
[42] Pail R, Bamber J, Biancale R, et al. Mass variation observing system by high low inter-satellite links (MOBILE) -a new concept for sustained observation of mass transport from space [J]. Journal of Geodetic Science, 2019, 9(1): 48-58.
[43] Wahr J, Molenaar M, Bryan F. Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE [J]. Journal of Geophysical Research-Solid Earth, 1998, 103(B12): 30205-30229.
[44] Swenson S, Wahr J. Post-processing removal of correlated errors in GRACE data [J]. Geophysical Research Letters, 2006, 33(8).
[45] Klees R, Revtova E A, Gunter B C, et al. The design of an optimal filter for monthly GRACE gravity models [J]. Geophysical Journal International, 2008, 175(2): 417-432.
[46] Kusche J, Schmidt R, Petrovic S, et al. Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model [J]. Journal of Geodesy, 2009, 83(10): 903-913.
[47] Flechtner F, Morton P, Watkins M, et al. Status of the GRACE Follow-On Mission; proceedings of the IAG 5th International Symposium on Gravity, Geoid and Height Systems (GGHS), Venice, ITALY, F Oct 09-12, 2012 [C]. 2014.
[48] Abich K, Abramovici A, Amparan B, et al. In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer [J]. Physical Review Letters, 2019, 123(3).
[49] Flury J, Bettadpur S, Tapley B D. Precise accelerometry onboard the GRACE gravity field satellite mission [J]. Advances in Space Research, 2008, 42(8): 1414-1423.
[50] Sheard B S, Heinzel G, Danzmann K, et al. Intersatellite laser ranging instrument for the GRACE follow-on mission [J]. Journal of Geodesy, 2012, 86(12): 1083-1095.
[51] Anlauf H, Pingel D, Rhodin A. Assimilation of GPS radio occultation data at DWD [J]. Atmospheric Measurement Techniques, 2011, 4(6): 1105-1113.
[52] Wickert J, Michalak G, Schmidt T, et al. GPS Radio Occultation: Results from CHAMP, GRACE and FORMOSAT-3/COSMIC [J]. Terrestrial Atmospheric and Oceanic Sciences, 2009, 20(1): 35-50.
[53] Flechtner F, Neumayer K H, Dahle C, et al. What Can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications? [J]. Surveys in Geophysics, 2016, 37(2): 453-470.
[54] Loomis B D, Nerem R S, Luthcke S B. Simulation study of a follow-on gravity mission to GRACE [J]. Journal of Geodesy, 2012, 86(5): 319-335.
[55] Drinkwater M, Floberghagen R, Haagmans R, et al. GOCE: ESA’s first Earth Explorer Core mission, Earth Gravity Field from Space-from Sensors to Earth Sciences (Beutler GB, Drinkwater M, Rummel R, von Steiger R, eds.), Space Sciences Series of ISSI, vol. 18 [Z]. Kluwer Academic Publishers, Dordrecht, Netherlands. 2003
[56] Floberghagen R, Fehringer M, Lamarre D, et al. Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission [J]. Journal of Geodesy, 2011, 85(11): 749-758.
[57] Brockmann J M, Schubert T, Schuh W D. An Improved Model of the Earth's Static Gravity Field Solely Derived from Reprocessed GOCE Data [J]. Surveys in Geophysics, 2021, 42(2): 277-316.
[58] Massonnet D. The interferometric cartwheel: a constellation of passive satellites to produce radar images to be coherently combined [J]. International Journal of Remote Sensing, 2001, 22(12): 2413-2430.
[59] Farahani H H, Ditmar P, Klees R. Assessment of the added value of data from the GOCE satellite mission to time-varying gravity field modelling [J]. Journal of Geodesy, 2014, 88(2): 157-178.
[60] Purkhauser A F, Pail R. Triple-Pair Constellation Configurations for Temporal Gravity Field Retrieval [J]. Remote Sensing, 2020, 12(5).
[61] Weigelt M, Van Dam T, Jaggi A, et al. Time-variable gravity signal in Greenland revealed by high-low satellite-to-satellite tracking [J]. Journal of Geophysical Research-Solid Earth, 2013, 118(7): 3848-3859.
[62] Mayer-Gürr T, Behzadpour S, Kvas A, et al. ITSG-Grace2018: monthly, daily and static gravity field solutions from GRACE [J]. 2018.
[63] 冉将军, 闫政文, 吴云龙, 等. 下一代重力卫星任务研究概述与未来展望 [J]. 武汉大学学报(信息科学版): 1-22.
[64] Bettadpur S. GRACE 327-742 (CSR-GR-12-xx)(Gravity Recovery and Climate Experiment), UTCSR Level-2 Processing Standards Document (Rev. 5.0, April 18, 2018),(For Level-2 Product Release 0006) [J]. Center for Space Research, The University of Texas at Austin, 2018.
[65] Mayer-Gürr T. Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. Bonn: University of Bonn [D], 2006.
[66] Mayer-Gurr T, Ilk K H, Eicker A, et al. ITG-CHAMP01: a CHAMP gravity field model from short kinematic arcs over a one-year observation period [J]. Journal of Geodesy, 2005, 78(7-8): 462-480.
[67] Ditmar P, Van Der Sluijs A a V. A technique for modeling the Earth's gravity field on the basis of satellite accelerations [J]. Journal of Geodesy, 2004, 78(1-2): 12-33.
[68] Ditmar P, Da Encarnacao J T, Farahani H H. Understanding data noise in gravity field recovery on the basis of inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE [J]. Journal of Geodesy, 2012, 86(6): 441-465.
[69] Beutler G, Jaggi A, Mervart L, et al. The celestial mechanics approach: application to data of the GRACE mission [J]. Journal of Geodesy, 2010, 84(11): 661-681.
[70] Beutler G, Jaggi A, Mervart L, et al. The celestial mechanics approach: theoretical foundations [J]. Journal of Geodesy, 2010, 84(10): 605-624.
[71] Jekeli C. The determination of gravitational potential differences from satellite-to-satellite tracking [J]. Celestial Mechanics & Dynamical Astronomy, 1999, 75(2): 85-101.
[72] Han S C. Efficient global gravity field determination from satellite-to-satellite tracking. PhD dissertation, Columbus: The Ohio State University [D]; The Ohio State University, 2003.
[73] 罗志才. 利用卫星重力梯度数据确定地球重力场的理论和方法 [博士论文]. 武汉: 武汉大学 [D], 1996.
[74] 沈云中. 应用CHAMP卫星星历精化地球重力场模型的研究 [博士论文]. 武汉: 中国科学院测量与地球物理研究所 [D], 2000.
[75] 张传定. 卫星重力测量-基础、模型化方法与数据处理算法 [博士论文]. 郑州: 中国人民解放军战略支援部队信息工程大学 [D], 2000.
[76] 章传银, 胡建国, 党亚民, 等. 多种跟踪组合卫星重力场恢复方法初探 [J]. 武汉大学学报 (信息科学版), 2003, 1.
