[1] ROȘCA O M, DIPPONG T, MARIAN M, et al. Impact of anthropogenic activities on water quality parameters of glacial lakes from Rodnei mountains, Romania[J]. Environmental Research, 2020, 182: 109136.
[2] NGENE B U, NWAFOR C O, BAMIGBOYE G O, et al. Assessment of water resources development and exploitation in Nigeria: a review of integrated water resources management approach[J]. Heliyon, 2021, 7(1): e05955.
[3] 王焰新, 杜尧, 邓娅敏, 等. 湖底地下水排泄与湖泊水质演化[J]. 地质科技通报, 2022, 41(1): 1-10.
[4] IMMERZEEL W W, VAN BEEK L P, BIERKENS M F. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5984): 1382-1385.
[5] LI X, LIU W, ZHANG L, et al. Distribution of recent ostracod species in the Lake Qinghai area in northwestern China and its ecological significance[J]. Ecological Indicators, 2010, 10(4): 880-890.
[6] 宋高, 王海雷, 郑绵平, 等.西藏地区现代沉积物中介形类环境指示意义初探[J].湖泊科学,2015,27(5):962-974.
[7] RODRIGUEZ-LAZARO J, RUIZ-MUÑOZ F: A general introduction to ostracods: morphology, distribution, fossil record and applications, Developments in Quaternary Sciences: Elsevier, 2012: 1-14.
[8] MEISCH C. Freshwater Ostracoda of western and central Europe[M]. Heidelberg: 2000.
[9] WANG C, KUANG X, WANG H, et al. Ostracods as a proxy for paleoclimatic change: an essential role of bioculture experiment taking Limnocythere inopinata (Crustacea: Ostracoda) as an example[J]. Ecological Indicators, 2021, 121: 107000.
[10] WANG C, WANG H, KUANG X, et al. Life stages and morphological variations of Limnocythere inopinata (Crustacea, Ostracoda) from Lake Jiang-Co (northern Tibet): a bioculture experiment[J]. ZooKeys, 2021, 1011: 25-40.
[11] RUIZ F, ABAD M, BODERGAT A-M, et al. Marine and brackish-water ostracods as sentinels of anthropogenic impacts[J]. Earth-Science Reviews, 2005, 72(1-2): 89-111.
[12] MILLWARD R N, CARMAN K R, FLEEGER J W, et al. Mixtures of metals and hydrocarbons elicit complex responses by a benthic invertebrate community[J]. Journal of Experimental Marine Biology Ecology, 2004, 310(1): 115-130.
[13] KHANGAROT B, DAS S. Acute toxicity of metals and reference toxicants to a freshwater ostracod, Cypris subglobosa Sowerby, 1840 and correlation to EC50 values of other test models[J]. Journal of Hazardous Materials, 2009, 172(2-3): 641-649.
[14] CHIVAS A, DE DECKKER P, SHELLEY J: Magnesium, strontium, and barium partitioning in nonmarine ostracode shells and their use in paleoenvironmental reconstructions–a preliminary study, MADDOCKS R F, editor, Applications of ostracoda, Houston: University of Houston, 1983: 238-249.
[15] LENG M J, MARSHALL J D. Palaeoclimate interpretation of stable isotope data from lake sediment archives[J]. Quaternary Science Reviews, 2004, 23(7-8): 811-831.
[16] YANG Q, PETER JOCHUM K, STOLL B, et al. Trace element variability in single ostracod valves as a proxy for hydrochemical change in Nam Co, central Tibet, during the Holocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399: 225-235.
[17] SCHWALB A, BURNS S J, KELTS K. Holocene environments from stable isotope stratigraphy of ostracods and authigenic carbonate in Chilean Altiplano Lakes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 148(1-3): 153-168.
[18] VIEHBERG F A. Freshwater ostracod assemblages and their relationship to environmental variables in waters from northeast Germany[J]. Hydrobiologia, 2006, 571(1): 213-224.
[19] ALLEN P E, DODSON S I. Land use and ostracod community structure[J]. Hydrobiologia, 2011, 668(1): 203-219.
[20] LI X, ZHAI D, WANG Q, et al. Depth distribution of ostracods in a large fresh-water lake on the Qinghai–Tibet Plateau and its ecological and palaeolimnological significance[J]. Ecological Indicators, 2021, 129: 108019.
[21] AKITA L G, FRENZEL P, WANG J, et al. Spatial distribution and ecology of the Recent Ostracoda from Tangra Yumco and adjacent waters on the southern Tibetan Plateau: a key to palaeoenvironmental reconstruction[J]. Limnologica, 2016, 59: 21-43.
[22] MISCHKE S, BÖßNECK U, DIEKMANN B, et al. Quantitative relationship between water-depth and sub-fossil ostracod assemblages in Lake Donggi Cona, Qinghai Province, China[J]. Journal of Paleolimnology, 2010, 43(3): 589-608.
[23] 宋高, 王海雷, 郑绵平, 等.青海柴达木盆地东部不同盐度湖泊四季现生介形虫的分布特征及其环境指示意义[J].微体古生物学报,2017,34(2):211-217.
[24] FÜRSTENBERG S, FRENZEL P, PENG P, et al. Phenotypical variation in Leucocytherella sinensis Huang, 1982 (Ostracoda): a new proxy for palaeosalinity in Tibetan lakes[J]. Hydrobiologia, 2015, 751: 55-72.
[25] ZHAI D, XIAO J, FAN J, et al. Spatial heterogeneity of the population age structure of the ostracode Limnocythere inopinata in Hulun Lake, Inner Mongolia and its implications[J]. Hydrobiologia, 2013, 716(1): 29-46.
