[1] 曾华霖. 重力场与重力勘探 [M]. 北京: 地质出版社, 2005.
[2] 宁津生. 卫星重力探测技术与地球重力场研究 [J]. 大地测量与地球动力学, 2002: 1-5.
[3] 闫政文, 谭捍东, 彭淼, 等. 基于交叉梯度约束的重力、磁法和大地电磁三维联合反演 [J]. 地球物理学报, 2020, 63: 736-752.
[4] 付广裕, 祝意青, 高尚华, 等. 川西地区实测自由空气重力异常与EGM2008模型结果的差异 [J]. 地球物理学报, 2013, 56: 3761-3769.
[5] 王林松, 马险, 陈超, 等. 重力基准快速测定与分析:以广西重力基点网及格值标定场重建为例 [J]. 地球物理学报, 2019, 62: 1885-1897.
[6] 韩建成, 陈石, 李红蕾, 等. 陆地高精度重力观测数据的应用研究进展 [J]. 地球与行星物理论评, 2022, 53: 17-34.
[7] 郭良辉, 孟小红, 石磊, 等. 优化滤波方法及其在中国大陆布格重力异常数据处理中的应用 [J]. 地球物理学报, 2012, 55: 4078-4088.
[8] 胡敏章, 李建成, 金涛勇, 等. 联合多源数据确定中国海及周边海底地形模型 [J]. 武汉大学学报(信息科学版), 2015, 40: 1266-1273.
[9] 闫政文. 重力、磁法和大地电磁法三维联合反演研究 [硕士论文]. 北京: 中国地质大学(北京) [D], 2019.
[10] 孙文科. 低轨道人造卫星(CHAMP、GRACE、GOCE)与高精度地球重力场——卫星重力大地测量的最新发展及其对地球科学的重大影响 [J]. 大地测量与地球动力学, 2002: 92-100.
[11] 宁津生, 王正涛. 地球重力场研究现状与进展 [J]. 测绘地理信息, 2013, 38: 1-7.
[12] Panet I, Flury J, Biancale R, et al. Earth System Mass Transport Mission (e.motion): A Concept for Future Earth Gravity Field Measurements from Space [J]. Surveys in Geophysics, 2013, 34(2): 141-163.
[13] 许厚泽. 卫星重力研究:21世纪大地测量研究的新热点 [J]. 测绘科学, 2001, (03): 1-3+2.
[14] Wiese D N, Bienstock B, Blackwood C, et al. The mass change designated observable study: overview and results [J]. Earth and Space Science, 2022, 9(8): e2022EA002311.
[15] Zektser I S, Everett L G. Groundwater resources of the world and their use [M]. Unesco, 2004.
[16] Siebert S, Burke J, Faures J-M, et al. Groundwater use for irrigation–a global inventory [J]. Hydrology and earth system sciences, 2010, 14(10): 1863-1880.
[17] Vörösmarty C J, Mcintyre P B, Gessner M O, et al. Global threats to human water security and river biodiversity [J]. nature, 2010, 467(7315): 555-561.
[18] Syed T H, Famiglietti J S, Chambers D P, et al. Satellite-based global-ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge [J]. Proceedings of the National Academy of Sciences, 2010, 107(42): 17916-17921.
[19] Rodell M. The observed state of the water cycle in the early 21st century. vol. 28 [J]. J Clim, 2015: 8289-8318.
[20] Famiglietti J, Cazenave A, Eicker A, et al. Satellites provide the big picture [J]. Science, 2015, 349(6249): 684-685.
[21] Rodell M, Famiglietti J S, Wiese D N, et al. Emerging trends in global freshwater availability [J]. Nature, 2018, 557(7707): 650-+.
[22] Luo J, Chen L S, Duan H Z, et al. TianQin: a space-borne gravitational wave detector [J]. Classical and Quantum Gravity, 2016, 33(3).
[23] 肖云, 杨元喜, 潘宗鹏, 等. 中国卫星跟踪卫星重力测量系统性能与应用 [J]. 科学通报, 2023, 68: 2655-2664.
[24] 宁津生, 王正涛, 超能芳. 国际新一代卫星重力探测计划研究现状与进展 [J]. 武汉大学学报(信息科学版), 2016, 41: 1-8.
[25] Reigber C, Schwintzer P, Lühr H. The CHAMP geopotential mission, in bollettino di geofisica teoretica ed applicata [J]. 1999.
[26] Reigber C, Schwintzer P, Neumayer K-H, et al. The CHAMP-only Earth gravity field model EIGEN-2 [J]. Advances in Space Research, 2003, 31(8): 1883-1888.
[27] VISSER P., MOORE P. Integrated Space Geodetic Systems and Satellite Dynamics [M]. 2003: 1889-1895.
[28] Baur O. Greenland mass variation from time-variable gravity in the absence of GRACE [J]. Geophysical Research Letters, 2013, 40(16): 4289-4293.
[29] Flechtner F, Sneeuw N, Schuh W. Observation of the system earth from space: CHAMP, GRACE, GOCE and future missions [M]. Springer, 2014.
[30] Tapley B D, Bettadpur S, Watkins M, et al. The gravity recovery and climate experiment: Mission overview and early results [J]. Geophysical Research Letters, 2004, 31(9).
[31] Tapley B D, Watkins M M, Flechtner F, et al. Contributions of GRACE to understanding climate change [J]. Nature Climate Change, 2019, 9(5): 358-369.
[32] Chen J L, Cazenave A, Dahle C, et al. Applications and Challenges of GRACE and GRACE Follow-On Satellite Gravimetry [J]. Surveys in Geophysics, 2022, 43(1): 305-345.
[33] Landerer F W, Flechtner F M, Save H, et al. Extending the Global Mass Change Data Record: GRACE Follow-On Instrument and Science Data Performance [J]. Geophysical Research Letters, 2020, 47(12).
[34] Dunn C, Bertiger W, Bar-Sever Y, et al. Instrument of GRACE GPS augments gravity measurements [J]. GPS world, 2003, 14(2): 16-29.
[35] Tregoning P, Watson C, Ramillien G, et al. Detecting hydrologic deformation using GRACE and GPS [J]. Geophysical Research Letters, 2009, 36.
[36] Jacob T, Wahr J, Pfeffer W T, et al. Recent contributions of glaciers and ice caps to sea level rise [J]. Nature, 2012, 482(7386): 514-518.
[37] Ran J J, Ditmar P, Klees R, et al. Statistically optimal estimation of Greenland Ice Sheet mass variations from GRACE monthly solutions using an improved mascon approach [J]. Journal of Geodesy, 2018, 92(3): 299-319.
[38] Han S C, Sauber J, Luthcke S B, et al. Implications of postseismic gravity change following the great 2004 Sumatra-Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data [J]. Journal of Geophysical Research-Solid Earth, 2008, 113(B11).
[39] Fuchs M J, Hooper A, Broerse T, et al. Distributed fault slip model for the 2011 Tohoku-Oki earthquake from GNSS and GRACE/GOCE satellite gravimetry [J]. Journal of Geophysical Research-Solid Earth, 2016, 121(2): 1114-1130.
[40] 赵倩, 姜卫平, 徐新禹, 等. 卫星编队用于消除海潮模型混频误差影响的可行性研究 [J]. 中国科学:地球科学, 2015, 45: 169-176.
[41] Reubelt T, Sneeuw N, Iran Pour S, et al. The ESA project SC4MGV" Assessment of Satellite Constellations for Monitoring the Variations in Earth's Gravity Field"-overview, objectives and first results; proceedings of the EGU General Assembly Conference Abstracts, F, 2014 [C].
[42] Pail R, Bamber J, Biancale R, et al. Mass variation observing system by high low inter-satellite links (MOBILE) -a new concept for sustained observation of mass transport from space [J]. Journal of Geodetic Science, 2019, 9(1): 48-58.