[77] 罗佳. 利用卫星跟踪卫星确定地球重力场的理论和方法 [博士论文]. 武汉: 武汉大学 [D], 2003.
[78] 徐天河. 利用CHAMP卫星轨道和加速度计数据推求地球重力场模型 [博士论文]. 郑州: 中国人民解放军战略支援部队信息工程大学 [D], 2004.
[79] 郭金运. 由星载GPS数据进行CHAMP卫星定轨和地球重力场模型解算 [博士论文]. 青岛: 山东科技大学 [D], 2004.
[80] 周旭华. 卫星重力及其应用研究 [博士论文]. 武汉: 中国科学院测量与地球物理研究所 [D], 2005.
[81] 王正涛. 卫星跟踪卫星测量确定地球重力场的理论与方法 [博士论文]. 武汉: 武汉大学 [D], 2005.
[82] 肖云. 基于卫星跟踪卫星数据恢复地球重力场的研究 [博士论文]. 郑州: 中国人民解放军战略支援部队信息工程大学 [D], 2006.
[83] 邹贤才. 卫星轨道理论与地球重力场模型的确定 [博士论文]. 武汉: 武汉大学 [D], 2007.
[84] 郑伟. 基于卫星重力测量恢复地球重力场的理论和方法 [博士论文]. 武汉: 华中科技大学 [D], 2007.
[85] 张兴福. 应用低轨卫星跟踪数据反演地球重力场模型 [博士论文]. 上海: 同济大学 [D], 2007.
[86] 王庆宾. 动力法反演地球重力场模型研究 [博士论文]. 郑州: 中国人民解放军战略支援部队信息工程大学 [D], 2009.
[87] 吴星. 卫星重力梯度数据处理理论与方法 [博士论文]. 郑州: 中国人民解放军战略支援部队信息工程大学 [D], 2009.
[88] 吴云龙. GOCE卫星重力梯度测量数据的预处理研究 [博士论文]. 武汉: 武汉大学 [D], 2010.
[89] 钟波. 基于GOCE卫星重力测量技术确定地球重力场的研究 [博士论文]. 武汉: 武汉大学 [D], 2010.
[90] 游为. 应用低轨卫星数据反演地球重力场模型的理论和方法 [博士论文]. 成都: 西南交通大学 [D], 2011.
[91] 刘晓刚. GOCE卫星测量恢复地球重力场模型的理论与方法 [博士论文]. 郑州: 中国人民解放军战略支援部队信息工程大学 [D], 2011.
[92] 赵倩. 利用卫星编队探测地球重力场的方法研究与仿真分析 [博士论文]. 武汉: 武汉大学 [D], 2012.
[93] 韩建成. 基于地球重力场模型和地表浅层重力位确定大地水准面 [博士论文]. 武汉: 武汉大学 [D], 2012.
[94] 冯伟. 区域陆地水与海平面变化的卫星重力监测研究 [博士论文]. 武汉: 中国科学院测量与地球物理研究所 [D], 2013.
[95] 冉将军. 低低跟踪模式重力卫星反演理论, 方法及应用 [博士论文]. 武汉: 中国科学院测量与地球物理研究所 [D], 2013.
[96] 万晓云. 基于GOCE引力梯度数据的引力场反演及应用 [博士论文]. 北京: 中国科学院大学 [D], 2013.
[97] 蔡林. 卫星重力测量解析误差分析法 [博士论文]. 武汉: 华中科技大学 [D], 2013.
[98] 黄强. 基于GOCE卫星的重力场模型反演及应用 [博士论文]. 成都: 西南交通大学 [D], 2014.
[99] 李琼. 地表物质迁移的时变重力场反演方法及其应用研究 [博士论文]. 武汉: 武汉大学 [D], 2014.
[100] 周浩. 联合多类卫星重力数据反演地球重力场的研究 [博士论文]. 武汉: 武汉大学 [D], 2015.
[101] 王长青. GRACE时变重力场反演与相关问题研究 [博士论文]. 武汉: 中国科学院测量与地球物理研究所 [D], 2015.
[102] 闫志闯. GRACE卫星精密轨道确定与一步法恢复地球重力场 [博士论文]. 郑州: 中国人民解放军战略支援部队信息工程大学 [D], 2015.
[103] 陈秋杰. 基于改进短弧积分法的 GRACE 重力反演理论、方法及应用 [博士论文]. 上海: 同济大学 [D], 2016.
[104] 苏勇. 利用GOCE和GRACE卫星数据确定全球重力场模型 [博士论文]. 成都: 西南交通大学 [D], 2016.
[105] 高伟. 半解析法重力场反演与下一代重力卫星研究 [博士论文]. 北京: 中国科学院数学与系统科学研究院 [D], 2016.
[106] 郭向. 利用卫星跟踪卫星数据反演地球重力场理论和方法研究 [博士论文]. 武汉: 武汉大学 [D], 2017.
[107] 李慧淑. 基于半解析法对卫星编队的重力场误差分析 [博士论文]. 武汉: 华中科技大学 [D], 2017.
[108] 杨帆. GRACE时变重力场的解算和精化 [博士论文]. 武汉: 华中科技大学 [D], 2017.
[109] 魏玉明. GOCE观测数据确定地球重力场的理论与方法研究 [博士论文]. 西安: 长安大学 [D], 2018.
[110] 吴汤婷. 卫星跟踪卫星技术确定地球重力场的加速度法研究 [博士论文]. 武汉: 武汉大学 [D], 2019.
[111] 汪晓龙. 卫星重力时变信号的提取方法与应用研究 [博士论文]. 武汉: 武汉大学 [D], 2019.
[112] 邢志斌. GOCE卫星重力梯度数据恢复地球重力场理论与方法研究 [博士论文]. 郑州: 中国人民解放军战略支援部队信息工程大学 [D], 2019.
[113] 郭飞霄. 地表物质迁移的卫星大地测量反演理论与方法研究 [博士论文]. 郑州: 中国人民解放军战略支援部队信息工程大学 [D], 2019.
[114] 闫易浩. GRACE/GRACE-FO重力卫星星间测距系统数据处理关键技术研究 [博士论文]. 武汉: 华中科技大学 [D], 2021.
[115] Chen Q J, Shen Y Z, Chen W, et al. An Optimized Short-Arc Approach: Methodology and Application to Develop Refined Time Series of Tongji-Grace2018 GRACE Monthly Solutions [J]. Journal of Geophysical Research-Solid Earth, 2019, 124(6): 6010-6038.
[116] Chen J, Zhang X, Chen Q, et al. Static Gravity Field Recovery and Accuracy Analysis Based on Reprocessed GOCE Level 1b Gravity Gradient Observations; proceedings of the EGU General Assembly Conference Abstracts, F, 2022 [C].