[26] WANG C, WANG H, SONG G, et al. Grain size of surface sediments in Selin Co (central Tibet) linked to water depth and offshore distance[J]. Journal of Paleolimnology, 2019, 61(2): 217-229.
[27] PENG P, ZHU L, FRENZEL P, et al. Water depth related ostracod distribution in Lake Pumoyum Co, southern Tibetan Plateau[J]. Quaternary International, 2013, 313-314: 47-55.
[28] MISCHKE S, GINAT H, AL-SAQARAT B, et al. Ostracods from water bodies in hyperarid Israel and Jordan as habitat and water chemistry indicators[J]. Ecological Indicators, 2012, 14(1): 87-99.
[29] SAMIR A M. The response of benthic foraminifera and ostracods to various pollution sources: A study from two lagoons in Egypt[J]. Journal of Foraminiferal Research, 2000, 30(2): 83-98.
[30] SEVILLA J B, NAKAJIMA F, KASUGA I. Comparison of aquatic and dietary exposure of heavy metals Cd, Cu, and Zn to benthic ostracod Heterocypris incongruens[J]. Environmental Toxicology and Chemistry, 2014, 33(7): 1624-30.
[31] MISCHKE S, HERZSCHUH U, MASSMANN G, et al. An ostracod-conductivity transfer function for Tibetan lakes[J]. Journal of Paleolimnology, 2007, 38: 509-524.
[32] TAN C W J, GOURAMANIS C, PHAM T D, et al. Ostracods as pollution indicators in Lap An Lagoon, central Vietnam[J]. Environmental Pollution, 2021, 278: 116762.
[33] DEVRIENDT L S, MCGREGOR H V, CHIVAS A R. Ostracod calcite records the 18O/16O ratio of the bicarbonate and carbonate ions in water[J]. Geochimica et Cosmochimica Acta, 2017, 214: 30-50.
[34] FRYER G. Acidity and species diversity in freshwater crustacean faunas[J]. Freshwater Biology, 1980, 10(1): 41-45.
[35] BERGIN F, KUCUKSEZGIN F, ULUTURHAN E, et al. The response of benthic foraminifera and ostracoda to heavy metal pollution in Gulf of Izmir (Eastern Aegean Sea)[J]. Estuarine, Coastal and Shelf Science, 2006, 66(3-4): 368-386.
[36] SIVALINGAM P, AL SALAH D M M, POTÉ J. Sediment heavy metal contents, ostracod toxicity and risk assessment in tropical freshwater lakes, Tamil Nadu, India[J]. Soil and Sediment Contamination: An International Journal, 2020, 30(2): 231-252.
[37] BOOMER I, ATTWOOD F. Ostracods as freshwater pollution indicators: a case study from the Ouseburn, a polluted urban catchment (Tyneside, NE England)[J]. Journal of Micropalaeontology, 2007, 26: 117-125.
[38] EL-KAHAWY R, EL-SHAFEIY M, HELAL S, et al. Benthic ostracods (crustacean) as a nearshore pollution bio-monitor: examples from the Red Sea Coast of Egypt[J]. Environmental Science and Pollution Research, 2021, 28(24): 31975-31993.
[39] GILDEEVA O, AKITA L G, BIEHLER J, et al. Recent brackish water Foraminifera and Ostracoda from two estuaries in Ghana, and their potential as (palaeo)environmental indicators[J]. Estuarine, Coastal and Shelf Science, 2021, 256: 107270.
[40] HONG Y, YASUHARA M, IWATANI H, et al. Benthic ostracod diversity and biogeography in an urbanized seascape[J]. Marine Micropaleontology, 2022, 174: 102067.
[41] CHEN L, HUO Z, SU C, et al. Sensitivity of ostracods to U, Cd and Cu: the case of Cypridopsis vidua[J]. Toxics, 2022, 10(7): 349.
[42] AGUILAR-ALBEROLA J A, MESQUITA-JOANES F. Acute toxicity tests with cadmium, lead, sodium dodecyl sulfate, and bacillus thuringiensis on a temporary pond ostracod[J]. International Review of Hydrobiology, 2012, 97(4): 375-388.
[43] EDET A, OFFIONG O. Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria)[J]. GeoJournal, 2002, 57: 295-304.
[44] JIANG D, WANG Y, ZHOU S, et al. Multivariate analyses and human health assessments of heavy metals for surface water quality in the Xiangjiang River Basin, China[J]. Environmental Toxicology Chemistry, 2019, 38(8): 1645-1657.
[45] SHENG D, MENG X, WEN X, et al. Contamination characteristics, source identification, and source-specific health risks of heavy metal(loid)s in groundwater of an arid oasis region in Northwest China[J]. Science of the Total Environment, 2022, 841: 156733.
[46] LU R-S, LO S-L. Diagnosing reservoir water quality using self-organizing maps and fuzzy theory[J]. Water Research, 2002, 36(9): 2265-2274.
[47] WU J, ZHOU H, HE S, et al. Comprehensive understanding of groundwater quality for domestic and agricultural purposes in terms of health risks in a coal mine area of the Ordos basin, north of the Chinese Loess Plateau[J]. Environmental Earth Sciences, 2019, 78: 1-17.
[48] UDDIN M G, NASH S, RAHMAN A, et al. A comprehensive method for improvement of water quality index (WQI) models for coastal water quality assessment[J]. Water Research, 2022, 219: 118532.
[49] DAS KANGABAM R, BHOOMINATHAN S D, KANAGARAJ S, et al. Development of a water quality index (WQI) for the Loktak Lake in India[J]. Applied Water Science, 2017, 7: 2907-2918.