[43] Wahr J, Molenaar M, Bryan F. Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE [J]. Journal of Geophysical Research-Solid Earth, 1998, 103(B12): 30205-30229.
[44] Swenson S, Wahr J. Post-processing removal of correlated errors in GRACE data [J]. Geophysical Research Letters, 2006, 33(8).
[45] Klees R, Revtova E A, Gunter B C, et al. The design of an optimal filter for monthly GRACE gravity models [J]. Geophysical Journal International, 2008, 175(2): 417-432.
[46] Kusche J, Schmidt R, Petrovic S, et al. Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model [J]. Journal of Geodesy, 2009, 83(10): 903-913.
[47] Flechtner F, Morton P, Watkins M, et al. Status of the GRACE Follow-On Mission; proceedings of the IAG 5th International Symposium on Gravity, Geoid and Height Systems (GGHS), Venice, ITALY, F Oct 09-12, 2012 [C]. 2014.
[48] Abich K, Abramovici A, Amparan B, et al. In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer [J]. Physical Review Letters, 2019, 123(3).
[49] Flury J, Bettadpur S, Tapley B D. Precise accelerometry onboard the GRACE gravity field satellite mission [J]. Advances in Space Research, 2008, 42(8): 1414-1423.
[50] Sheard B S, Heinzel G, Danzmann K, et al. Intersatellite laser ranging instrument for the GRACE follow-on mission [J]. Journal of Geodesy, 2012, 86(12): 1083-1095.
[51] Anlauf H, Pingel D, Rhodin A. Assimilation of GPS radio occultation data at DWD [J]. Atmospheric Measurement Techniques, 2011, 4(6): 1105-1113.
[52] Wickert J, Michalak G, Schmidt T, et al. GPS Radio Occultation: Results from CHAMP, GRACE and FORMOSAT-3/COSMIC [J]. Terrestrial Atmospheric and Oceanic Sciences, 2009, 20(1): 35-50.
[53] Flechtner F, Neumayer K H, Dahle C, et al. What Can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications? [J]. Surveys in Geophysics, 2016, 37(2): 453-470.
[54] Loomis B D, Nerem R S, Luthcke S B. Simulation study of a follow-on gravity mission to GRACE [J]. Journal of Geodesy, 2012, 86(5): 319-335.
[55] Drinkwater M, Floberghagen R, Haagmans R, et al. GOCE: ESA’s first Earth Explorer Core mission, Earth Gravity Field from Space-from Sensors to Earth Sciences (Beutler GB, Drinkwater M, Rummel R, von Steiger R, eds.), Space Sciences Series of ISSI, vol. 18 [Z]. Kluwer Academic Publishers, Dordrecht, Netherlands. 2003
[56] Floberghagen R, Fehringer M, Lamarre D, et al. Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission [J]. Journal of Geodesy, 2011, 85(11): 749-758.
[57] Brockmann J M, Schubert T, Schuh W D. An Improved Model of the Earth's Static Gravity Field Solely Derived from Reprocessed GOCE Data [J]. Surveys in Geophysics, 2021, 42(2): 277-316.
[58] Massonnet D. The interferometric cartwheel: a constellation of passive satellites to produce radar images to be coherently combined [J]. International Journal of Remote Sensing, 2001, 22(12): 2413-2430.
[59] Farahani H H, Ditmar P, Klees R. Assessment of the added value of data from the GOCE satellite mission to time-varying gravity field modelling [J]. Journal of Geodesy, 2014, 88(2): 157-178.
[60] Purkhauser A F, Pail R. Triple-Pair Constellation Configurations for Temporal Gravity Field Retrieval [J]. Remote Sensing, 2020, 12(5).
[61] Weigelt M, Van Dam T, Jaggi A, et al. Time-variable gravity signal in Greenland revealed by high-low satellite-to-satellite tracking [J]. Journal of Geophysical Research-Solid Earth, 2013, 118(7): 3848-3859.
[62] Mayer-Gürr T, Behzadpour S, Kvas A, et al. ITSG-Grace2018: monthly, daily and static gravity field solutions from GRACE [J]. 2018.
[63] 冉将军, 闫政文, 吴云龙, 等. 下一代重力卫星任务研究概述与未来展望 [J]. 武汉大学学报(信息科学版): 1-22.
[64] Bettadpur S. GRACE 327-742 (CSR-GR-12-xx)(Gravity Recovery and Climate Experiment), UTCSR Level-2 Processing Standards Document (Rev. 5.0, April 18, 2018),(For Level-2 Product Release 0006) [J]. Center for Space Research, The University of Texas at Austin, 2018.
[65] Mayer-Gürr T. Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. Bonn: University of Bonn [D], 2006.
[66] Mayer-Gurr T, Ilk K H, Eicker A, et al. ITG-CHAMP01: a CHAMP gravity field model from short kinematic arcs over a one-year observation period [J]. Journal of Geodesy, 2005, 78(7-8): 462-480.
[67] Ditmar P, Van Der Sluijs A a V. A technique for modeling the Earth's gravity field on the basis of satellite accelerations [J]. Journal of Geodesy, 2004, 78(1-2): 12-33.
[68] Ditmar P, Da Encarnacao J T, Farahani H H. Understanding data noise in gravity field recovery on the basis of inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE [J]. Journal of Geodesy, 2012, 86(6): 441-465.
[69] Beutler G, Jaggi A, Mervart L, et al. The celestial mechanics approach: application to data of the GRACE mission [J]. Journal of Geodesy, 2010, 84(11): 661-681.
[70] Beutler G, Jaggi A, Mervart L, et al. The celestial mechanics approach: theoretical foundations [J]. Journal of Geodesy, 2010, 84(10): 605-624.
[71] Jekeli C. The determination of gravitational potential differences from satellite-to-satellite tracking [J]. Celestial Mechanics & Dynamical Astronomy, 1999, 75(2): 85-101.
[72] Han S C. Efficient global gravity field determination from satellite-to-satellite tracking. PhD dissertation, Columbus: The Ohio State University [D]; The Ohio State University, 2003.
[73] 罗志才. 利用卫星重力梯度数据确定地球重力场的理论和方法 [博士论文]. 武汉: 武汉大学 [D], 1996.
[74] 沈云中. 应用CHAMP卫星星历精化地球重力场模型的研究 [博士论文]. 武汉: 中国科学院测量与地球物理研究所 [D], 2000.
[75] 张传定. 卫星重力测量-基础、模型化方法与数据处理算法 [博士论文]. 郑州: 中国人民解放军战略支援部队信息工程大学 [D], 2000.
[76] 章传银, 胡建国, 党亚民, 等. 多种跟踪组合卫星重力场恢复方法初探 [J]. 武汉大学学报 (信息科学版), 2003, 1.
[77] 罗佳. 利用卫星跟踪卫星确定地球重力场的理论和方法 [博士论文]. 武汉: 武汉大学 [D], 2003.
[78] 徐天河. 利用CHAMP卫星轨道和加速度计数据推求地球重力场模型 [博士论文]. 郑州: 中国人民解放军战略支援部队信息工程大学 [D], 2004.
[79] 郭金运. 由星载GPS数据进行CHAMP卫星定轨和地球重力场模型解算 [博士论文]. 青岛: 山东科技大学 [D], 2004.
[80] 周旭华. 卫星重力及其应用研究 [博士论文]. 武汉: 中国科学院测量与地球物理研究所 [D], 2005.
[81] 王正涛. 卫星跟踪卫星测量确定地球重力场的理论与方法 [博士论文]. 武汉: 武汉大学 [D], 2005.
[82] 肖云. 基于卫星跟踪卫星数据恢复地球重力场的研究 [博士论文]. 郑州: 中国人民解放军战略支援部队信息工程大学 [D], 2006.