[117] Zhou H, Zhou Z B, Luo Z C. HUST-Grace2020: Monthly gravity field model derived from GRACE mission [Z]. GFZ Data Services. https://doi.org/10.5880/ICGEM. 2021
[118] Guo X, Zhao Q, Ditmar P, et al. A new time-series of GRACE monthly gravity field solutions obtained by accounting for the colored noise in the K-Band range-rate measurements [J]. 2017.
[119] Liang W, Li J, Xu X, et al. A high-resolution Earth’s gravity field model SGG-UGM-2 from GOCE, GRACE, satellite altimetry, and EGM2008 [J]. Engineering, 2020, 6(8): 860-878.
[120] 冉将军, 许厚泽, 钟敏, 等. 利用GRACE重力卫星观测数据反演全球时变地球重力场模型 [J]. 地球物理学报, 2014, 57: 1032-1040.
[121] Yong S, Jiancheng L, Xiancai Z, et al. SWPU-GRACE2021: a new temporal gravity model from GRAC [J]. 2022.
[122] Yu B, You W, Fan D-M, et al. A comparison of GRACE temporal gravity field models recovered with different processing details [J]. Geophysical Journal International, 2021, 227(2): 1392-1417.
[123] Muller P M, Sjogren W L. Mascons: Lunar mass concentrations [J]. Science, 1968, 161(3842): 680-684.
[124] Rowlands D D, Luthcke S B, Klosko S M, et al. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements [J]. Geophysical Research Letters, 2005, 32(4).
[125] Luthcke S B, Zwally H J, Abdalati W, et al. Recent Greenland ice mass loss by drainage system from satellite gravity observations [J]. Science, 2006, 314(5803): 1286-1289.
[126] Luthcke S B, Arendt A A, Rowlands D D, et al. Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions [J]. Journal of Glaciology, 2008, 54(188): 767-777.
[127] Sabaka T J, Rowlands D D, Luthcke S B, et al. Improving global mass flux solutions from Gravity Recovery and Climate Experiment (GRACE) through forward modeling and continuous time correlation [J]. Journal of Geophysical Research-Solid Earth, 2010, 115.
[128] Luthcke S B, Sabaka T, Loomis B, et al. Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution [J]. Journal of Glaciology, 2013, 59(216): 613-631.
[129] Watkins M M, Wiese D N, Yuan D N, et al. Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons [J]. Journal of Geophysical Research-Solid Earth, 2015, 120(4): 2648-2671.
[130] Save H, Bettadpur S, Tapley B D. High-resolution CSR GRACE RL05 mascons [J]. Journal of Geophysical Research-Solid Earth, 2016, 121(10): 7547-7569.
[131] Loomis B D, Luthcke S B, Sabaka T J. Regularization and error characterization of GRACE mascons [J]. Journal of Geodesy, 2019, 93(9): 1381-1398.
[132] Wiese D, Yuan D, Boening C, et al. JPL GRACE mascon ocean, ice, and hydrology equivalent water height release 06 coastal resolution improvement (CRI) filtered version 1.0 [J]. DAAC: Pasadena, CA, USA, 2018.
[133] Save H. CSR GRACE and GRACE-FO RL06 Mascon Solutions v02, Available online: https://doi.org/10.15781/cgq9-nh24 [Z]. 2020: 24
[134] Schrama E J O, Wouters B, Rietbroek R. A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data [J]. Journal of Geophysical Research-Solid Earth, 2014, 119(7): 6048-6066.
[135] Xu Z, Schrama E, Van Der Wal W. Optimization of regional constraints for estimating the Greenland mass balance with GRACE level-2 data [J]. Geophysical Journal International, 2015, 202(1): 381-393.
[136] Wiese D N, Landerer F W, Watkins M M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution [J]. Water Resources Research, 2016, 52(9): 7490-7502.
[137] Andrews S B, Moore P, King M A. Mass change from GRACE: a simulated comparison of Level-1B analysis techniques [J]. Geophysical Journal International, 2015, 200(1): 503-518.
[138] Allgeyer S, Tregoning P, Mcqueen H, et al. ANU GRACE Data Analysis: Orbit Modeling, Regularization and Inter‐satellite Range Acceleration Observations [J]. Journal of Geophysical Research: Solid Earth, 2022, 127(2): e2021JB022489.
[139] Hill E M, Davis J L, Tamisiea M E, et al. Using a spatially realistic load model to assess impacts of Alaskan glacier ice loss on sea level [J]. Journal of Geophysical Research-Solid Earth, 2011, 116.
[140] Alexander P M, Tedesco M, Schlegel N J, et al. Greenland Ice Sheet seasonal and spatial mass variability from model simulations and GRACE (2003-2012) [J]. Cryosphere, 2016, 10(3): 1259-1277.
[141] Zhang B, Liu L, Khan S A, et al. Geodetic and model data reveal different spatio-temporal patterns of transient mass changes over Greenland from 2007 to 2017 [J]. Earth and Planetary Science Letters, 2019, 515: 154-163.
[142] Yi S, Sun W K. Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models [J]. Journal of Geophysical Research-Solid Earth, 2014, 119(3): 2504-2517.
[143] Jing W L, Zhang P Y, Zhao X D. A comparison of different GRACE solutions in terrestrial water storage trend estimation over Tibetan Plateau [J]. Scientific Reports, 2019, 9.
[144] Loomis B D, Richey A S, Arendt A A, et al. Water Storage Trends in High Mountain Asia [J]. Frontiers in Earth Science, 2019, 7.
[145] Long D, Pan Y, Zhou J, et al. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models [J]. Remote Sensing of Environment, 2017, 192: 198-216.
[146] Nie W S, Zaitchik B F, Rodell M, et al. Groundwater Withdrawals Under Drought: Reconciling GRACE and Land Surface Models in the United States High Plains Aquifer [J]. Water Resources Research, 2018, 54(8): 5282-5299.
[147] Sun Z L, Zhu X F, Pan Y Z, et al. Drought evaluation using the GRACE terrestrial water storage deficit over the Yangtze River Basin, China [J]. Science of the Total Environment, 2018, 634: 727-738.
[148] Zhao Q, Zhang B, Yao Y B, et al. Geodetic and hydrological measurements reveal the recent acceleration of groundwater depletion in North China Plain [J]. Journal of Hydrology, 2019, 575: 1065-1072.
[149] Mu D P, Xu T H, Xu G C. An investigation of mass changes in the Bohai Sea observed by GRACE [J]. Journal of Geodesy, 2020, 94(9).
[150] Loomis B D, Luthcke S B. Mass evolution of Mediterranean, Black, Red, and Caspian Seas from GRACE and altimetry: accuracy assessment and solution calibration [J]. Journal of Geodesy, 2017, 91(2): 195-206.
[151] Killett E, Wahr J, Desai S, et al. Arctic Ocean tides from GRACE satellite accelerations [J]. Journal of Geophysical Research-Oceans, 2011, 116.