[50] QU X, CHEN Y, LIU H, et al. A holistic assessment of water quality condition and spatiotemporal patterns in impounded lakes along the eastern route of China's South-to-North water diversion project[J]. Water Research, 2020, 185: 116275.
[51] WANG X, LIU X, WANG L, et al. A holistic assessment of spatiotemporal variation, driving factors, and risks influencing river water quality in the northeastern Qinghai-Tibet Plateau[J]. Science of the Total Environment, 2022, 851: 157942.
[52] ZHANG C, NONG X, SHAO D, et al. An integrated risk assessment framework using information theory-based coupling methods for basin-scale water quality management: A case study in the Danjiangkou Reservoir Basin, China[J]. Science of the Total Environment, 2023, 884: 163731.
[53] TIAN Y, WEN Z, CHENG M, et al. Evaluating the water quality characteristics and tracing the pollutant sources in the Yellow River Basin, China[J]. Science of the Total Environment, 2022, 846: 157389.
[54] LUO M, ZHANG Y, LI H, et al. Pollution assessment and sources of dissolved heavy metals in coastal water of a highly urbanized coastal area: The role of groundwater discharge[J]. Science of the Total Environment, 2022, 807(Pt 3): 151070.
[55] PADMANABHA B, BELAGALI S. Ostracods as indicators of pollution in the lakes of Mysore[J]. Journal of Environmental Biology, 2008, 29(3): 415-418.
[56] PIERI V, VANDEKERKHOVE J, GOI D. Ostracoda (Crustacea) as indicators for surface water quality: a case study from the Ledra River basin (NE Italy)[J]. Hydrobiologia, 2012, 688: 25-35.
[57] RUIZ F, ABAD M, BODERGAT A, et al. Freshwater ostracods as environmental tracers[J]. International Journal of Environmental Science Technology, 2013, 10: 1115-1128.
[58] RODRIGO M A, SEGURA M. Plankton participation in the performance of three constructed wetlands within a Mediterranean natural park[J]. Science of the Total Environment, 2020, 721: 137766.
[59] KÜLKÖYLÜOĞLU O, YAĞCI A, ERBATUR İ, et al. Effects of water quality changes on the Ostracoda (Crustacea) species diversity and seasonal occurrence patterns in Lake Eğirdir (Isparta, Turkey)[J]. Biologia, 2022, 78(3): 755-769.
[60] 刘敏杰, 李华军.西藏雅鲁藏布江中游河谷黑颈鹤国家级自然保护区珍稀野生动植物资源与保护[J].中南林业调查规划,2020,39(2):57-61.
[61] 张雪芹, 孙瑞, 朱立平.藏南羊卓雍错流域主要湖泊水质状况及其评价[J].冰川冻土,2012,34(4):950-958.
[62] CHE F, CHEN J, ZHANG B, et al. Distribution, risk and bioavailability of metals in sediments of Lake Yamdrok Basin on the Tibetan Plateau, China[J]. Journal of Environmental Sciences, 2020, 97: 169-179.
[63] GURRIERI J, FURNISS G. Estimation of groundwater exchange in alpine lakes using non-steady mass-balance methods[J]. Journal of Hydrology, 2004, 297(1-4): 187-208.
[64] STETS E G, WINTER T C, ROSENBERRY D O, et al. Quantification of surface water and groundwater flows to open- and closed-basin lakes in a headwaters watershed using a descriptive oxygen stable isotope model[J]. Water Resources Research, 2010, 46(3): W03515.
[65] KIDMOSE J, NILSSON B, ENGESGAARD P, et al. Descarga localizada de água subterrânea com fósforo para um lago drenante eutrófico (Lago Væng, Dinamarca): implicações para o estado ecológico do lago e sua reabilitação[J]. Hydrogeology Journal, 2013, 21: 1787-1802.
[66] ROSENBERRY D O, LEWANDOWSKI J, MEINIKMANN K, et al. Groundwater-the disregarded component in lake water and nutrient budgets. Part 1: effects of groundwater on hydrology[J]. Hydrological Processes, 2015, 29(13): 2895-2921.
[67] LEWANDOWSKI J, MEINIKMANN K, NÜTZMANN G, et al. Groundwater-the disregarded component in lake water and nutrient budgets. Part 2: effects of groundwater on nutrients[J]. Hydrological Processes, 2015, 29(13): 2922-2955.
[68] ALI S, THAKUR S K, SARKAR A, et al. Worldwide contamination of water by fluoride[J]. Environmental Chemistry Letters, 2016, 14: 291-315.
[69] KARANOVIC I. Candoninae (Ostracoda) from the Pilbara region in Western Australia[M]. Brill, 2007.
[70] REEVES J M, DE DECKKER P, HALSE S A. Groundwater Ostracods from the arid Pilbara region of northwestern Australia: distribution and water chemistry[J]. Hydrobiologia, 2007, 585(1): 99-118.
[71] ROSSETTI G, PIERI V, MARTENS K. Recent ostracods (Crustacea, Ostracoda) found in lowland springs of the provinces of Piacenza and Parma (Northern Italy)[J]. Hydrobiologia, 2005, 542(1): 287-296.
[72] PINT A, FRENZEL P, HORNE D J, et al. Ostracoda from inland waterbodies with saline influence in Central Germany: Implications for palaeoenvironmental reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 419: 37-46.
[73] IEPURE S, WYSOCKA A, SARBU S M, et al. A new extremophile ostracod crustacean from the Movile Cave sulfidic chemoautotrophic ecosystem in Romania[J]. Scientific Reports, 2023, 13(1): 6112.