[83] 邹贤才. 卫星轨道理论与地球重力场模型的确定 [博士论文]. 武汉: 武汉大学 [D], 2007.
[84] 郑伟. 基于卫星重力测量恢复地球重力场的理论和方法 [博士论文]. 武汉: 华中科技大学 [D], 2007.
[85] 张兴福. 应用低轨卫星跟踪数据反演地球重力场模型 [博士论文]. 上海: 同济大学 [D], 2007.
[86] 王庆宾. 动力法反演地球重力场模型研究 [博士论文]. 郑州: 中国人民解放军战略支援部队信息工程大学 [D], 2009.
[87] 吴星. 卫星重力梯度数据处理理论与方法 [博士论文]. 郑州: 中国人民解放军战略支援部队信息工程大学 [D], 2009.
[88] 吴云龙. GOCE卫星重力梯度测量数据的预处理研究 [博士论文]. 武汉: 武汉大学 [D], 2010.
[89] 钟波. 基于GOCE卫星重力测量技术确定地球重力场的研究 [博士论文]. 武汉: 武汉大学 [D], 2010.
[90] 游为. 应用低轨卫星数据反演地球重力场模型的理论和方法 [博士论文]. 成都: 西南交通大学 [D], 2011.
[91] 刘晓刚. GOCE卫星测量恢复地球重力场模型的理论与方法 [博士论文]. 郑州: 中国人民解放军战略支援部队信息工程大学 [D], 2011.
[92] 赵倩. 利用卫星编队探测地球重力场的方法研究与仿真分析 [博士论文]. 武汉: 武汉大学 [D], 2012.
[93] 韩建成. 基于地球重力场模型和地表浅层重力位确定大地水准面 [博士论文]. 武汉: 武汉大学 [D], 2012.
[94] 冯伟. 区域陆地水与海平面变化的卫星重力监测研究 [博士论文]. 武汉: 中国科学院测量与地球物理研究所 [D], 2013.
[95] 冉将军. 低低跟踪模式重力卫星反演理论, 方法及应用 [博士论文]. 武汉: 中国科学院测量与地球物理研究所 [D], 2013.
[96] 万晓云. 基于GOCE引力梯度数据的引力场反演及应用 [博士论文]. 北京: 中国科学院大学 [D], 2013.
[97] 蔡林. 卫星重力测量解析误差分析法 [博士论文]. 武汉: 华中科技大学 [D], 2013.
[98] 黄强. 基于GOCE卫星的重力场模型反演及应用 [博士论文]. 成都: 西南交通大学 [D], 2014.
[99] 李琼. 地表物质迁移的时变重力场反演方法及其应用研究 [博士论文]. 武汉: 武汉大学 [D], 2014.
[100] 周浩. 联合多类卫星重力数据反演地球重力场的研究 [博士论文]. 武汉: 武汉大学 [D], 2015.
[101] 王长青. GRACE时变重力场反演与相关问题研究 [博士论文]. 武汉: 中国科学院测量与地球物理研究所 [D], 2015.
[102] 闫志闯. GRACE卫星精密轨道确定与一步法恢复地球重力场 [博士论文]. 郑州: 中国人民解放军战略支援部队信息工程大学 [D], 2015.
[103] 陈秋杰. 基于改进短弧积分法的 GRACE 重力反演理论、方法及应用 [博士论文]. 上海: 同济大学 [D], 2016.
[104] 苏勇. 利用GOCE和GRACE卫星数据确定全球重力场模型 [博士论文]. 成都: 西南交通大学 [D], 2016.
[105] 高伟. 半解析法重力场反演与下一代重力卫星研究 [博士论文]. 北京: 中国科学院数学与系统科学研究院 [D], 2016.
[106] 郭向. 利用卫星跟踪卫星数据反演地球重力场理论和方法研究 [博士论文]. 武汉: 武汉大学 [D], 2017.
[107] 李慧淑. 基于半解析法对卫星编队的重力场误差分析 [博士论文]. 武汉: 华中科技大学 [D], 2017.
[108] 杨帆. GRACE时变重力场的解算和精化 [博士论文]. 武汉: 华中科技大学 [D], 2017.
[109] 魏玉明. GOCE观测数据确定地球重力场的理论与方法研究 [博士论文]. 西安: 长安大学 [D], 2018.
[110] 吴汤婷. 卫星跟踪卫星技术确定地球重力场的加速度法研究 [博士论文]. 武汉: 武汉大学 [D], 2019.
[111] 汪晓龙. 卫星重力时变信号的提取方法与应用研究 [博士论文]. 武汉: 武汉大学 [D], 2019.
[112] 邢志斌. GOCE卫星重力梯度数据恢复地球重力场理论与方法研究 [博士论文]. 郑州: 中国人民解放军战略支援部队信息工程大学 [D], 2019.
[113] 郭飞霄. 地表物质迁移的卫星大地测量反演理论与方法研究 [博士论文]. 郑州: 中国人民解放军战略支援部队信息工程大学 [D], 2019.
[114] 闫易浩. GRACE/GRACE-FO重力卫星星间测距系统数据处理关键技术研究 [博士论文]. 武汉: 华中科技大学 [D], 2021.
[115] Chen Q J, Shen Y Z, Chen W, et al. An Optimized Short-Arc Approach: Methodology and Application to Develop Refined Time Series of Tongji-Grace2018 GRACE Monthly Solutions [J]. Journal of Geophysical Research-Solid Earth, 2019, 124(6): 6010-6038.
[116] Chen J, Zhang X, Chen Q, et al. Static Gravity Field Recovery and Accuracy Analysis Based on Reprocessed GOCE Level 1b Gravity Gradient Observations; proceedings of the EGU General Assembly Conference Abstracts, F, 2022 [C].
[117] Zhou H, Zhou Z B, Luo Z C. HUST-Grace2020: Monthly gravity field model derived from GRACE mission [Z]. GFZ Data Services. https://doi.org/10.5880/ICGEM. 2021
[118] Guo X, Zhao Q, Ditmar P, et al. A new time-series of GRACE monthly gravity field solutions obtained by accounting for the colored noise in the K-Band range-rate measurements [J]. 2017.
[119] Liang W, Li J, Xu X, et al. A high-resolution Earth’s gravity field model SGG-UGM-2 from GOCE, GRACE, satellite altimetry, and EGM2008 [J]. Engineering, 2020, 6(8): 860-878.
[120] 冉将军, 许厚泽, 钟敏, 等. 利用GRACE重力卫星观测数据反演全球时变地球重力场模型 [J]. 地球物理学报, 2014, 57: 1032-1040.
[121] Yong S, Jiancheng L, Xiancai Z, et al. SWPU-GRACE2021: a new temporal gravity model from GRAC [J]. 2022.
[122] Yu B, You W, Fan D-M, et al. A comparison of GRACE temporal gravity field models recovered with different processing details [J]. Geophysical Journal International, 2021, 227(2): 1392-1417.
[123] Muller P M, Sjogren W L. Mascons: Lunar mass concentrations [J]. Science, 1968, 161(3842): 680-684.
[124] Rowlands D D, Luthcke S B, Klosko S M, et al. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements [J]. Geophysical Research Letters, 2005, 32(4).
[125] Luthcke S B, Zwally H J, Abdalati W, et al. Recent Greenland ice mass loss by drainage system from satellite gravity observations [J]. Science, 2006, 314(5803): 1286-1289.
[126] Luthcke S B, Arendt A A, Rowlands D D, et al. Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions [J]. Journal of Glaciology, 2008, 54(188): 767-777.
[127] Sabaka T J, Rowlands D D, Luthcke S B, et al. Improving global mass flux solutions from Gravity Recovery and Climate Experiment (GRACE) through forward modeling and continuous time correlation [J]. Journal of Geophysical Research-Solid Earth, 2010, 115.