[152] Gu Y C, Fan D M, You W. Comparison of observed and modeled seasonal crustal vertical displacements derived from multi-institution GPS and GRACE solutions [J]. Geophysical Research Letters, 2017, 44(14): 7219-7227.
[153] Wang S Y, Chen J L, Wilson C R, et al. Reconciling GRACE and GPS estimates of long-term load deformation in southern Greenland [J]. Geophysical Journal International, 2018, 212(2): 1302-1313.
[154] Johnson C W, Fu Y N, Burgmann R. Hydrospheric modulation of stress and seismicity on shallow faults in southern Alaska [J]. Earth and Planetary Science Letters, 2020, 530.
[155] Zhang L, Tang H, Chang L, et al. Performance of GRACE Mascon Solutions in Studying Seismic Deformations [J]. Journal of Geophysical Research-Solid Earth, 2020, 125(10).
[156] Tregoning P, Mcgirr R, Pfeffer J, et al. ANU GRACE Data Analysis: Characteristics and Benefits of Using Irregularly Shaped Mascons [J]. Journal of Geophysical Research: Solid Earth, 2022, 127(2): e2021JB022412.
[157] Gruber T, M. M, Team E M. Proposal to ESA’s Earth Explorer Call 9: Earth System Mass Transport Mission-E.motion 2 [J]. Deutsche Geodätische Kommission der Bayerischen Akademie der Wissenschaften, Reihe B, Angewandte Geodäsie, Series B, 2015, (Available online: https://dgk.badw.de/fileadmin/user_upload/Files/DGK/docs/b-318.pdf).
[158] Gruber T, Murböck M, Nggm-D T. e2. motion-Earth System Mass Transport Mission (Square)-Concept for a Next Generation Gravity Field Mission [R]: Institut für Astronomische und Physikalische Geodäsie, 2014.
[159] Biancale R, Pollet A, Coulot D, et al. E-GRASP/Eratosthenes: a mission proposal for millimetric TRF realization; proceedings of the EGU General Assembly Conference Abstracts, F, 2017 [C].
[160] Hauk M, Schlicht A, Pail R, et al. Gravity field recovery in the framework of a Geodesy and Time Reference in Space (GETRIS) [J]. Advances in Space Research, 2017, 59(8): 2032-2047.
[161] Bar-Sever Y, Haines B, Bertiger W, et al. Geodetic reference antenna in space (GRASP)—a mission to enhance space-based geodesy; proceedings of the COSPAR colloquium: scientific and fundamental aspects of the Galileo program, Padua, F, 2009 [C].
[162] Anthony N, Archimbaud M, Beeck S, et al. GRAVL: GRAvity observations by Vertical Laser ranging [J].
[163] Lévèque T, Fallet C, Mandea M, et al. Gravity field mapping using laser-coupled quantum accelerometers in space [J]. Journal of Geodesy, 2021, 95(1): 1-19.
[164] Lemoine J, Mandea M. The MARVEL gravity and reference frame mission proposal; proceedings of the EGU General Assembly Conference Abstracts, F, 2020 [C].
[165] Migliaccio F, Reguzzoni M, Batsukh K, et al. MOCASS: A Satellite Mission Concept Using Cold Atom Interferometry for Measuring the Earth Gravity Field [J]. Surveys in Geophysics, 2019, 40(5): 1029-1053.
[166] Flechtner F M. Realization of a satellite mission "GRACE-I" for parallel observation of changing global water resources and biodiversity; proceedings of the AGU Fall Meeting Abstracts, F, 2020 [C].
[167] Massotti L, Siemes C, March G, et al. Next Generation Gravity Mission Elements of the Mass Change and Geoscience International Constellation: From Orbit Selection to Instrument and Mission Design [J]. Remote Sensing, 2021, 13(19).
[168] Heller-Kaikov B, Pail R, Daras I. Mission design aspects for the mass change and geoscience international constellation (MAGIC) [J]. Geophysical Journal International, 2023, 235(1): 718-735.
[169] Landerer F W, Wiese D. The value and need of continuous global satellite gravimetry measurements for Earth system science; proceedings of the MAGIC Science and Applications Workshop, F, 2023 [C].
[170] Roger H, Tsaoussi L. Next Generation Gravity Mission as a Mass-change And Geosciences International Constellation (MAGIC) Mission Requirements Document [R], 2020.
[171] Sharifi M, Sneeuw N, Keller W. Gravity recovery capability of four generic satellite formations [J]. Gravity field of the Earth General Command of Mapping, ISSN, 2007: 1300-5790.
[172] Wiese D N, Nerem R S, Lemoine F G. Design considerations for a dedicated gravity recovery satellite mission consisting of two pairs of satellites [J]. Journal of Geodesy, 2012, 86(2): 81-98.
[173] 姜卫平, 赵伟, 赵倩, 等. 新一代探测地球重力场的卫星编队 [J]. 测绘学报, 2014, 43: 111-117.
[174] Rummel R, Balmino G, Johannessen J, et al. Dedicated gravity field missions - principles and aims [J]. Journal of Geodynamics, 2002, 33(1-2): 3-20.
[175] Bender P L, Wiese D N, Nerem R S. A possible dual-GRACE mission with 90 degree and 63 degree inclination orbits; proceedings of the Proceedings of the 3rd International Symposium on Formation Flying, Missions and Technologies European Space Agency Symposium Proceedings, SP-654 jILA Pub, F, 2008 [C].
[176] Daras I, Pail R. Treatment of temporal aliasing effects in the context of next generation satellite gravimetry missions [J]. Journal of Geophysical Research-Solid Earth, 2017, 122(9): 7343-7362.
[177] Pail R, Yeh H C, Feng W, et al. Next-Generation Gravity Missions: Sino-European Numerical Simulation Comparison Exercise [J]. Remote Sensing, 2019, 11(22).
[178] Zhou H, Luo Z C, Zhou Z B, et al. What Can We Expect from the Inclined Satellite Formation for Temporal Gravity Field Determination? [J]. Surveys in Geophysics, 2021, 42(3): 699-726.
[179] Wiese D N, Folkner W M, Nerem R S. Alternative mission architectures for a gravity recovery satellite mission [J]. Journal of Geodesy, 2009, 83(6): 569-581.
[180] Murbock M, Pail R, Daras I, et al. Optimal orbits for temporal gravity recovery regarding temporal aliasing [J]. Journal of Geodesy, 2014, 88(2): 113-126.
[181] Hofmann-Wellenhof B, Moritz H. Physical geodesy [M]. Springer Science & Business Media, 2006.
[182] Seeber G. Satellite geodesy: foundations, methods and applications [J]. INTERNATIONAL HYDROGRAPHIC REVIEW, 2003, 4(3): 92-93.
[183] 李征航, 魏二虎, 王正涛, 等. 空间大地测量学 [M]. 武汉: 武汉大学出版社. 2010.