[74] OBERPRIELER S, REES G, NIELSEN D, et al. Connectivity, not short-range endemism, characterises the groundwater biota of a northern Australian karst system[J]. Science of the Total Environment, 2021, 796: 148955.
[75] FLAKO-ZARITSKY S, ALMOGI-LABIN A, SCHILMAN B, et al. The environmental setting and microfauna of the oligohaline Timsah pond, Israel: The last remnant of the Kabara swamps[J]. Marine Micropaleontology, 2011, 80(3-4): 74-88.
[76] IEPURE S, MEFFE R, CARREŇO F, et al. Geochemical, geological and hydrological influence on ostracod assemblages distribution in the hyporheic zone of two Mediterranean rivers in central Spain[J]. International Review of Hydrobiology, 2014, 99(6): 435-449.
[77] TAYLOR B R, DYKSTRA A N. Effects of hot ground water on a small swamp-stream in Nova Scotia, Canada[J]. Hydrobiologia, 2005, 545(1): 129-144.
[78] NIE Y, PRITCHARD H D, LIU Q, et al. Glacial change and hydrological implications in the Himalaya and Karakoram[J]. Nature Reviews Earth & Environment, 2021, 2(2): 91-106.
[79] ZOU Y, KUANG X, FENG Y, et al. Solid Water Melt Dominates the Increase of Total Groundwater Storage in the Tibetan Plateau[J]. Geophysical Research Letters, 2022, 49(18): e2022GL100092.
[80] CHEN J, KUANG X, LANCIA M, et al. Analysis of the groundwater flow system in a high-altitude headwater region under rapid climate warming: Lhasa River Basin, Tibetan Plateau[J]. Journal of Hydrology: Regional Studies, 2021, 36: 100871.
[81] ZHOU S, KANG S, CHEN F, et al. Water balance observations reveal significant subsurface water seepage from Lake Nam Co, south-central Tibetan Plateau[J]. Journal of Hydrology, 2013, 491: 89-99.
[82] TAN H, CHEN X, SHI D, et al. Base flow in the Yarlungzangbo River, Tibet, maintained by the isotopically-depleted precipitation and groundwater discharge[J]. Science of the Total Environment, 2021, 759: 143510.
[83] SWEETKIND D, MASBRUCH M, HEILWEIL V, et al.: Conceptual model of the Great Basin carbonate and alluvial aquifer system, chap C, HEILWEIL V, BROOKS D, editor, Groundwater flow: U.S. Geological Survey Scientific Investigations Report, 2011: 51-72.
[84] 张进江, 丁林. 青藏高原东西向伸展及其地质意义[J]. 地质科学, 2003, 38(2): 179-189.
[85] 侯增谦, 李振清. 印度大陆俯冲前缘的可能位置: 来自藏南和藏东活动热泉气体 He 同位素约束[J]. 地质学报, 2004, 78(4): 482-493.
[86] ZHOU H, KUANG X, HAO Y, et al. Magmatic fluid input controlling the geochemical and isotopic characteristics of geothermal waters along the Yadong-Gulu rift, southern Tibetan Plateau[J]. Journal of Hydrology, 2023, 619: 129196.
[87] BOOMER I, HORNE D J, SLIPPER I J: The use of ostracods in palaeoenvironmental studies, or what can you do with an ostracod shell?, PARK L E, SMITH A J, editor, Bridging the gap: Trends in the Ostracode Biological and Geological Sciences: The Paleontological Society Papers, 2003: 153-180.
[88] CRONIN T M, BOOMER I, DWYER G, et al.: Ostracoda and paleoceanography, HOLMES J A, CHIVAS A R, editor, The Ostracoda: Applications in Quaternary Research, Washington DC: American Geophysical Union Geophysical Monograph Series, 2002: 99-119.
[89] SHTIENBERG G, CANTU K, MISCHKE S, et al. Holocene sea-level rise and coastal aquifer interactions: Triggering mechanisms for environmental change and impacts on human settlement patterns at Dor, Israel[J]. Quaternary Science Reviews, 2022, 294: 107740.
[90] FRENZEL P, BOOMER I. The use of ostracods from marginal marine, brackish waters as bioindicators of modern and Quaternary environmental change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 225(1-4): 68-92.
[91] IWATANI H, YASUHARA M, ROSENTHAL Y, et al. Intermediate-water dynamics and ocean ventilation effects on the Indonesian Throughflow during the past 15,000 years: Ostracod evidence[J]. Geology, 2018, 46(6): 567-570.
[92] BÖRNER N, JOCHUM K P, STUHR M, et al. Late Quaternary changes in moisture availability and weathering intensity on the central Tibetan Plateau indicated by chemical signatures of ostracod shells[J]. Frontiers in Earth Science, 2022, 10: 826143.
[93] DETTMAN D L, PALACIOS-FEST M, COHEN A S. Comment on G. Wansard & F. Mezquita, The response of ostracode shell chemistry to seasonal change in a Mediterranean freshwater spring environment[J]. Journal of Paleolimnology 2002, 27: 487-491.
[94] 夏娟娟.湖相介形虫壳的稳定同位素和微量元素在古气候研究中的应用[J].第四纪研究,1996(4):345-352.
[95] HOLMES J A, ZHANG J, CHEN F, et al. Paleoclimatic implications of an 850-year oxygen-isotope record from the northern Tibetan Plateau[J]. Geophysical Research Letters, 2007, 34(23): L23403.
[96] VON GRAFENSTEIN U, ERLERNKEUSER H, TRIMBORN P. Oxygen and carbon isotopes in modern fresh-water ostracod valves: assessing vital offsets and autecological effects of interest for palaeoclimate studies[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 148(1-3): 133-152.