[128] Luthcke S B, Sabaka T, Loomis B, et al. Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution [J]. Journal of Glaciology, 2013, 59(216): 613-631.
[129] Watkins M M, Wiese D N, Yuan D N, et al. Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons [J]. Journal of Geophysical Research-Solid Earth, 2015, 120(4): 2648-2671.
[130] Save H, Bettadpur S, Tapley B D. High-resolution CSR GRACE RL05 mascons [J]. Journal of Geophysical Research-Solid Earth, 2016, 121(10): 7547-7569.
[131] Loomis B D, Luthcke S B, Sabaka T J. Regularization and error characterization of GRACE mascons [J]. Journal of Geodesy, 2019, 93(9): 1381-1398.
[132] Wiese D, Yuan D, Boening C, et al. JPL GRACE mascon ocean, ice, and hydrology equivalent water height release 06 coastal resolution improvement (CRI) filtered version 1.0 [J]. DAAC: Pasadena, CA, USA, 2018.
[133] Save H. CSR GRACE and GRACE-FO RL06 Mascon Solutions v02, Available online: https://doi.org/10.15781/cgq9-nh24 [Z]. 2020: 24
[134] Schrama E J O, Wouters B, Rietbroek R. A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data [J]. Journal of Geophysical Research-Solid Earth, 2014, 119(7): 6048-6066.
[135] Xu Z, Schrama E, Van Der Wal W. Optimization of regional constraints for estimating the Greenland mass balance with GRACE level-2 data [J]. Geophysical Journal International, 2015, 202(1): 381-393.
[136] Wiese D N, Landerer F W, Watkins M M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution [J]. Water Resources Research, 2016, 52(9): 7490-7502.
[137] Andrews S B, Moore P, King M A. Mass change from GRACE: a simulated comparison of Level-1B analysis techniques [J]. Geophysical Journal International, 2015, 200(1): 503-518.
[138] Allgeyer S, Tregoning P, Mcqueen H, et al. ANU GRACE Data Analysis: Orbit Modeling, Regularization and Inter‐satellite Range Acceleration Observations [J]. Journal of Geophysical Research: Solid Earth, 2022, 127(2): e2021JB022489.
[139] Hill E M, Davis J L, Tamisiea M E, et al. Using a spatially realistic load model to assess impacts of Alaskan glacier ice loss on sea level [J]. Journal of Geophysical Research-Solid Earth, 2011, 116.
[140] Alexander P M, Tedesco M, Schlegel N J, et al. Greenland Ice Sheet seasonal and spatial mass variability from model simulations and GRACE (2003-2012) [J]. Cryosphere, 2016, 10(3): 1259-1277.
[141] Zhang B, Liu L, Khan S A, et al. Geodetic and model data reveal different spatio-temporal patterns of transient mass changes over Greenland from 2007 to 2017 [J]. Earth and Planetary Science Letters, 2019, 515: 154-163.
[142] Yi S, Sun W K. Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models [J]. Journal of Geophysical Research-Solid Earth, 2014, 119(3): 2504-2517.
[143] Jing W L, Zhang P Y, Zhao X D. A comparison of different GRACE solutions in terrestrial water storage trend estimation over Tibetan Plateau [J]. Scientific Reports, 2019, 9.
[144] Loomis B D, Richey A S, Arendt A A, et al. Water Storage Trends in High Mountain Asia [J]. Frontiers in Earth Science, 2019, 7.
[145] Long D, Pan Y, Zhou J, et al. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models [J]. Remote Sensing of Environment, 2017, 192: 198-216.
[146] Nie W S, Zaitchik B F, Rodell M, et al. Groundwater Withdrawals Under Drought: Reconciling GRACE and Land Surface Models in the United States High Plains Aquifer [J]. Water Resources Research, 2018, 54(8): 5282-5299.
[147] Sun Z L, Zhu X F, Pan Y Z, et al. Drought evaluation using the GRACE terrestrial water storage deficit over the Yangtze River Basin, China [J]. Science of the Total Environment, 2018, 634: 727-738.
[148] Zhao Q, Zhang B, Yao Y B, et al. Geodetic and hydrological measurements reveal the recent acceleration of groundwater depletion in North China Plain [J]. Journal of Hydrology, 2019, 575: 1065-1072.
[149] Mu D P, Xu T H, Xu G C. An investigation of mass changes in the Bohai Sea observed by GRACE [J]. Journal of Geodesy, 2020, 94(9).
[150] Loomis B D, Luthcke S B. Mass evolution of Mediterranean, Black, Red, and Caspian Seas from GRACE and altimetry: accuracy assessment and solution calibration [J]. Journal of Geodesy, 2017, 91(2): 195-206.
[151] Killett E, Wahr J, Desai S, et al. Arctic Ocean tides from GRACE satellite accelerations [J]. Journal of Geophysical Research-Oceans, 2011, 116.
[152] Gu Y C, Fan D M, You W. Comparison of observed and modeled seasonal crustal vertical displacements derived from multi-institution GPS and GRACE solutions [J]. Geophysical Research Letters, 2017, 44(14): 7219-7227.
[153] Wang S Y, Chen J L, Wilson C R, et al. Reconciling GRACE and GPS estimates of long-term load deformation in southern Greenland [J]. Geophysical Journal International, 2018, 212(2): 1302-1313.
[154] Johnson C W, Fu Y N, Burgmann R. Hydrospheric modulation of stress and seismicity on shallow faults in southern Alaska [J]. Earth and Planetary Science Letters, 2020, 530.
[155] Zhang L, Tang H, Chang L, et al. Performance of GRACE Mascon Solutions in Studying Seismic Deformations [J]. Journal of Geophysical Research-Solid Earth, 2020, 125(10).
[156] Tregoning P, Mcgirr R, Pfeffer J, et al. ANU GRACE Data Analysis: Characteristics and Benefits of Using Irregularly Shaped Mascons [J]. Journal of Geophysical Research: Solid Earth, 2022, 127(2): e2021JB022412.
[157] Gruber T, M. M, Team E M. Proposal to ESA’s Earth Explorer Call 9: Earth System Mass Transport Mission-E.motion 2 [J]. Deutsche Geodätische Kommission der Bayerischen Akademie der Wissenschaften, Reihe B, Angewandte Geodäsie, Series B, 2015, (Available online: https://dgk.badw.de/fileadmin/user_upload/Files/DGK/docs/b-318.pdf).
[158] Gruber T, Murböck M, Nggm-D T. e2. motion-Earth System Mass Transport Mission (Square)-Concept for a Next Generation Gravity Field Mission [R]: Institut für Astronomische und Physikalische Geodäsie, 2014.
[159] Biancale R, Pollet A, Coulot D, et al. E-GRASP/Eratosthenes: a mission proposal for millimetric TRF realization; proceedings of the EGU General Assembly Conference Abstracts, F, 2017 [C].
[160] Hauk M, Schlicht A, Pail R, et al. Gravity field recovery in the framework of a Geodesy and Time Reference in Space (GETRIS) [J]. Advances in Space Research, 2017, 59(8): 2032-2047.
[161] Bar-Sever Y, Haines B, Bertiger W, et al. Geodetic reference antenna in space (GRASP)—a mission to enhance space-based geodesy; proceedings of the COSPAR colloquium: scientific and fundamental aspects of the Galileo program, Padua, F, 2009 [C].
[162] Anthony N, Archimbaud M, Beeck S, et al. GRAVL: GRAvity observations by Vertical Laser ranging [J].
[163] Lévèque T, Fallet C, Mandea M, et al. Gravity field mapping using laser-coupled quantum accelerometers in space [J]. Journal of Geodesy, 2021, 95(1): 1-19.
