[1] MARTINET B. R'egularisation d"in'equations variationnelles par approximations successives [C]//Rech. Oper. 1970.
[2] BONNANS J F, GILBERT J C, LEMARéCHAL C, et al. A family of variable metric proximal methods[J]. Appl Manag Sci, 1995, 68: 15–47.
[3] BURKE J, QIAN M. On the superlinear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating[J]. Appl Manag Sci, 2000, 88: 157–181.
[4] GU G, HE B, YUAN X. Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: A unified approach[J]. Comput Optim Appl, 2014, 59: 135–161.
[5] ROCKAFELLAR R T. Monotone operators and the proximal point algorithm[J]. SIAM J. Control Optim., 1976, 14(5): 877-898.
[6] ARROW K, HURWICZ L, UZAWA H. Studies in linear and non-linear programming[J]. Stan- ford University Press, 1958.
[7] ZHU M, CHAN T F. An efficient primal-dual hybrid gradient algorithm for total variation image restoration[C]//UCLA CAM technical report. 2008: 08-34.
[8] HE B, XU S, YUAN X. On convergence of the Arrow-Hurwicz method for saddle point prob- lems[J]. J Math Imaging Vis, 2022, 64(6): 662-671.
[9] HE B. PPA-like contraction methods for convex optimization: A framework using variational inequality approach[J]. J. Oper. Res. Soc. China, 2015, 3: 391-420.
[10] CHAMBOLLE A, POCK T. A first-order primal-dual algorithm for convex problems with applications to imaging[J]. J Math Imaging Vis, 2011, 40: 120-145.
[11] HE B, YUAN X, ZHANG W. A customized proximal point algorithm for convex minimization with linear constraints[J]. Comput Optim Appl, 2013, 56: 559–572.
[12] CAI X, GU G, HE B, et al. A relaxed customized proximal point algorithm for separable convex programming[C]//Optimization online. 2011.
[13] ZHU Y, WU J, YU G. A fast proximal point algorithm for 𝓁1-minimization problem in com- pressed sensing[J]. Appl Math Comput, 2015, 270: 777-784.
[14] CHEN H M, CAI X J, XU L L. Approximate customized proximal point algorithms for sepa- rable convex optimization[J]. J. Oper. Res. Soc. China, 2022, 11: 383–408.
[15] JIANG B, PENG Z, DENG K. Two new customized proximal point algorithms without re- laxation for linearly constrained convex optimization[J]. Bull. Iranian Math. Soc., 2020, 46: 865–892.
[16] HE B, MA F, YUAN X. An algorithmic framework of generalized primal-dual hybrid gradient methods for saddle point problems[J]. J Math Imaging Vis, 2017, 58: 279-293.
[17] HE B, MA F, XU S, et al. A generalized primal-dual algorithm with improved convergence condition for saddle point problems[J]. SIAM J. Imaging Sci., 2022, 15(3): 1157-1183.
[18] BEN-TAL A, NEMIROVSKI A, ROOS C. Extended matrix cube theorems with applications to 𝜇-theory in control[J]. Math. Oper. Res., Aug. 2003, 28(3): 497-523.
[19] LUSTIG M, DONOHO D, PAULY J M. Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magn. Reson. Med., Dec. 2007, 58(6): 1182-1195.
[20] HUANG Y, PALOMAR D P. Randomized algorithms for optimal solutions of double-sided QCQP with applications in signal processing[J]. IEEE Trans. Signal Process., Mar. 2014, 62 (5): 1093-1108.
[21] WANG S, LI X, LIU F, et al. Integrated sensing, communication, and computation over-the- air: Beampattern design[C]//2023 IEEE International Conference on Communications (ICC). in prep, 2023.
[22] SORBER L, BAREL M V, LATHAUWER L D. Unconstrained optimization of real functions in complex variables[J]. SIAM J. Optim., 2012, 22(3): 879-898.
[23] ZHANG S, XIA Y. Solving nonlinear optimization problems of real functions in complex variables by complex-valued iterative methods[J]. IEEE Trans. Syst., Man, Cybern., Jan. 2018, 48(1): 27-287.
[24] ZHANG S, XIA Y. Two fast complex-valued algorithms for solving complex quadratic pro- gramming problems[J]. IEEE Trans. Cybern., Dec. 2016, 46(12): 2837-2847.
[25] QIN S, FENG J, SONG J, et al. A one-layer recurrent neural network for constrained complex- variable convex optimization[J]. IEEE Trans. Neural Netw., Mar. 2018.