[97] LI X, ZHOU X, LIU W, et al. Carbon and oxygen isotopic records from Lake Tuosu over the last 120 years in the Qaidam Basin, Northwestern China: The implications for paleoenvironmental reconstruction[J]. Global Planetary Change, 2016, 141: 54-62.
[98] ANDREWS J E, RIDING R, DENNIS P F. The stable isotope record of environmental and climatic signals in modern terrestrial microbial carbonates from Europe[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 129(1-2): 171-189.
[99] GRIFFITH H, HOLMES J. Non-marine ostracods and Quaternary palaeoenvironments. Technical Guide 8[M]. London: Quaternary Research Association, 2000: 188.
[100] MISCHKE S, ZHANG C, LIU C, et al. The Holocene salinity history of Lake Lop Nur (Tarim Basin, NW China) inferred from ostracods, foraminifera, ooids and stable isotope data[J]. Global Planetary Change, 2019, 175: 1-12.
[101] MCCORMACK J, VIEHBERG F, AKDEMIR D, et al. Ostracods as ecological and isotopic indicators of lake water salinity changes: the Lake Van example[J]. Biogeosciences, 2019, 16(10): 2095-2114.
[102] MISCHKE S, AICHNER B, DIEKMANN B, et al. Ostracods and stable isotopes of a late glacial and Holocene lake record from the NE Tibetan Plateau[J]. Chemical Geology, 2010, 276(1-2): 95-103.
[103] LIU X, LAI Z, MADSEN D, et al. Last deglacial and Holocene lake level variations of Qinghai Lake, north-eastern Qinghai-Tibetan Plateau[J]. Journal of Quaternary Science, 2015, 30: 245-257.
[104] LONG H, LAI Z, FRENZEL P, et al. Holocene moist period recorded by the chronostratigraphy of a lake sedimentary sequence from Lake Tangra Yumco on the south Tibetan Plateau[J]. Quaternary Geochronology, 2012, 10: 136-142.
[105] ALIVERNINI M, AKITA L, AHLBORN M, et al. Ostracod‐based reconstruction of Late Quaternary lake level changes within the Tangra Yumco lake system (southern Tibetan Plateau)[J]. Journal of Quaternary Science, 2018, 33(6): 713-720.
[106] 彭萍, 朱立平, 鞠建廷, 等. 西藏普莫雍错介形类反映的中晚全新世以来湖面波动与环境变化[J]. 气候变化研究进展, 2012, 8(5): 334-341.
[107] GUO C, MA Y, MENG H, et al. Changes in vegetation and environment in Yamzhog Yumco Lake on the southern Tibetan Plateau over past 2000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 501: 30-44.
[108] FENG J-L, CHEN F, HU H-P. Isotopic study of the source and cycle of sulfur in the Yamdrok Tso basin, Southern Tibet, China[J]. Applied Geochemistry, 2017, 85: 61-72.
[109] CHEN B, XU B, ZHU Z, et al. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017[J]. Science Bulletin, 2019, 64: 370-373.
[110] 王乃文, 刘桂芳, 陈国铭.西藏南部羊卓雍错区域地层研究[J].1983
[111] CHEN F, FENG J-L, HU H-P. Relationship between the shell geochemistry of the modern aquatic gastropod Radix and water chemistry of lakes of the Tibetan Plateau[J]. Hydrobiologia, 2016, 771: 239-254.
[112] HAO Y, KUANG X, FENG Y, et al. Discovery and genesis of helium-rich geothermal fluids along the India-Asia continental convergent margin[J]. Geochimica et Cosmochimica Acta, 2023, 360: 175-191.
[113] ZHANG G, XIE H, KANG S, et al. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009)[J]. Remote Sensing of Environment, 2011, 115(7): 1733-1742.
[114] LI X, LONG D, HUANG Q, et al. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions[J]. Earth System Science Data, 2019, 11(4): 1603-1627.
[115] LI L, LI J, YAO X, et al. Changes of the three holy lakes in recent years and quantitative analysis of the influencing factors[J]. Quaternary International, 2014, 349: 339-345.
[116] 郭超, 蒙红卫, 马玉贞, 等.藏南羊卓雍错沉积物元素地球化学记录的过去 2000 年环境变化[J].地理学报,2019,74(7):1345-1362.
[117] KIDWELL S M. Time-averaged molluscan death assemblages: palimpsests of richness, snapshots of abundance[J]. Geology, 2002, 30(9): 803-806.
[118] PARK L E, COHEN A S, MARTENS K, et al. The impact of taphonomic processes on interpreting paleoecologic changes in large lake ecosystems: ostracodes in Lakes Tanganyika and Malawi[J]. Journal of Paleolimnology, 2003, 30(2): 127-138.
[119] YIN Y, MARTENS K. On a new species of Fabaeformiscandona Krstic, 1972 (Crustacea, Ostracoda) from China, with a preliminary checklist of Recent Chinese non-marine ostracods[J]. Hydrobiologia, 1997, 357: 117-128.
[120] FUHRMANN R. Atlas quartärer und rezenter Ostrakoden Mitteldeutschlands[M]. Naturkundliches Museum Mauritianum Altenburg, 2012.
[121] MISCHKE S: Quaternary ostracods from the Tibetan Plateau and their significance for environmental and climate-change studies, HORNE D J, HOLMES H, VIEHBERG F, RODRIGUEZ-LAZARO J, editor, Developments in Quaternary Sciences: Elsevier, 2012: 263-279.
[122] MAZZINI I, GLIOZZI E, ROSSETTI G, et al. The Ilyocypris puzzle: A multidisciplinary approach to the study of phenotypic variability[J]. International Review of Hydrobiology, 2014, 99(6): 395-408.