[184] Gibney E. THE LEAP SECOND'S TIME IS UP: WORLD VOTES TO STOP PAUSING CLOCKS [J]. Nature, 2022, 612(7938): 18-18.
[185] Landau L, Lifshitz E. Mechanics Pergamon [J]. New York, 1960: 87.
[186] Montenbruck O, Gill E, Lutze F. Satellite orbits: models, methods, and applications [J]. Appl Mech Rev, 2002, 55(2): B27-B28.
[187] Reference Frames for Applications in Geosciences [M]. Springer. 2013: 57-61.
[188] Wen H Y, Kruizinga G, Paik M, et al. Gravity recovery and climate experiment follow-on (GRACE-FO) level-1 data product user handbook [J]. JPL D-56935 (URS270772), 2019, 11.
[189] Mayer-Gürr T, Behzadpour S, Eicker A, et al. GROOPS: A software toolkit for gravity field recovery and GNSS processing [J]. Computers & geosciences, 2021, 155: 104864.
[190] Lasser M, Meyer U, Jäggi A, et al. Benchmark data for verifying background model implementations in orbit and gravity field determination software [J]. Advances in geosciences, 2020, 55: 1-11.
[191] Dach R, Lutz S, Walser P, et al. Bernese GPS software version 5.2, Documentation, University of Bern [Z]. Bern Open Publishing, https://doi. org/10.7892/boris. 2015
[192] Glaser S, König R, Neumayer K H, et al. On the impact of local ties on the datum realization of global terrestrial reference frames [J]. Journal of Geodesy, 2019, 93(5): 655-667.
[193] Zhu S, Reigber C, König R. Integrated adjustment of CHAMP, GRACE, and GPS data [J]. Journal of Geodesy, 2004, 78(1): 103-108.
[194] Koch I, Flury J, Naeimi M, et al. LUH-GRACE2018: a new time series of monthly gravity field solutions from GRACE [M]. Beyond 100: The Next Century in Geodesy: Proceedings of the IAG General Assembly, Montreal, Canada, July 8-18, 2019: Springer, 2020.
[195] Folkner W M, Williams J G, Boggs D H. The planetary and lunar ephemeris DE 421 [J]. IPN progress report, 2009, 42(178): 1.
[196] Dahle C, Flechtner F, Murböck M, et al. GRACE 327-743 (Gravity Recovery and Climate Experiment): GFZ Level-2 Processing Standards Document for Level-2 Product Release 06 (Rev. 1.0, October 26, 2018) [J]. 2018.
[197] Jungclaus J H, Fischer N, Haak H, et al. Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model [J]. Journal of Advances in Modeling Earth Systems, 2013, 5(2): 422-446.
[198] Ray R D. A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99. 2 [M]. National Aeronautics and Space Administration, Goddard Space Flight Center, 1999.
[199] Savcenko R, Bosch W. EOT11a-a new tide model from Multi-Mission Altimetry; proceedings of the Proceedings of the OSTST Meeting, F, 2011 [C].
[200] Carrère L, Lyard F, Cancet M, et al. FES 2014, a new tidal model—Validation results and perspectives for improvements; proceedings of the Proceedings of the ESA living planet symposium, F, 2016 [C].
[201] Desai S D. Observing the pole tide with satellite altimetry [J]. Journal of Geophysical Research-Oceans, 2002, 107(C11).
[202] 吴林冲, 衷路萍, 刘冰石. 点火脉冲对GRACE加速度计校准的影响 [J]. 大地测量与地球动力学, 2018, 38(04): 399-401+432.
[203] Ditmar P. Conversion of time-varying Stokes coefficients into mass anomalies at the Earth's surface considering the Earth's oblateness [J]. Journal of Geodesy, 2018, 92(12): 1401-1412.
[204] Swenson S, Wahr J. Estimated effects of the vertical structure of atmospheric mass on the time-variable geoid [J]. Journal of Geophysical Research-Solid Earth, 2002, 107(B9).
[205] Boy J P, Chao B F. Precise evaluation of atmospheric loading effects on Earth's time-variable gravity field [J]. Journal of Geophysical Research-Solid Earth, 2005, 110(B8).
[206] Wiese D N, Nerem R S, Han S C. Expected improvements in determining continental hydrology, ice mass variations, ocean bottom pressure signals, and earthquakes using two pairs of dedicated satellites for temporal gravity recovery [J]. Journal of Geophysical Research-Solid Earth, 2011, 116.
[207] Kusche J. Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models [J]. Journal of Geodesy, 2007, 81(11): 733-749.
[208] 许才军, 龚正. GRACE时变重力数据的后处理方法研究进展 [J]. 武汉大学学报(信息科学版), 2016, 41: 503-510.
[209] Sun Y, Riva R, Ditmar P. Optimizing estimates of annual variations and trends in geocenter motion and J(2) from a combination of GRACE data and geophysical models [J]. Journal of Geophysical Research-Solid Earth, 2016, 121(11): 8352-8370.
[210] Chen J L, Rodell M, Wilson C R, et al. Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates [J]. Geophysical Research Letters, 2005, 32(14).
[211] Loomis B D, Rachlin K E, Wiese D N, et al. Replacing GRACE/GRACE‐FO with satellite laser ranging: Impacts on Antarctic Ice Sheet mass change [J]. Geophysical Research Letters, 2020, 47(3): e2019GL085488.
[212] 汪汉胜, Patrick W, 许厚泽. 冰川均衡调整(GIA)的研究 [J]. 地球物理学进展, 2009, 24(06): 1958-1967.
[213] Sella G F, Stein S, Dixon T H, et al. Observation of glacial isostatic adjustment in "stable" North America with GPS [J]. Geophysical Research Letters, 2007, 34(2).
[214] Peltier W R. Postglacial variations in the level of the sea: Implications for climate dynamics and solid-earth geophysics [J]. Reviews of Geophysics, 1998, 36(4): 603-689.
[215] Mitrovica J X, Peltier W R. PRESENT-DAY SECULAR VARIATIONS IN THE ZONAL HARMONICS OF EARTHS GEOPOTENTIAL [J]. Journal of Geophysical Research-Solid Earth, 1993, 98(B3): 4509-4526.
[216] Wu P, Peltier W. Pleistocene deglaciation and the Earth's rotation: a new analysis [J]. Geophysical Journal International, 1984, 76(3): 753-791.
[217] Stuhne G R, Peltier W R. Reconciling the ICE-6G_C reconstruction of glacial chronology with ice sheet dynamics: The cases of Greenland and Antarctica [J]. Journal of Geophysical Research-Earth Surface, 2015, 120(9): 1841-1865.
[218] Jekeli C. Alternative methods to smooth the Earth's gravity field [R], 1981.
[219] Zhang Z Z, Chao B F, Lu Y, et al. An effective filtering for GRACE time‐variable gravity: Fan filter [J]. Geophysical Research Letters, 2009, 36(17).