[26] ZHANG S, XIA Y, XIA Y, et al. Matrix-form neural networks for complex-variable basis pursuit problem with application to sparse signal reconstruction[J]. IEEE Trans. Cybern., July 2022, 52(7): 7049-7059.
[27] ZHANG H, MANDIC D P. Is a complex-valued stepsize advantageous in complex-valued gradient learning algorithms?[J]. IEEE Trans. Neural Netw. Learn. Syst., Dec. 2016, 27(12): 2730-2735.
[28] WANG S, GONG Y. Nonlinear convex optimization: From relaxed proximal point algorithm to prediction correction method[A]. 2023. arXiv: 2307.14615.
[29] SALEEM U, LIU Y, JANGSHER S, et al. Mobility-aware joint task scheduling and resource allocation for cooperative mobile edge computing[J]. IEEE Trans. Wireless Commun., Jan. 2021, 20(1): 360-374.
[30] HE S, REN J, WANG J, et al. Cloud-edge coordinated processing: Low-latency multicasting transmission[J]. IEEE J. Sel. Areas Commun., May 2019, 37(5): 1144-1158.
[31] SONG Z, LIU Y, SUN X. Joint task offloading and resource allocation for NOMA-enabled multi-access mobile edge computing[J]. IEEE Trans. Commun., Mar. 2021, 69(3): 1548-1564.
[32] PORAMBAGE P, OKWUIBE J, LIYANAGE M, et al. Survey on multi-access edge computing for internet of things realization[J]. IEEE Commun. Surv. Tutorials, Fourthquarter 2018, 20(4): 2961-2991.
[33] MAO Y, YOU C, ZHANG J, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Commun. Surv. Tutorials, Fourthquarter 2017, 19(4): 2322-2358.
[34] PARK C, LEE J. Mobile edge computing-enabled heterogeneous networks[J]. IEEE Trans. Wireless Commun., Feb. 2021, 20(2): 1038-1051.
[35] ABBAS N, ZHANG Y, TAHERKORDI A, et al. Mobile edge computing: A survey[J]. IEEE Internet Things J., Feb. 2018, 5(1): 450-465.
[36] LIU B, LIU C, PENG M. Resource allocation for energy-efficient MEC in NOMA-enabled massive IoT networks[J]. IEEE J. Sel. Areas Commun., April 2021, 39(4): 1015-1027.
[37] LABRIJI I, MENEGHELLO F, CECCHINATO D, et al. Mobility aware and dynamic migration of MEC services for the internet of vehicles[J]. IEEE Trans. Netw. Service Manag., Mar. 2021, 18(1): 570-584.
[38] LI L, CHENG Q, TANG X, et al. Resource allocation for NOMA-MEC systems in ultra-dense networks: A learning aided mean-field game approach[J]. IEEE Trans. Wireless Commun., Mar. 2021, 20(3): 1487-1500.
[39] LIU C, ZHANG H, JI H, et al. MEC-assisted flexible transcoding strategy for adaptive bitrate video streaming in small cell networks[J]. China Commun., Feb. 2021, 18(2): 200-214.
[40] REN J, YU G, HE Y, et al. Collaborative cloud and edge computing for latency minimization [J]. IEEE Trans. Veh. Technol., May 2019, 68(5): 5031-5044.
[41] ZHANG Y, DI B, ZHENG Z, et al. Distributed multi-cloud multi-access edge computing by multi-agent reinforcement learning[J]. IEEE Trans. Wireless Commun., April 2021, 20(4): 2565-2578.
[42] LIU J, MAO Y, ZHANG J, et al. Delay-optimal computation task scheduling for mobile-edge computing systems[C]//2016 IEEE International Symposium on Information Theory (ISIT). Barcelona, Spain, Aug. 2016: 1451-1455.
[43] LIU C F, BENNIS M, DEBBAH M, et al. Dynamic task offloading and resource allocation for ultra-reliable low-latency edge computing[J]. IEEE Trans. Commun., June 2019, 67(6): 4132-4150.
[44] WU Y, NI K, ZHANG C, et al. NOMA-assisted multi-access mobile edge computing: A joint optimization of computation offloading and time allocation[J]. IEEE Trans. Veh. Technol., Dec. 2018, 67(12): 12244-12258.
[45] XU J, CHEN L, ZHOU P. Joint service caching and task offloading for mobile edge computing in dense networks[C]//IEEE INFOCOM 2018 - IEEE Conference on Computer Communica- tions. Honolulu, HI, USA, Oct. 2018: 207-215.