[123] PENG P, ZHAI D, SMITH R J, et al. On some modern Ostracoda (Crustacea) from the Tibetan Plateau in SW China, with descriptions of three new species[J]. Zootaxa, 2021, 4942(4): 501-542.
[124] MISCHKE S, LAI Z, ZHANG C. Re-assessment of the paleoclimate implications of the Shell Bar in the Qaidam Basin, China[J]. Journal of paleolimnology, 2014, 51: 179-195.
[125] JUGGINS S. C2 Version 1.5: software for ecological and palaeoecological data analysis and visualisation[M]. Newcastle upon Tyne, UK: Newcastle University, 2007.
[126] BELLINI T. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS[M]. United Kingdom: Academic Press, 2019.
[127] SATHICQ M B, NICOLOSI GELIS M M, COCHERO J. Calculating autoecological data (optima and tolerance range) for multiple species with the ‘optimos. prime’R package[J]. Austral Ecology, 2020, 45(6): 845-850.
[128] 中华人民共和国国家环境保护总局. 地表水环境质量标准, 2002.
[129] Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva: World Health Organization, 2007: 468-475.
[130] USEPA. Risk Assessment Guidance for Superfund: pt. A. Human health evaluation manual[M]. Washington DC: Office of Emergency and Remedial Response, US Environmental Protection Agency, 1989.
[131] ZHU L, YANG M, CHEN X, et al. Health risk assessment and risk control: drinking groundwater in Yinchuan Plain, China[J]. Exposure Health, 2019, 11(1): 59-72.
[132] USEPA. Risk assessment guidance for superfund volume I human health evaluation manual (part E, supplemental guidance for dermal risk assessment). Risk Assessment Guidance for Superfund[M]. Washington DC: Office of Superfund Remediation and Technology Innovation, 2004.
[133] USEPA. Supplemental guidance for assessing cancer susceptibility from early-life exposure to carcinogens[M]. Washington DC: Risk Assessment Forum, 2003.
[134] Guidelines for drinking water quality: third edition incorporating the first addendum. Geneva: World Health Organization, 2006.
[135] USEPA. Integrated Risk Information System (IRIS). Regional Screening Levels (RSLs)—Generic Tables (November 2019), 2019.
[136] BORCARD D, GILLET F, LEGENDRE P. Numerical ecology with R[M]. New York: Springer, 2011.
[137] XIE H, LI J, ZHANG C, et al. Assessment of heavy metal contents in surface soil in the Lhasa–Shigatse–Nam Co area of the Tibetan Plateau, China[J]. Bulletin of Environmental Contamination Toxicology, 2014, 93: 192-198.
[138] WU J, DUAN D, LU J, et al. Inorganic pollution around the Qinghai-Tibet Plateau: An overview of the current observations[J]. Science of the Total Environment, 2016, 550: 628-636.
[139] WANG C, ZHOU H, KUANG X, et al. Water quality and health risk assessment of the water bodies in the Yamdrok-tso basin, southern Tibetan Plateau[J]. Journal of Environmental Management, 2021, 300: 113740.
[140] 保宏运, 郭建阳, 杨海全, 等.羊卓雍错水体pH偏高的成因[J].环境科学研究,2021,34(3):567-575.
[141] BIRKS H, BRAAK C T, LINE J, et al. Diatoms and pH reconstruction[J]. Philosophical transactions of the royal society of London. B, Biological Sciences, 1990, 327(1240): 263-278.
[142] POWER M. The predictive validation of ecological and environmental models[J]. Ecological Modelling, 1993, 68(1-2): 33-50.
[143] MISCHKE S, HERZSCHUH U, KÜRSCHNER H, et al. Sub-recent Ostracoda from Qilian Mountains (NW China) and their ecological significance[J]. Limnologica, 2003, 33(4): 280-292.
[144] GUO Y, ZHU L, FRENZEL P, et al. Holocene lake level fluctuations and environmental changes at Taro Co, southwestern Tibet, based on ostracod-inferred water depth reconstruction[J]. The Holocene, 2016, 26(1): 29-43.
[145] WROZYNA C, FRENZEL P, XIE M, et al. A taxonomical and ecological overview of Recent and Holocene ostracodes of the Nam Co region, southern Tibet[J]. Quaternary Sciences, 2009, 29(4): 665-677.
[146] ZHU L, PENG P, XIE M, et al. Ostracod-based environmental reconstruction over the last 8,400 years of Nam Co Lake on the Tibetan plateau[J]. Hydrobiologia, 2010, 648: 157-174.
[147] 黄宝仁, 杨留法, 范云琦.西藏现代湖泊表层沉积物中的介形类[J].微体古生物学报,1985,2(4):369-376.
[148] JÄRVEKÜLG A. Ilyodromus estonicus n. sp., eine neue süsswasser-ostracode aus Estland[J]. Eesti Nsv Teaduste Akadeemia Toimetised Bioloogiline Seeria, 1960, 9: 27-34.
[149] VAN DER MEEREN T, KHAND Y, MARTENS K. On recent species of Tonnacypris Diebel & Pietrzeniuk, 1975 (Crustacea, Ostracoda), with new species descriptions from Mongolia[J]. Zootaxa, 2009, 2015(1): 1-41.
[150] FRENZEL P, KEYSER D, VIEHBERG F A. An illustrated key and (palaeo) ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea[J]. Boreas, 2010, 39(3): 567-575.
[151] 除多, 普穷, 旺堆, 等. 1974-2009 年西藏羊卓雍错湖泊水位变化分析[J]. 山地学报, 2012, 30(2): 239-247
[152] FANG Y, CHENG W, ZHANG Y, et al. Changes in inland lakes on the Tibetan Plateau over the past 40 years[J]. Journal of Geographical Sciences, 2016, 26(4): 415-438.