[164] Lemoine J, Mandea M. The MARVEL gravity and reference frame mission proposal; proceedings of the EGU General Assembly Conference Abstracts, F, 2020 [C].
[165] Migliaccio F, Reguzzoni M, Batsukh K, et al. MOCASS: A Satellite Mission Concept Using Cold Atom Interferometry for Measuring the Earth Gravity Field [J]. Surveys in Geophysics, 2019, 40(5): 1029-1053.
[166] Flechtner F M. Realization of a satellite mission "GRACE-I" for parallel observation of changing global water resources and biodiversity; proceedings of the AGU Fall Meeting Abstracts, F, 2020 [C].
[167] Massotti L, Siemes C, March G, et al. Next Generation Gravity Mission Elements of the Mass Change and Geoscience International Constellation: From Orbit Selection to Instrument and Mission Design [J]. Remote Sensing, 2021, 13(19).
[168] Heller-Kaikov B, Pail R, Daras I. Mission design aspects for the mass change and geoscience international constellation (MAGIC) [J]. Geophysical Journal International, 2023, 235(1): 718-735.
[169] Landerer F W, Wiese D. The value and need of continuous global satellite gravimetry measurements for Earth system science; proceedings of the MAGIC Science and Applications Workshop, F, 2023 [C].
[170] Roger H, Tsaoussi L. Next Generation Gravity Mission as a Mass-change And Geosciences International Constellation (MAGIC) Mission Requirements Document [R], 2020.
[171] Sharifi M, Sneeuw N, Keller W. Gravity recovery capability of four generic satellite formations [J]. Gravity field of the Earth General Command of Mapping, ISSN, 2007: 1300-5790.
[172] Wiese D N, Nerem R S, Lemoine F G. Design considerations for a dedicated gravity recovery satellite mission consisting of two pairs of satellites [J]. Journal of Geodesy, 2012, 86(2): 81-98.
[173] 姜卫平, 赵伟, 赵倩, 等. 新一代探测地球重力场的卫星编队 [J]. 测绘学报, 2014, 43: 111-117.
[174] Rummel R, Balmino G, Johannessen J, et al. Dedicated gravity field missions - principles and aims [J]. Journal of Geodynamics, 2002, 33(1-2): 3-20.
[175] Bender P L, Wiese D N, Nerem R S. A possible dual-GRACE mission with 90 degree and 63 degree inclination orbits; proceedings of the Proceedings of the 3rd International Symposium on Formation Flying, Missions and Technologies European Space Agency Symposium Proceedings, SP-654 jILA Pub, F, 2008 [C].
[176] Daras I, Pail R. Treatment of temporal aliasing effects in the context of next generation satellite gravimetry missions [J]. Journal of Geophysical Research-Solid Earth, 2017, 122(9): 7343-7362.
[177] Pail R, Yeh H C, Feng W, et al. Next-Generation Gravity Missions: Sino-European Numerical Simulation Comparison Exercise [J]. Remote Sensing, 2019, 11(22).
[178] Zhou H, Luo Z C, Zhou Z B, et al. What Can We Expect from the Inclined Satellite Formation for Temporal Gravity Field Determination? [J]. Surveys in Geophysics, 2021, 42(3): 699-726.
[179] Wiese D N, Folkner W M, Nerem R S. Alternative mission architectures for a gravity recovery satellite mission [J]. Journal of Geodesy, 2009, 83(6): 569-581.
[180] Murbock M, Pail R, Daras I, et al. Optimal orbits for temporal gravity recovery regarding temporal aliasing [J]. Journal of Geodesy, 2014, 88(2): 113-126.
[181] Hofmann-Wellenhof B, Moritz H. Physical geodesy [M]. Springer Science & Business Media, 2006.
[182] Seeber G. Satellite geodesy: foundations, methods and applications [J]. INTERNATIONAL HYDROGRAPHIC REVIEW, 2003, 4(3): 92-93.
[183] 李征航, 魏二虎, 王正涛, 等. 空间大地测量学 [M]. 武汉: 武汉大学出版社. 2010.
[184] Gibney E. THE LEAP SECOND'S TIME IS UP: WORLD VOTES TO STOP PAUSING CLOCKS [J]. Nature, 2022, 612(7938): 18-18.
[185] Landau L, Lifshitz E. Mechanics Pergamon [J]. New York, 1960: 87.
[186] Montenbruck O, Gill E, Lutze F. Satellite orbits: models, methods, and applications [J]. Appl Mech Rev, 2002, 55(2): B27-B28.
[187] Reference Frames for Applications in Geosciences [M]. Springer. 2013: 57-61.
[188] Wen H Y, Kruizinga G, Paik M, et al. Gravity recovery and climate experiment follow-on (GRACE-FO) level-1 data product user handbook [J]. JPL D-56935 (URS270772), 2019, 11.
[189] Mayer-Gürr T, Behzadpour S, Eicker A, et al. GROOPS: A software toolkit for gravity field recovery and GNSS processing [J]. Computers & geosciences, 2021, 155: 104864.
[190] Lasser M, Meyer U, Jäggi A, et al. Benchmark data for verifying background model implementations in orbit and gravity field determination software [J]. Advances in geosciences, 2020, 55: 1-11.
[191] Dach R, Lutz S, Walser P, et al. Bernese GPS software version 5.2, Documentation, University of Bern [Z]. Bern Open Publishing, https://doi. org/10.7892/boris. 2015
[192] Glaser S, König R, Neumayer K H, et al. On the impact of local ties on the datum realization of global terrestrial reference frames [J]. Journal of Geodesy, 2019, 93(5): 655-667.
[193] Zhu S, Reigber C, König R. Integrated adjustment of CHAMP, GRACE, and GPS data [J]. Journal of Geodesy, 2004, 78(1): 103-108.
[194] Koch I, Flury J, Naeimi M, et al. LUH-GRACE2018: a new time series of monthly gravity field solutions from GRACE [M]. Beyond 100: The Next Century in Geodesy: Proceedings of the IAG General Assembly, Montreal, Canada, July 8-18, 2019: Springer, 2020.
[195] Folkner W M, Williams J G, Boggs D H. The planetary and lunar ephemeris DE 421 [J]. IPN progress report, 2009, 42(178): 1.
[196] Dahle C, Flechtner F, Murböck M, et al. GRACE 327-743 (Gravity Recovery and Climate Experiment): GFZ Level-2 Processing Standards Document for Level-2 Product Release 06 (Rev. 1.0, October 26, 2018) [J]. 2018.
[197] Jungclaus J H, Fischer N, Haak H, et al. Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model [J]. Journal of Advances in Modeling Earth Systems, 2013, 5(2): 422-446.
[198] Ray R D. A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99. 2 [M]. National Aeronautics and Space Administration, Goddard Space Flight Center, 1999.
[199] Savcenko R, Bosch W. EOT11a-a new tide model from Multi-Mission Altimetry; proceedings of the Proceedings of the OSTST Meeting, F, 2011 [C].
[200] Carrère L, Lyard F, Cancet M, et al. FES 2014, a new tidal model—Validation results and perspectives for improvements; proceedings of the Proceedings of the ESA living planet symposium, F, 2016 [C].
[201] Desai S D. Observing the pole tide with satellite altimetry [J]. Journal of Geophysical Research-Oceans, 2002, 107(C11).
[202] 吴林冲, 衷路萍, 刘冰石. 点火脉冲对GRACE加速度计校准的影响 [J]. 大地测量与地球动力学, 2018, 38(04): 399-401+432.
[203] Ditmar P. Conversion of time-varying Stokes coefficients into mass anomalies at the Earth's surface considering the Earth's oblateness [J]. Journal of Geodesy, 2018, 92(12): 1401-1412.