[220] Chambers D P. Evaluation of new GRACE time-variable gravity data over the ocean [J]. Geophysical Research Letters, 2006, 33(17).
[221] Chen J L, Wilson C R, Tapley B D, et al. GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake [J]. Geophysical Research Letters, 2007, 34(13).
[222] Chen J L, Wilson C R, Tapley B D, et al. 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models [J]. Journal of Geophysical Research-Solid Earth, 2009, 114.
[223] Chen J L, Wilson C R, Blankenship D, et al. Accelerated Antarctic ice loss from satellite gravity measurements [J]. Nature Geoscience, 2009, 2(12): 859-862.
[224] Sasgen I, Martinec Z, Fleming K. Wiener optimal combination and evaluation of the Gravity Recovery and Climate Experiment (GRACE) gravity fields over Antarctica [J]. Journal of Geophysical Research-Solid Earth, 2007, 112(B4).
[225] Davis J L, Tamisiea M E, Elosegui P, et al. A statistical filtering approach for Gravity Recovery and Climate Experiment (GRACE) gravity data [J]. Journal of Geophysical Research-Solid Earth, 2008, 113(B4).
[226] 詹金刚, 王勇, 郝晓光. GRACE时变重力位系数误差的改进去相关算法 [J]. 测绘学报, 2011, 40(04): 442-446+453.
[227] Horvath A, Murbock M, Pail R, et al. Decorrelation of GRACE Time Variable Gravity Field Solutions Using Full Covariance Information [J]. Geosciences, 2018, 8(9).
[228] Yi S, Sneeuw N. A novel spatial filter to reduce north–south striping noise in GRACE spherical harmonic coefficients [J]. Journal of Geodesy, 2022, 96(4): 1-17.
[229] Qian N J, Chang G B, Ditmar P, et al. Sparse DDK: A Data-Driven Decorrelation Filter for GRACE Level-2 Products [J]. Remote Sensing, 2022, 14(12).
[230] Forsberg R, Reeh N. Mass change of the Greenland ice sheet from GRACE; proceedings of the 1st Meeting of the International Gravity Field Service: Gravity Field of the Earth, F, 2006 [C]. Springer Verlag.
[231] Baur O, Sneeuw N. Assessing Greenland ice mass loss by means of point-mass modeling: a viable methodology [J]. Journal of geodesy, 2011, 85: 607-615.
[232] Sneeuw N. Physical geodesy [J]. Lecture notes, 2006.
[233] Gonzalez A. Measurement of Areas on a Sphere Using Fibonacci and Latitude-Longitude Lattices [J]. Mathematical Geosciences, 2010, 42(1): 49-64.
[234] Ran J J, Vizcaino M, Ditmar P, et al. Seasonal mass variations show timing and magnitude of meltwater storage in the Greenland Ice Sheet [J]. The Cryosphere, 2018, 12(9): 2981-2999.
[235] Slepian D, Pollak H O. Prolate spheroidal wave functions, Fourier analysis and uncertainty—I [J]. Bell System Technical Journal, 1961, 40(1): 43-63.
[236] Albertella A, Sanso F, Sneeuw N. Band-limited functions on a bounded spherical domain: the Slepian problem on the sphere [J]. Journal of Geodesy, 1999, 73(9): 436-447.
[237] Harig C, Simons F J. Mapping Greenland’s mass loss in space and time [J]. Proceedings of the National Academy of Sciences, 2012, 109(49): 19934-19937.
[238] Chen J L, Wilson C R, Li J, et al. Reducing leakage error in GRACE-observed long-term ice mass change: a case study in West Antarctica [J]. Journal of Geodesy, 2015, 89(9): 925-940.
[239] 张雅声, 冯飞. 卫星星座轨道设计方法 [M]. 北京: 国防工业出版社, 2019.
[240] Clarke A C. Extra-terrestrial relays [J]. Electronics World, 1945, 119(1924): 14-19.
[241] Rees W. Orbital subcycles for Earth remote sensing satellites [J]. International Journal of Remote Sensing, 1992, 13(5): 825-833.
[242] Schneider M. A General Method of Orbit Determination by M. Schneider [M]. Royal Aircraft Establishment, 1968.
[243] Ilk K. On the analysis of satellite to satellite tracking data; proceedings of the Symposium on Space Techniques for Geodynamics, Volume 1, F, 1984 [C].
[244] Observation of the earth system from space [M]. Springer. 2006: 131-148.
[245] Chen Q J, Shen Y Z, Chen W, et al. An optimized short‐arc approach: Methodology and application to develop refined time series of Tongji‐Grace2018 GRACE monthly solutions [J]. Journal of Geophysical Research: Solid Earth, 2019, 124(6): 6010-6038.
[246] Bettadpur S. Recommendation for a-priori bias & scale parameters for level-1B ACC data (Version 2), GRACE TN-02 [R]: Center for Space Research, The University of Texas at Austin, 2009.
[247] Meyer U, Jäggi A, Jean Y, et al. AIUB-RL02: An improved time-series of monthly gravity fields from GRACE data [J]. Geophysical Journal International, 2016, 205(2): 1196-1207.
[248] Wiese D N, Visser P, Nerem R S. Estimating low resolution gravity fields at short time intervals to reduce temporal aliasing errors [J]. Advances in space research, 2011, 48(6): 1094-1107.
[249] Kurtenbach E, Mayer‐Gürr T, Eicker A. Deriving daily snapshots of the Earth's gravity field from GRACE L1B data using Kalman filtering [J]. Geophysical Research Letters, 2009, 36(17).
[250] Ran J. Analysis of mass variations in Greenland by a novel variant of the mascon approach. PhD dissertation, Delft: Delft University of Technology [D], 2017.
[251] Mcgirr R, Tregoning P, Allgeyer S, et al. Interplay of altitude, ground track coverage, noise and regularisation in the spatial resolution of GRACE gravity field models [J]. Journal of Geophysical Research: Solid Earth: e2022JB024330.
[252] Nie Y F, Shen Y Z, Chen Q J. Combination Analysis of Future Polar-Type Gravity Mission and GRACE Follow-On [J]. Remote Sensing, 2019, 11(2).
[253] Hauk M, Wiese D. New Methods for Linking Science Objectives to Remote Sensing Observations: A Concept Study Using Single‐and Dual‐Pair Satellite Gravimetry Architectures [J]. Earth and Space Science, 2020, 7(3): e2019EA000922.
[254] Miragaia Gomes Inacio P. A simulation study for future satellite gravimetry missions [D]; Delft University of Technology, 2020.
[255] Ilk K-H, Flury J, Rummel R, et al. Mass Transport and Mass Distribution in the Earth System: Contribution of the New Generation of Satellite Gravity and Altimetry Missions to Geosciences; Proposal for a German Priority Research Program [J]. 2004.
[256] Yuan D. JPL level-2 processing standards document for level-2 product release 06 [J]. Jet Propulsion Laboratory, California Institute of Technology, 2018.