[46] GUO K, GAO R, XIA W, et al. Online learning based computation offloading in MEC systems with communication and computation dynamics[J]. IEEE Trans. Commun., Feb. 2021, 69(2): 1147-1162.
[47] GUO C, HE W, LI G Y. Optimal fairness-aware resource supply and demand management for mobile edge computing[J]. IEEE Trans. Wireless Commun., Mar. 2021, 10(3): 678-682.
[48] GUO H, LIU J. Collaborative computation offloading for multiaccess edge computing over fiber–wireless networks[J]. IEEE Trans. Veh. Technol., May 2018, 67(5): 4514-4526.
[49] XU C, ZHENG G, ZHAO X. Energy-minimization task offloading and resource allocation for mobile edge computing in NOMA heterogeneous networks[J]. IEEE Trans. Veh. Technol., Dec. 2020, 69(12): 16001-16016.
[50] YANG B, WU D, WANG H, et al. Two-layer Stackelberg game-based offloading strategy for mobile edge computing enhanced fiwi access networks[J]. IEEE trans. green commun. netw., Mar. 2021, 5(1): 457-470.
[51] LI S, SUN W, SUN Y, et al. Energy-efficient task offloading using dynamic voltage scaling in mobile edge computing[J]. IEEE Trans. Netw. Sci. Eng., Jan. 2021, 8(1): 588-598.
[52] KIANI A, ANSARI N. Edge computing aware NOMA for 5G networks[J]. IEEE Internet Things J., April 2018, 5(2): 1299-1306.
[53] CAO X, WANG F, XU J, et al. Joint computation and communication cooperation for energy- efficient mobile edge computing[J]. IEEE Internet Things J., June 2019, 6(3): 4188-4200.
[54] DAI Y, XU D, MAHARJAN S, et al. Joint computation offloading and user association in multi- task mobile edge computing[J]. IEEE Trans. Veh. Technol., Dec. 2018, 67(12): 12313-12325.
[55] YANG L, ZHANG H, LI M, et al. Mobile edge computing empowered energy efficient task offloading in 5G[J]. IEEE Trans. Veh. Technol., July 2018, 67(7): 6398-6409.
[56] WANG F, XU J, DING Z. Multi-antenna NOMA for computation offloading in multiuser mobile edge computing systems[J]. IEEE Trans. Commun., Mar. 2019, 67(3): 2450-2463.
[57] MAO Y, ZHANG J, SONG S H, et al. Stochastic joint radio and computational resource man- agement for multi-user mobile-edge computing systems[J]. IEEE Trans. Wireless Commun., Sept. 2017, 16(9): 5994-6009.
[58] DING C, WANG J B, ZHANG H, et al. Joint MU-MIMO precoding and resource allocation for mobile-edge computing[J]. IEEE Trans. Wireless Commun., Mar. 2021, 20(3): 1639-1654.
[59] LIAO Z, PENG J, HUANG J, et al. Distributed probabilistic offloading in edge computing for 6G-enabled massive internet of things[J]. IEEE Internet Things J., April 2021, 8(7): 5298-5308.
[60] ZHANG J, HU X, NING Z, et al. Energy-latency tradeoff for energy-aware offloading in mobile edge computing networks[J]. IEEE Internet Things J., Aug. 2018, 5(4): 2633-2645.
[61] TRAN T X, POMPILI D. Joint task offloading and resource allocation for multi-server mobile- edge computing networks[J]. IEEE Trans. Veh. Technol., Jan. 2019, 68(1): 856-868.
[62] MAO Y, ZHANG J, LETAIEF K B. Joint task offloading scheduling and transmit power allo- cation for mobile-edge computing systems[C]//2017 IEEE Wireless Communications and Net- working Conference (WCNC). San Francisco, CA, USA, May 2017: 1-6.
[63] JIA Z, WU Q, DONG C, et al. Hierarchical aerial computing for internet of things via cooper- ation of HAPs and UAVs[J]. IEEE Internet Things J., April 2023, 10(7): 5676-5688.
[64] CHEN J, WU Q, XU Y, et al. A multi-leader multi-follower Stackelberg game for coalition- basedUAV MEC networks[J]. IEEE Wireless Commun. Lett., Nov. 2021, 10(11): 2350-2354.
[65] YOU W, DONG C, CHENG X, et al. Joint optimization of area coverage and mobile-edge computing with clustering for FANETs[J]. IEEE Internet Things J., Jan. 2021, 8(2): 695-707.
[66] YANG B, CAO X, YUEN C, et al. Offloading optimization in edge computing for deep- learning-enabled target tracking by internet of UAVs[J]. IEEE Internet Things J., June 2021, 8 (12): 9878-9893.