[204] Swenson S, Wahr J. Estimated effects of the vertical structure of atmospheric mass on the time-variable geoid [J]. Journal of Geophysical Research-Solid Earth, 2002, 107(B9).
[205] Boy J P, Chao B F. Precise evaluation of atmospheric loading effects on Earth's time-variable gravity field [J]. Journal of Geophysical Research-Solid Earth, 2005, 110(B8).
[206] Wiese D N, Nerem R S, Han S C. Expected improvements in determining continental hydrology, ice mass variations, ocean bottom pressure signals, and earthquakes using two pairs of dedicated satellites for temporal gravity recovery [J]. Journal of Geophysical Research-Solid Earth, 2011, 116.
[207] Kusche J. Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models [J]. Journal of Geodesy, 2007, 81(11): 733-749.
[208] 许才军, 龚正. GRACE时变重力数据的后处理方法研究进展 [J]. 武汉大学学报(信息科学版), 2016, 41: 503-510.
[209] Sun Y, Riva R, Ditmar P. Optimizing estimates of annual variations and trends in geocenter motion and J(2) from a combination of GRACE data and geophysical models [J]. Journal of Geophysical Research-Solid Earth, 2016, 121(11): 8352-8370.
[210] Chen J L, Rodell M, Wilson C R, et al. Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates [J]. Geophysical Research Letters, 2005, 32(14).
[211] Loomis B D, Rachlin K E, Wiese D N, et al. Replacing GRACE/GRACE‐FO with satellite laser ranging: Impacts on Antarctic Ice Sheet mass change [J]. Geophysical Research Letters, 2020, 47(3): e2019GL085488.
[212] 汪汉胜, Patrick W, 许厚泽. 冰川均衡调整(GIA)的研究 [J]. 地球物理学进展, 2009, 24(06): 1958-1967.
[213] Sella G F, Stein S, Dixon T H, et al. Observation of glacial isostatic adjustment in "stable" North America with GPS [J]. Geophysical Research Letters, 2007, 34(2).
[214] Peltier W R. Postglacial variations in the level of the sea: Implications for climate dynamics and solid-earth geophysics [J]. Reviews of Geophysics, 1998, 36(4): 603-689.
[215] Mitrovica J X, Peltier W R. PRESENT-DAY SECULAR VARIATIONS IN THE ZONAL HARMONICS OF EARTHS GEOPOTENTIAL [J]. Journal of Geophysical Research-Solid Earth, 1993, 98(B3): 4509-4526.
[216] Wu P, Peltier W. Pleistocene deglaciation and the Earth's rotation: a new analysis [J]. Geophysical Journal International, 1984, 76(3): 753-791.
[217] Stuhne G R, Peltier W R. Reconciling the ICE-6G_C reconstruction of glacial chronology with ice sheet dynamics: The cases of Greenland and Antarctica [J]. Journal of Geophysical Research-Earth Surface, 2015, 120(9): 1841-1865.
[218] Jekeli C. Alternative methods to smooth the Earth's gravity field [R], 1981.
[219] Zhang Z Z, Chao B F, Lu Y, et al. An effective filtering for GRACE time‐variable gravity: Fan filter [J]. Geophysical Research Letters, 2009, 36(17).
[220] Chambers D P. Evaluation of new GRACE time-variable gravity data over the ocean [J]. Geophysical Research Letters, 2006, 33(17).
[221] Chen J L, Wilson C R, Tapley B D, et al. GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake [J]. Geophysical Research Letters, 2007, 34(13).
[222] Chen J L, Wilson C R, Tapley B D, et al. 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models [J]. Journal of Geophysical Research-Solid Earth, 2009, 114.
[223] Chen J L, Wilson C R, Blankenship D, et al. Accelerated Antarctic ice loss from satellite gravity measurements [J]. Nature Geoscience, 2009, 2(12): 859-862.
[224] Sasgen I, Martinec Z, Fleming K. Wiener optimal combination and evaluation of the Gravity Recovery and Climate Experiment (GRACE) gravity fields over Antarctica [J]. Journal of Geophysical Research-Solid Earth, 2007, 112(B4).
[225] Davis J L, Tamisiea M E, Elosegui P, et al. A statistical filtering approach for Gravity Recovery and Climate Experiment (GRACE) gravity data [J]. Journal of Geophysical Research-Solid Earth, 2008, 113(B4).
[226] 詹金刚, 王勇, 郝晓光. GRACE时变重力位系数误差的改进去相关算法 [J]. 测绘学报, 2011, 40(04): 442-446+453.
[227] Horvath A, Murbock M, Pail R, et al. Decorrelation of GRACE Time Variable Gravity Field Solutions Using Full Covariance Information [J]. Geosciences, 2018, 8(9).
[228] Yi S, Sneeuw N. A novel spatial filter to reduce north–south striping noise in GRACE spherical harmonic coefficients [J]. Journal of Geodesy, 2022, 96(4): 1-17.
[229] Qian N J, Chang G B, Ditmar P, et al. Sparse DDK: A Data-Driven Decorrelation Filter for GRACE Level-2 Products [J]. Remote Sensing, 2022, 14(12).
[230] Forsberg R, Reeh N. Mass change of the Greenland ice sheet from GRACE; proceedings of the 1st Meeting of the International Gravity Field Service: Gravity Field of the Earth, F, 2006 [C]. Springer Verlag.
[231] Baur O, Sneeuw N. Assessing Greenland ice mass loss by means of point-mass modeling: a viable methodology [J]. Journal of geodesy, 2011, 85: 607-615.
[232] Sneeuw N. Physical geodesy [J]. Lecture notes, 2006.
[233] Gonzalez A. Measurement of Areas on a Sphere Using Fibonacci and Latitude-Longitude Lattices [J]. Mathematical Geosciences, 2010, 42(1): 49-64.
[234] Ran J J, Vizcaino M, Ditmar P, et al. Seasonal mass variations show timing and magnitude of meltwater storage in the Greenland Ice Sheet [J]. The Cryosphere, 2018, 12(9): 2981-2999.
[235] Slepian D, Pollak H O. Prolate spheroidal wave functions, Fourier analysis and uncertainty—I [J]. Bell System Technical Journal, 1961, 40(1): 43-63.
[236] Albertella A, Sanso F, Sneeuw N. Band-limited functions on a bounded spherical domain: the Slepian problem on the sphere [J]. Journal of Geodesy, 1999, 73(9): 436-447.
[237] Harig C, Simons F J. Mapping Greenland’s mass loss in space and time [J]. Proceedings of the National Academy of Sciences, 2012, 109(49): 19934-19937.
[238] Chen J L, Wilson C R, Li J, et al. Reducing leakage error in GRACE-observed long-term ice mass change: a case study in West Antarctica [J]. Journal of Geodesy, 2015, 89(9): 925-940.
[239] 张雅声, 冯飞. 卫星星座轨道设计方法 [M]. 北京: 国防工业出版社, 2019.
[240] Clarke A C. Extra-terrestrial relays [J]. Electronics World, 1945, 119(1924): 14-19.
[241] Rees W. Orbital subcycles for Earth remote sensing satellites [J]. International Journal of Remote Sensing, 1992, 13(5): 825-833.
[242] Schneider M. A General Method of Orbit Determination by M. Schneider [M]. Royal Aircraft Establishment, 1968.
[243] Ilk K. On the analysis of satellite to satellite tracking data; proceedings of the Symposium on Space Techniques for Geodynamics, Volume 1, F, 1984 [C].
[244] Observation of the earth system from space [M]. Springer. 2006: 131-148.
[245] Chen Q J, Shen Y Z, Chen W, et al. An optimized short‐arc approach: Methodology and application to develop refined time series of Tongji‐Grace2018 GRACE monthly solutions [J]. Journal of Geophysical Research: Solid Earth, 2019, 124(6): 6010-6038.