[257] Kurtenbach E, Eicker A, Mayer-Gurr T, et al. Improved daily GRACE gravity field solutions using a Kalman smoother [J]. Journal of Geodynamics, 2012, 59-60: 39-48.
[258] Sakumura C, Bettadpur S, Save H, et al. High-frequency terrestrial water storage signal capture via a regularized sliding windowmascon product from GRACE [J]. Journal of Geophysical Research-Solid Earth, 2016, 121(5): 4014-4030.
[259] Dahle C, Flechtner F, Gruber C, et al. Gfz grace level-2 processing standards document for level-2 product release 0005: revised edition, january 2013 [J]. 2013.
[260] Croteau M J, Nerem R S, Loomis B D, et al. Development of a Daily GRACE Mascon Solution for Terrestrial Water Storage [J]. Journal of Geophysical Research-Solid Earth, 2020, 125(3).
[261] Wessel P, Luis J F, Uieda L, et al. The Generic Mapping Tools Version 6 [J]. Geochemistry Geophysics Geosystems, 2019, 20(11): 5556-5564.
[262] Yan Z W, Ran J J, Xiao Y, et al. The Temporal Improvement of Earth's Mass Transport Estimated by Coupling GRACE‐FO with a Chinese Polar Gravity Satellite Mission [J]. Journal of Geophysical Research: Solid Earth: e2023JB027157.
[263] Deccia C M A, Wiese D N, Nerem R S. Using a Multiobjective Genetic Algorithm to Design Satellite Constellations for Recovering Earth System Mass Change [J]. Remote Sensing, 2022, 14(14).
[264] Iran Pour S, Sneeuw N, Weigelt M, et al. Orbit optimization for future satellite gravity field missions: Influence of the time variable gravity field models in a genetic algorithm approach; proceedings of the IX Hotine-Marussi Symposium on Mathematical Geodesy, F, 2019 [C]. Springer.
[265] Deccia C M A, Wiese D N, Nerem R S. Using a Multiobjective Genetic Algorithm to Design Satellite Constellations for Recovering Earth System Mass Change [J]. Remote Sensing, 2022, 14(14): 3340.
[266] Hegerty B, Hung C-C, Kasprak K. A comparative study on differential evolution and genetic algorithms for some combinatorial problems; proceedings of the Proceedings of 8th Mexican international conference on artificial intelligence, F, 2009 [C].
[267] Stom R, Price K. Differential evolution-A simple and efficient adaptive scheme for global optimization over continuous spaces [J]. Technical Repan, TR-95012, ICSI, 1995.
[268] Price K V. Differential evolution: A fast and simple numerical optimizer; proceedings of the 1996 Biennial Conference of the North-American-Fuzzy-Information-Processing-Society, Berkeley, Ca, F Jun 19-22, 1996 [C]. 1996.
[269] Storn R, Price K. Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces [J]. Journal of Global Optimization, 1997, 11(4): 341-359.
[270] Onwubolu G, Davendra D. Scheduling flow shops using differential evolution algorithm [J]. European Journal of Operational Research, 2006, 171(2): 674-692.
[271] Liu Z G, Ji X H, Yang Y. Hierarchical differential evolution algorithm combined with multi-cross operation [J]. Expert Systems with Applications, 2019, 130: 276-292.
[272] Das S, Abraham A, Konar A. Automatic clustering using an improved differential evolution algorithm [J]. Ieee Transactions on Systems Man and Cybernetics Part a-Systems and Humans, 2008, 38(1): 218-237.
[273] Zhang T J, Shen H X, Li Z, et al. Restricted constellation design for regional navigation augmentation [J]. Acta Astronautica, 2018, 150: 231-239.
[274] Price K. An Introduction to Differential Evolution,‖ in New Ideas in Optimization, D. Corne, M. Dorigo, and F. Glover, Eds [Z]. London, UK: McGraw-Hill. 1999
[275] Price K, Storn R M, Lampinen J A. Differential evolution: a practical approach to global optimization [M]. Springer Science & Business Media, 2006.
[276] Neri F, Tirronen V. Recent advances in differential evolution: a survey and experimental analysis [J]. Artificial Intelligence Review, 2010, 33(1-2): 61-106.
[277] Dobslaw H, Bergmann-Wolf I, Dill R, et al. The updated ESA Earth System Model for future gravity mission simulation studies [J]. Journal of Geodesy, 2015, 89(5): 505-513.
[278] Iran Pour S, Reubelt T, Sneeuw N, et al. Assessment of Satellite Constellations for Monitoring the Variations in Earth Gravity Field—SC4MGV; ESA—ESTEC Contract No [R]: AO/1-7317/12/NL/AF, Final Report, 2015.
[279] Farahani H H, Ditmar P, Inacio P, et al. A high resolution model of linear trend in mass variations from DMT-2: Added value of accounting for coloured noise in GRACE data [J]. Journal of Geodynamics, 2017, 103: 12-25.
[280] Guo X, Zhao Q L, Ditmar P, et al. Improvements in the Monthly Gravity Field Solutions Through Modeling the Colored Noise in the GRACE Data [J]. Journal of Geophysical Research-Solid Earth, 2018, 123(8): 7040-7054.
[281] Klees R, Ditmar P. How to handle colored noise in large least-squares problems in the presence of data gaps?; proceedings of the V Hotine-Marussi symposium on mathematical geodesy, F, 2004 [C]. Springer.
[282] Pie N, Bettadpur S, Tamisiea M, et al. Time Variable Earth Gravity Field Models From the First Spaceborne Laser Ranging Interferometer [J]. Journal of Geophysical Research: Solid Earth, 2021, 126(12): e2021JB022392.
[283] Behzadpour S, Mayer-Guerr T, Flury J, et al. Multiresolution wavelet analysis applied to GRACE range-rate residuals [J]. Geoscientific Instrumentation Methods and Data Systems, 2019, 8(2): 197-207.
[284] Dobslaw H, Bergmann-Wolf I, Dill R, et al. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06 [J]. Geophysical Journal International, 2017, 211(1): 263-269.
[285] Seo K W, Wilson C R, Han S C, et al. Gravity Recovery and Climate Experiment (GRACE) alias error from ocean [J]. Journal of Geophysical Research-Solid Earth, 2008, 113(B3).
[286] Visser P, Schrama E, Sneeuw N, et al. Dependency of resolvable gravitational spatial resolution on space-borne observation techniques [M]. Springer, 2012.
[287] Mccabe M F, Rodell M, Alsdorf D E, et al. The future of Earth observation in hydrology [J]. Hydrology and Earth System Sciences, 2017, 21(7): 3879-3914.
[288] Van Dam T, Wahr J, Lavallee D. A comparison of annual vertical crustal displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe [J]. Journal of Geophysical Research-Solid Earth, 2007, 112(B3).
[289] Scanlon B R, Zhang Z, Save H, et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6): E1080-E1089.