[153] SANG Y, CHEN D, GONG T. What Caused the Decline of Water Level of Yamzho Yumco During 1975–2012 in the Southern Tibetan Plateau?[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(6): e2019JD031121.
[154] SINGH A, SINGH D, YADAV H. Impact and assessment of heavy metal toxicity on water quality, edible fishes and sediments in lakes: A review[J]. BioScience Trends, 2017, 10(8): 1551-1560.
[155] MANAKA T, USHIE H, ARAOKA D, et al. Rapid alkalization in Lake Inawashiro, Fukushima, Japan: implications for future changes in the carbonate system of terrestrial waters[J]. Aquatic Geochemistry, 2013, 19: 281-302.
[156] FU Q, ZHENG B, ZHAO X, et al. Ammonia pollution characteristics of centralized drinking water sources in China[J]. Journal of Environmental Sciences, 2012, 24(10): 1739-1743.
[157] 王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社, 1998.
[158] MUKHERJEE I, SINGH U K. Exploring a variance decomposition approach integrated with the Monte Carlo method to evaluate groundwater fluoride exposure on the residents of a typical fluorosis endemic semi-arid tract of India[J]. Environmental Research, 2022, 203: 111697.
[159] 鞠建廷, 朱立平, 汪勇, 等.藏南普莫雍错流域水体离子组成与空间分布及其环境意义[J].湖泊科学,2008,20(5):591-599.
[160] SHENG J, WANG X, GONG P, et al. Heavy metals of the Tibetan top soils: level, source, spatial distribution, temporal variation and risk assessment[J]. Environmental Science Pollution Research, 2012, 19: 3362-3370.
[161] CHE F, JIANG X, YAO C, et al. Arsenic distribution and speciation in multiphase media of a lake basin, Tibet: the influences of environmental factors on arsenic biogeochemical behavior in the cold arid plateau lake[J]. Science of the Total Environment, 2020, 714: 136772.
[162] VAN DER MEEREN T, MISCHKE S, SUNJIDMAA N, et al. Subfossil ostracode assemblages from Mongolia–Quantifying response for paleolimnological applications[J]. Ecological Indicators, 2012, 14(1): 138-151.
[163] MISCHKE S, BÖßNECK U, DIEKMANN B, et al. Quantitative relationship between water-depth and sub-fossil ostracod assemblages in Lake Donggi Cona, Qinghai Province, China[J]. Journal of Paleolimnology, 2010, 43: 589-608.
[164] MUUS B J. The fauna of Danish estuaries and lagoons: distribution and ecology of dominating species in the shallow reaches of the mesohaline zone[M]. Høst, 1967.
[165] 薛禹群, 吴吉春. 地下水动力学[M]. 北京: 地质出版社, 2010.
[166] TÓTH J. A theoretical analysis of groundwater flow in small drainage basins[J]. Journal of Geophysical Research, 1963, 68(16): 4795-4812.
[167] HAITJEMA H M. Analytic Element Modeling of Groundwater Flow[M]. California: Academic Press, 1995.
[168] BOUAZIZ L, WEERTS A, SCHELLEKENS J, et al. Redressing the balance: quantifying net intercatchment groundwater flows[J]. Hydrology and Earth System Sciences, 2018, 22(12): 6415-6434.
[169] FRISBEE M D, TYSOR E H, STEWART‐MADDOX N S, et al. Is there a geomorphic expression of interbasin groundwater flow in watersheds? Interactions between interbasin groundwater flow, springs, streams, and geomorphology[J]. Geophysical Research Letters, 2016, 43(3): 1158-1165.
[170] SCHALLER M F, FAN Y. River basins as groundwater exporters and importers: Implications for water cycle and climate modeling[J]. Journal of Geophysical Research: Atmospheres, 2009, 114: D04103.
[171] KÄSER D, HUNKELER D. Contribution of alluvial groundwater to the outflow of mountainous catchments[J]. Water Resources Research, 2016, 52(2): 680-697.
[172] GENEREUX D P, JORDAN M T, CARBONELL D. A paired-watershed budget study to quantify interbasin groundwater flow in a lowland rain forest, Costa Rica[J]. Water Resources Research, 2005, 41(4): W04011.
[173] FAN Y. Are catchments leaky?[J]. Wiley Interdisciplinary Reviews: Water, 2019, 6(6): e1386.
[174] GENEREUX D P, WOOD S J, PRINGLE C M. Chemical tracing of interbasin groundwater transfer in the lowland rainforest of Costa Rica[J]. Journal of Hydrology, 2002, 258(1-4): 163-178.
[175] ROYDEN L H, BURCHFIEL B C, VAN DER HILST R D. The geological evolution of the Tibetan Plateau[J]. Science, 2008, 321(5892): 1054-1058.
[176] YONG B, WANG C-Y, CHEN J, et al. Missing water from the Qiangtang Basin on the Tibetan Plateau[J]. Geology, 2021, 49(7): 867-872.
[177] 杜梅, 张强英, 任培, 等. 西藏年楚河流域农用地土壤重金属分布与生态风险评价[J]. 环境工程技术学报, 2022, 12(5): 1618-1625.
[178] 党海波, 张亦海, 鲁森, 等.基于地基合成孔径边坡雷达监测技术的卡若拉冰川变形规律研究[J].中国安全生产科学技术,2022,18(S1):122-127.
[179] LEI Y, YANG K, IMMERZEEL W W, et al. Critical Role of Groundwater Inflow in Sustaining Lake Water Balance on the Western Tibetan Plateau[J]. Geophysical Research Letters, 2022, 49(20): e2022GL099268.