[246] Bettadpur S. Recommendation for a-priori bias & scale parameters for level-1B ACC data (Version 2), GRACE TN-02 [R]: Center for Space Research, The University of Texas at Austin, 2009.
[247] Meyer U, Jäggi A, Jean Y, et al. AIUB-RL02: An improved time-series of monthly gravity fields from GRACE data [J]. Geophysical Journal International, 2016, 205(2): 1196-1207.
[248] Wiese D N, Visser P, Nerem R S. Estimating low resolution gravity fields at short time intervals to reduce temporal aliasing errors [J]. Advances in space research, 2011, 48(6): 1094-1107.
[249] Kurtenbach E, Mayer‐Gürr T, Eicker A. Deriving daily snapshots of the Earth's gravity field from GRACE L1B data using Kalman filtering [J]. Geophysical Research Letters, 2009, 36(17).
[250] Ran J. Analysis of mass variations in Greenland by a novel variant of the mascon approach. PhD dissertation, Delft: Delft University of Technology [D], 2017.
[251] Mcgirr R, Tregoning P, Allgeyer S, et al. Interplay of altitude, ground track coverage, noise and regularisation in the spatial resolution of GRACE gravity field models [J]. Journal of Geophysical Research: Solid Earth: e2022JB024330.
[252] Nie Y F, Shen Y Z, Chen Q J. Combination Analysis of Future Polar-Type Gravity Mission and GRACE Follow-On [J]. Remote Sensing, 2019, 11(2).
[253] Hauk M, Wiese D. New Methods for Linking Science Objectives to Remote Sensing Observations: A Concept Study Using Single‐and Dual‐Pair Satellite Gravimetry Architectures [J]. Earth and Space Science, 2020, 7(3): e2019EA000922.
[254] Miragaia Gomes Inacio P. A simulation study for future satellite gravimetry missions [D]; Delft University of Technology, 2020.
[255] Ilk K-H, Flury J, Rummel R, et al. Mass Transport and Mass Distribution in the Earth System: Contribution of the New Generation of Satellite Gravity and Altimetry Missions to Geosciences; Proposal for a German Priority Research Program [J]. 2004.
[256] Yuan D. JPL level-2 processing standards document for level-2 product release 06 [J]. Jet Propulsion Laboratory, California Institute of Technology, 2018.
[257] Kurtenbach E, Eicker A, Mayer-Gurr T, et al. Improved daily GRACE gravity field solutions using a Kalman smoother [J]. Journal of Geodynamics, 2012, 59-60: 39-48.
[258] Sakumura C, Bettadpur S, Save H, et al. High-frequency terrestrial water storage signal capture via a regularized sliding windowmascon product from GRACE [J]. Journal of Geophysical Research-Solid Earth, 2016, 121(5): 4014-4030.
[259] Dahle C, Flechtner F, Gruber C, et al. Gfz grace level-2 processing standards document for level-2 product release 0005: revised edition, january 2013 [J]. 2013.
[260] Croteau M J, Nerem R S, Loomis B D, et al. Development of a Daily GRACE Mascon Solution for Terrestrial Water Storage [J]. Journal of Geophysical Research-Solid Earth, 2020, 125(3).
[261] Wessel P, Luis J F, Uieda L, et al. The Generic Mapping Tools Version 6 [J]. Geochemistry Geophysics Geosystems, 2019, 20(11): 5556-5564.
[262] Yan Z W, Ran J J, Xiao Y, et al. The Temporal Improvement of Earth's Mass Transport Estimated by Coupling GRACE‐FO with a Chinese Polar Gravity Satellite Mission [J]. Journal of Geophysical Research: Solid Earth: e2023JB027157.
[263] Deccia C M A, Wiese D N, Nerem R S. Using a Multiobjective Genetic Algorithm to Design Satellite Constellations for Recovering Earth System Mass Change [J]. Remote Sensing, 2022, 14(14).
[264] Iran Pour S, Sneeuw N, Weigelt M, et al. Orbit optimization for future satellite gravity field missions: Influence of the time variable gravity field models in a genetic algorithm approach; proceedings of the IX Hotine-Marussi Symposium on Mathematical Geodesy, F, 2019 [C]. Springer.
[265] Deccia C M A, Wiese D N, Nerem R S. Using a Multiobjective Genetic Algorithm to Design Satellite Constellations for Recovering Earth System Mass Change [J]. Remote Sensing, 2022, 14(14): 3340.
[266] Hegerty B, Hung C-C, Kasprak K. A comparative study on differential evolution and genetic algorithms for some combinatorial problems; proceedings of the Proceedings of 8th Mexican international conference on artificial intelligence, F, 2009 [C].
[267] Stom R, Price K. Differential evolution-A simple and efficient adaptive scheme for global optimization over continuous spaces [J]. Technical Repan, TR-95012, ICSI, 1995.
[268] Price K V. Differential evolution: A fast and simple numerical optimizer; proceedings of the 1996 Biennial Conference of the North-American-Fuzzy-Information-Processing-Society, Berkeley, Ca, F Jun 19-22, 1996 [C]. 1996.
[269] Storn R, Price K. Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces [J]. Journal of Global Optimization, 1997, 11(4): 341-359.
[270] Onwubolu G, Davendra D. Scheduling flow shops using differential evolution algorithm [J]. European Journal of Operational Research, 2006, 171(2): 674-692.
[271] Liu Z G, Ji X H, Yang Y. Hierarchical differential evolution algorithm combined with multi-cross operation [J]. Expert Systems with Applications, 2019, 130: 276-292.
[272] Das S, Abraham A, Konar A. Automatic clustering using an improved differential evolution algorithm [J]. Ieee Transactions on Systems Man and Cybernetics Part a-Systems and Humans, 2008, 38(1): 218-237.
[273] Zhang T J, Shen H X, Li Z, et al. Restricted constellation design for regional navigation augmentation [J]. Acta Astronautica, 2018, 150: 231-239.
[274] Price K. An Introduction to Differential Evolution,‖ in New Ideas in Optimization, D. Corne, M. Dorigo, and F. Glover, Eds [Z]. London, UK: McGraw-Hill. 1999
[275] Price K, Storn R M, Lampinen J A. Differential evolution: a practical approach to global optimization [M]. Springer Science & Business Media, 2006.
[276] Neri F, Tirronen V. Recent advances in differential evolution: a survey and experimental analysis [J]. Artificial Intelligence Review, 2010, 33(1-2): 61-106.
[277] Dobslaw H, Bergmann-Wolf I, Dill R, et al. The updated ESA Earth System Model for future gravity mission simulation studies [J]. Journal of Geodesy, 2015, 89(5): 505-513.
[278] Iran Pour S, Reubelt T, Sneeuw N, et al. Assessment of Satellite Constellations for Monitoring the Variations in Earth Gravity Field—SC4MGV; ESA—ESTEC Contract No [R]: AO/1-7317/12/NL/AF, Final Report, 2015.
[279] Farahani H H, Ditmar P, Inacio P, et al. A high resolution model of linear trend in mass variations from DMT-2: Added value of accounting for coloured noise in GRACE data [J]. Journal of Geodynamics, 2017, 103: 12-25.
[280] Guo X, Zhao Q L, Ditmar P, et al. Improvements in the Monthly Gravity Field Solutions Through Modeling the Colored Noise in the GRACE Data [J]. Journal of Geophysical Research-Solid Earth, 2018, 123(8): 7040-7054.
[281] Klees R, Ditmar P. How to handle colored noise in large least-squares problems in the presence of data gaps?; proceedings of the V Hotine-Marussi symposium on mathematical geodesy, F, 2004 [C]. Springer.
[282] Pie N, Bettadpur S, Tamisiea M, et al. Time Variable Earth Gravity Field Models From the First Spaceborne Laser Ranging Interferometer [J]. Journal of Geophysical Research: Solid Earth, 2021, 126(12): e2021JB022392.