[290] Shepherd A, Ivins E R, Geruo A, et al. A Reconciled Estimate of Ice-Sheet Mass Balance [J]. Science, 2012, 338(6111): 1183-1189.
[291] Han S C, Shum C K, Bevis M, et al. Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake [J]. Science, 2006, 313(5787): 658-662.
[292] Elsaka B, Raimondo J C, Brieden P, et al. Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation [J]. Journal of Geodesy, 2014, 88(1): 31-43.
[293] Diao F Q, Xiong X, Zheng Y. Static slip model of the M (w) 9.0 Tohoku (Japan) earthquake: Results from joint inversion of terrestrial GPS data and seafloor GPS/acoustic data [J]. Chinese Science Bulletin, 2012, 57(16): 1990-1997.
[294] Yamagiwa S, Miyazaki S, Hirahara K, et al. Afterslip and viscoelastic relaxation following the 2011 Tohoku-oki earthquake (Mw9.0) inferred from inland GPS and seafloor GPS/Acoustic data [J]. Geophysical Research Letters, 2015, 42(1): 66-73.
[295] Cambiotti G, Douch K, Cesare S, et al. On Earthquake Detectability by the Next-Generation Gravity Mission [J]. Surveys in Geophysics, 2020, 41(5): 1049-1074.
[296] Sun W K, Okubo S. Truncated co-seismic geoid and gravity changes in the domain of spherical harmonic degree [J]. Earth Planets and Space, 2004, 56(9): 881-892.
[297] De Linage C, Rivera L, Hinderer J, et al. Separation of coseismic and postseismic gravity changes for the 2004 Sumatra-Andaman earthquake from 4.6 yr of GRACE observations and modelling of the coseismic change by normal-modes summation [J]. Geophysical Journal International, 2009, 176(3): 695-714.
[298] Matsuo K, Heki K. Coseismic gravity changes of the 2011 Tohoku-Oki earthquake from satellite gravimetry [J]. Geophysical Research Letters, 2011, 38.
[299] Han S C, Sauber J, Luthcke S. Regional gravity decrease after the 2010 Maule (Chile) earthquake indicates large-scale mass redistribution [J]. Geophysical Research Letters, 2010, 37.
[300] Heki K, Matsuo K. Coseismic gravity changes of the 2010 earthquake in central Chile from satellite gravimetry [J]. Geophysical Research Letters, 2010, 37.
[301] Wang L, Shum C K, Simons F J, et al. Coseismic slip of the 2010 Mw 8.8 Great Maule, Chile, earthquake quantified by the inversion of GRACE observations [J]. Earth and Planetary Science Letters, 2012, 335: 167-179.
[302] Pail R, Chen Q, Engels J, et al. Additional constellation and scientific analysis of the next generation gravity mission concept (ADDCON) [R]: Technical report, Technical University of Munich, 2018.
[303] Rock B S, Blandino J J, Demetriou M A. Propulsion requirements for drag-free operation of spacecraft in low Earth orbit [J]. Journal of Spacecraft and Rockets, 2006, 43(3): 594-606.
[304] Marchetti P, Blandino J J, Demetriou M A. Electric Propulsion and Controller Design for Drag-Free Spacecraft Operation [J]. Journal of Spacecraft and Rockets, 2008, 45(6): 1303-1315.
[305] Han S C, Ditmar P. Localized spectral analysis of global satellite gravity fields for recovering time-variable mass redistributions [J]. Journal of Geodesy, 2008, 82(7): 423-430.
[306] Purkhauser A F, Koch J A, Pail R. Applicability of NGGM near-real time simulations in flood detection [J]. Journal of Geodetic Science, 2019, 9(1): 111-126.
[307] Steketee J. On Volterra's dislocations in a semi-infinite elastic medium [J]. Canadian Journal of Physics, 1958, 36(2): 192-205.
[308] Sun W K, Okubo S, Fu G Y, et al. General formulations of global co-seismic deformations caused by an arbitrary dislocation in a spherically symmetric earth model-applicable to deformed earth surface and space-fixed point [J]. Geophysical Journal International, 2009, 177(3): 817-833.
[309] Okada Y. INTERNAL DEFORMATION DUE TO SHEAR AND TENSILE FAULTS IN A HALF-SPACE [J]. Bulletin of the Seismological Society of America, 1992, 82(2): 1018-1040.
[310] Okada Y. Surface deformation due to shear and tensile faults in a half-space [J]. Bulletin of the seismological society of America, 1985, 75(4): 1135-1154.
[311] Sun W, Okubo S. Surface potential and gravity changes due to internal dislocations in a spherical earth—I. Theory for a point dislocation [J]. Geophysical Journal International, 1993, 114(3): 569-592.
[312] Imanishi Y, Sato T, Higashi T, et al. A network of superconducting gravimeters detects submicrogal coseismic gravity changes [J]. Science, 2004, 306(5695): 476-478.
[313] Fu G Y, Sun W K. Effects of spatial distribution of fault slip on calculating co-seismic displacement: Case studies of the Chi-Chi earthquake (Mw7.6) and the Kunlun earthquake (Mw7.8) [J]. Geophysical Research Letters, 2004, 31(21).
[314] Xu C Y, Sun W K, Chao B F. Formulation of coseismic changes in Earth rotation and low-degree gravity field based on the spherical Earth dislocation theory [J]. Journal of Geophysical Research-Solid Earth, 2014, 119(12): 9031-9041.
[315] Eshelby J D. A Discussion on the measurement and interpretation of changes of strain in the Earth-Dislocation theory for geophysical applications [J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1973, 274(1239): 331-338.
[316] Savage J C. A DISLOCATION MODEL OF STRAIN ACCUMULATION AND RELEASE AT A SUBDUCTION ZONE [J]. Journal of Geophysical Research, 1983, 88(NB6): 4984-4996.
[317] Zhou X, Sun W K, Zhao B, et al. Geodetic observations detecting coseismic displacements and gravity changes caused by the Mw=9.0 Tohoku-Oki earthquake [J]. Journal of Geophysical Research-Solid Earth, 2012, 117.
[318] 付广裕, 孙文科. 球体位错理论计算程序的总体设计与具体实现 [J]. 地震, 2012, 32: 73-87.
[319] Chao B, Liau J. Gravity changes due to large earthquakes detected in GRACE satellite data via empirical orthogonal function analysis [J]. Journal of Geophysical Research: Solid Earth, 2019, 124(3): 3024-3035.

所在学位评定分委会
力学
国内图书分类号
O343.7
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/633408
专题理学院_地球与空间科学系
推荐引用方式
GB/T 7714
闫政文. 低低跟踪模式地球重力场反演与星座设计[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930895-闫政文-地球与空间科学(30484KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[闫政文]的文章
百度学术
百度学术中相似的文章
[闫政文]的文章
必应学术
必应学术中相似的文章
[闫政文]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。