[180] LIAO F, WANG G, YANG N, et al. Groundwater discharge tracing for a large Ice-Covered lake in the Tibetan Plateau: Integrated satellite remote sensing data, chemical components and isotopes (D, 18O, and 222Rn)[J]. Journal of Hydrology, 2022, 609: 127741.
[181] WU Z, HA G, HUA W, et al. Abnormal disappearance of Duoqing Co lake between November 2015 and April 2016, due to far-field aseismic creeping of the southern Yadong-Gulu rift of Tibet, triggered by the 2015 Ms 8.1 Nepal earthquake[J]. International Geology Review, 2019, 61(18): 2313-2327.
[182] 王大纯, 张人权, 史毅虹, 等. 水文地质学基础[M]. 北京: 地质出版社, 1995.
[183] 刘璟, 赵峰华, 谌书, 等.方解石处理酸性矿排水次生矿物学和渗透性的研究[J].煤炭学报,2012,37(6):1010-1014.
[184] 张玉, 徐卫亚, 邵建富, 等.渗流-应力耦合作用下碎屑岩流变特性和渗透演化机制试验研究[J].岩石力学与工程学报,2014,33(8):1679-1690.
[185] 班春广, 徐宗学, 苟娇娇, 等.1973-2015 年年楚河上游流域径流变化趋势及驱动因素分析[J].北京师范大学学报,2019,55(6):748-754.
[186] 徐宗学, 班春广, 张瑞.雅鲁藏布江流域径流演变规律与归因分析[J].水科学进展,2022,33(4):519-530.
[187] SONG C, HUANG B, KE L. Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data[J]. Remote Sensing of Environment, 2013, 135: 25-35.
[188] 中国科学院青藏高原综合科学考察队. 西藏河流与湖泊[M]. 北京: 科学出版社, 1984.
[189] ZHANG X-J, TANG Q, PAN M, et al. A long-term land surface hydrologic fluxes and states dataset for China[J]. Journal of Hydrometeorology, 2014, 15(5): 2067-2084.
[190] SHANLEY J B, MCDOWELL W H, STALLARD R F. Long-term patterns and short-term dynamics of stream solutes and suspended sediment in a rapidly weathering tropical watershed[J]. Water Resources Research, 2011, 47(7): 1-11.
[191] LI L, GARZIONE C N. Spatial distribution and controlling factors of stable isotopes in meteoric waters on the Tibetan Plateau: Implications for paleoelevation reconstruction[J]. Earth and Planetary Science Letters, 2017, 460: 302-314.
[192] MERLIVAT L, JOUZEL J. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation[J]. Journal of Geophysical Research: Oceans, 1979, 84(C8): 5029-5033.
[193] KNIGHTS D, PARKS K C, SAWYER A H, et al. Direct groundwater discharge and vulnerability to hidden nutrient loads along the Great Lakes coast of the United States[J]. Journal of Hydrology, 2017, 554: 331-341.
[194] ÖZEN A, KARAPıNAR B, KUCUK İ, et al. Drought-induced changes in nutrient concentrations and retention in two shallow Mediterranean lakes subjected to different degrees of management[J]. Hydrobiologia, 2010, 646(1): 61-72.
[195] MEINIKMANN K, LEWANDOWSKI J, NÜTZMANN G. Lacustrine groundwater discharge: Combined determination of volumes and spatial patterns[J]. Journal of Hydrology, 2013, 502: 202-211.
[196] MEINIKMANN K, HUPFER M, LEWANDOWSKI J. Phosphorus in groundwater discharge – A potential source for lake eutrophication[J]. Journal of Hydrology, 2015, 524: 214-226.
[197] LUO X, KUANG X, JIAO J J, et al. Evaluation of lacustrine groundwater discharge, hydrologic partitioning, and nutrient budgets in a proglacial lake in the Qinghai–Tibet Plateau: using 222Rn and stable isotopes[J]. Hydrology and Earth System Sciences, 2018, 22(10): 5579-5598.
[198] 青藏高原及邻区1:150万大地构造图. 北京: 地质出版社, 2013.
[199] JUGGINS S. Quantitative reconstructions in palaeolimnology: new paradigm or sick science?[J]. Quaternary Science Reviews, 2013, 64: 20-32.
[200] TER BRAAK C J. CANOCO-a FORTRAN program for canonical community ordination by [partial][etrended][canonical] correspondence analysis, principal components analysis and redundancy analysis (version 2.1). Technical Report LWA-88-02[R]. Wageningen: Agricultural Mathematics Group, 1988.
[201] JUGGINS S, BIRKS H J B: Quantitative environmental reconstructions from biological data, BIRKS H J B, LOTTER A F, JUGGINS S, SMOL J P, editor, Tracking environmental change using lake sediments, Dordrecht: Springer, 2012: 431-494.
[202] ZHANG Q, KANG S, WANG F, et al. Major ion geochemistry of Nam Co Lake and its sources, Tibetan Plateau[J]. Aquatic Geochemistry, 2008, 14: 321-336.
[203] KATHAYAT G, CHENG H, SINHA A, et al. Indian monsoon variability on millennial-orbital timescales[J]. Scientific Reports, 2016, 6(1): 24374.
[204] DYKOSKI C A, EDWARDS R L, CHENG H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth Planetary Science Letters, 2005, 233(1-2): 71-86.
[205] WOLFF C, PLESSEN B, DUDASHVILLI A S, et al. Precipitation evolution of Central Asia during the last 5000 years[J]. The Holocene, 2017, 27(1): 142-154.
修改评论