[283] Behzadpour S, Mayer-Guerr T, Flury J, et al. Multiresolution wavelet analysis applied to GRACE range-rate residuals [J]. Geoscientific Instrumentation Methods and Data Systems, 2019, 8(2): 197-207.
[284] Dobslaw H, Bergmann-Wolf I, Dill R, et al. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06 [J]. Geophysical Journal International, 2017, 211(1): 263-269.
[285] Seo K W, Wilson C R, Han S C, et al. Gravity Recovery and Climate Experiment (GRACE) alias error from ocean [J]. Journal of Geophysical Research-Solid Earth, 2008, 113(B3).
[286] Visser P, Schrama E, Sneeuw N, et al. Dependency of resolvable gravitational spatial resolution on space-borne observation techniques [M]. Springer, 2012.
[287] Mccabe M F, Rodell M, Alsdorf D E, et al. The future of Earth observation in hydrology [J]. Hydrology and Earth System Sciences, 2017, 21(7): 3879-3914.
[288] Van Dam T, Wahr J, Lavallee D. A comparison of annual vertical crustal displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe [J]. Journal of Geophysical Research-Solid Earth, 2007, 112(B3).
[289] Scanlon B R, Zhang Z, Save H, et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6): E1080-E1089.
[290] Shepherd A, Ivins E R, Geruo A, et al. A Reconciled Estimate of Ice-Sheet Mass Balance [J]. Science, 2012, 338(6111): 1183-1189.
[291] Han S C, Shum C K, Bevis M, et al. Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake [J]. Science, 2006, 313(5787): 658-662.
[292] Elsaka B, Raimondo J C, Brieden P, et al. Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation [J]. Journal of Geodesy, 2014, 88(1): 31-43.
[293] Diao F Q, Xiong X, Zheng Y. Static slip model of the M (w) 9.0 Tohoku (Japan) earthquake: Results from joint inversion of terrestrial GPS data and seafloor GPS/acoustic data [J]. Chinese Science Bulletin, 2012, 57(16): 1990-1997.
[294] Yamagiwa S, Miyazaki S, Hirahara K, et al. Afterslip and viscoelastic relaxation following the 2011 Tohoku-oki earthquake (Mw9.0) inferred from inland GPS and seafloor GPS/Acoustic data [J]. Geophysical Research Letters, 2015, 42(1): 66-73.
[295] Cambiotti G, Douch K, Cesare S, et al. On Earthquake Detectability by the Next-Generation Gravity Mission [J]. Surveys in Geophysics, 2020, 41(5): 1049-1074.
[296] Sun W K, Okubo S. Truncated co-seismic geoid and gravity changes in the domain of spherical harmonic degree [J]. Earth Planets and Space, 2004, 56(9): 881-892.
[297] De Linage C, Rivera L, Hinderer J, et al. Separation of coseismic and postseismic gravity changes for the 2004 Sumatra-Andaman earthquake from 4.6 yr of GRACE observations and modelling of the coseismic change by normal-modes summation [J]. Geophysical Journal International, 2009, 176(3): 695-714.
[298] Matsuo K, Heki K. Coseismic gravity changes of the 2011 Tohoku-Oki earthquake from satellite gravimetry [J]. Geophysical Research Letters, 2011, 38.
[299] Han S C, Sauber J, Luthcke S. Regional gravity decrease after the 2010 Maule (Chile) earthquake indicates large-scale mass redistribution [J]. Geophysical Research Letters, 2010, 37.
[300] Heki K, Matsuo K. Coseismic gravity changes of the 2010 earthquake in central Chile from satellite gravimetry [J]. Geophysical Research Letters, 2010, 37.
[301] Wang L, Shum C K, Simons F J, et al. Coseismic slip of the 2010 Mw 8.8 Great Maule, Chile, earthquake quantified by the inversion of GRACE observations [J]. Earth and Planetary Science Letters, 2012, 335: 167-179.
[302] Pail R, Chen Q, Engels J, et al. Additional constellation and scientific analysis of the next generation gravity mission concept (ADDCON) [R]: Technical report, Technical University of Munich, 2018.
[303] Rock B S, Blandino J J, Demetriou M A. Propulsion requirements for drag-free operation of spacecraft in low Earth orbit [J]. Journal of Spacecraft and Rockets, 2006, 43(3): 594-606.
[304] Marchetti P, Blandino J J, Demetriou M A. Electric Propulsion and Controller Design for Drag-Free Spacecraft Operation [J]. Journal of Spacecraft and Rockets, 2008, 45(6): 1303-1315.
[305] Han S C, Ditmar P. Localized spectral analysis of global satellite gravity fields for recovering time-variable mass redistributions [J]. Journal of Geodesy, 2008, 82(7): 423-430.
[306] Purkhauser A F, Koch J A, Pail R. Applicability of NGGM near-real time simulations in flood detection [J]. Journal of Geodetic Science, 2019, 9(1): 111-126.
[307] Steketee J. On Volterra's dislocations in a semi-infinite elastic medium [J]. Canadian Journal of Physics, 1958, 36(2): 192-205.
[308] Sun W K, Okubo S, Fu G Y, et al. General formulations of global co-seismic deformations caused by an arbitrary dislocation in a spherically symmetric earth model-applicable to deformed earth surface and space-fixed point [J]. Geophysical Journal International, 2009, 177(3): 817-833.
[309] Okada Y. INTERNAL DEFORMATION DUE TO SHEAR AND TENSILE FAULTS IN A HALF-SPACE [J]. Bulletin of the Seismological Society of America, 1992, 82(2): 1018-1040.
[310] Okada Y. Surface deformation due to shear and tensile faults in a half-space [J]. Bulletin of the seismological society of America, 1985, 75(4): 1135-1154.
[311] Sun W, Okubo S. Surface potential and gravity changes due to internal dislocations in a spherical earth—I. Theory for a point dislocation [J]. Geophysical Journal International, 1993, 114(3): 569-592.
[312] Imanishi Y, Sato T, Higashi T, et al. A network of superconducting gravimeters detects submicrogal coseismic gravity changes [J]. Science, 2004, 306(5695): 476-478.
[313] Fu G Y, Sun W K. Effects of spatial distribution of fault slip on calculating co-seismic displacement: Case studies of the Chi-Chi earthquake (Mw7.6) and the Kunlun earthquake (Mw7.8) [J]. Geophysical Research Letters, 2004, 31(21).
[314] Xu C Y, Sun W K, Chao B F. Formulation of coseismic changes in Earth rotation and low-degree gravity field based on the spherical Earth dislocation theory [J]. Journal of Geophysical Research-Solid Earth, 2014, 119(12): 9031-9041.
[315] Eshelby J D. A Discussion on the measurement and interpretation of changes of strain in the Earth-Dislocation theory for geophysical applications [J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1973, 274(1239): 331-338.
[316] Savage J C. A DISLOCATION MODEL OF STRAIN ACCUMULATION AND RELEASE AT A SUBDUCTION ZONE [J]. Journal of Geophysical Research, 1983, 88(NB6): 4984-4996.
[317] Zhou X, Sun W K, Zhao B, et al. Geodetic observations detecting coseismic displacements and gravity changes caused by the Mw=9.0 Tohoku-Oki earthquake [J]. Journal of Geophysical Research-Solid Earth, 2012, 117.
[318] 付广裕, 孙文科. 球体位错理论计算程序的总体设计与具体实现 [J]. 地震, 2012, 32: 73-87.
[319] Chao B, Liau J. Gravity changes due to large earthquakes detected in GRACE satellite data via empirical orthogonal function analysis [J]. Journal of Geophysical Research: Solid Earth, 2019, 124(3): 3024-3035.
修改评论