[67] LIN Z, NIU H, AN K, et al. Refracting RIS aided hybrid satellite-terrestrial relay networks: Joint beamforming design and optimization[J]. IEEE Trans. Aerosp. Electron. Syst., Aug. 2022, 58(4): 3717-3724.
[68] AN K, LIN M, OUYANG J, et al. Secure transmission in cognitive satellite terrestrial networks [J]. IEEE J. Sel. Areas Commun., Nov. 2016, 34(11): 3025-3037.
[69] LIN Z, AN K, NIU H, et al. SLNR-based secure energy efficient beamforming in multibeam satellite systems[J/OL]. IEEE Trans. Aerosp. Electron. Syst., early access, 2022: 1-4. DOI: 10.1109/TAES.2022.3190238.
[70] LIN Z, LIN M, WANG J B, et al. Joint beamforming and power allocation for satellite-terrestrial integrated networks with non-orthogonal multiple access[J]. IEEE J. Sel. Topics Signal Process., June 2019, 13(3): 657-670.
[71] WANG S, GONG Y. Joint power control and task offloading in collaborative edge-cloud com- puting networks[J]. IEEE Internet Things J., Sept. 2023, 10(17): 15197-15208.
[72] ZHANG Y, LAN X, REN J, et al. Efficient computing resource sharing for mobile edge-cloud computing networks[J]. IEEE/ACM Trans. Netw., June 2020, 28(3): 1227-1240.
[73] PHAM C, NGUYEN D T, NJAH Y, et al. Share-to-run IoT services in edge cloud computing [J]. IEEE Internet Things J., Jan. 2022, 9(1): 497-509.
[74] LIU T, FANG L, ZHU Y, et al. A near-optimal approach for online task offloading and resource allocation in edge-cloud orchestrated computing[J]. IEEE Trans. Mobile Comput., Aug. 2022, 21(8): 2687-2700.
[75] WANG S, GONG Y. Convergence analysis of cloud-aided federated edge learning on non-IID data[C]//2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC). July 2022: 1-5.
[76] WU Q, HE K, CHEN X. Personalized federated learning for intelligent IoT applications: A cloud-edge based framework[J]. IEEE Open J. Comput. Soc., Aug. 2020, 1: 35-44.
[77] BATTILORO C, DI LORENZO P, MERLUZZI M, et al. Lyapunov-based optimization of edge resources for energy-efficient adaptive federated learning[J]. IEEE Trans. Green Commun. Netw., Mar. 2023, 7(1): 265-280.
[78] SUN W, LI Z, WANG Q, et al. FedTAR: Task and resource-aware federated learning for wireless computing power networks[J]. IEEE Internet Things J., Mar. 2023, 10(5): 4257-4270.
[79] LI Y, CUI Y, LAU V. An optimization framework for federated edge learning[J]. IEEE Trans. Wireless Commun., Feb. 2023, 22(2): 934-949.
[80] NIE Y, ZHAO J, GAO F, et al. Semi-distributed resource management in UAV-aided MEC sys- tems: A multi-agent federated reinforcement learning approach[J]. IEEE Trans. Veh. Technol., Dec. 2021, 70(12): 13162-13173.
[81] LIU J, XU H, WANG L, et al. Adaptive asynchronous federated learning in resource-constrained edge computing[J]. IEEE Trans. Mobile Comput., Feb 2023, 22(2): 674-690.
[82] JI Z, CHEN L, ZHAO N, et al. Computation offloading for edge-assisted federated learning[J]. IEEE Trans. Veh. Technol., Sept. 2021, 70(9): 9330-9344.
[83] PRATHIBA S B, RAJA G, ANBALAGAN S, et al. Cybertwin-driven federated learning based personalized service provision for 6G-V2X[J]. IEEE Trans. Veh. Technol., May 2022, 71(5): 4632-4641.
[84] PANDEY S R, NGUYEN M N H, DANG T N, et al. Edge-assisted democratized learning toward federated analytics[J]. IEEE Internet Things J., Jan. 2022, 9(1): 572-588.
[85] MA Q, XU Y, XU H, et al. FedSA: A semi-asynchronous federated learning mechanism in heterogeneous edge computing[J]. IEEE J. Sel. Areas Commun., Dec. 2021, 39(12): 3654- 3672.
[86] GUO H, HUANG W, LIU J, et al. Inter-server collaborative federated learning for ultra-dense edge computing[J]. IEEE Trans. Wireless Commun., July 2022, 21(7): 5191-5203.
[87] NGUYEN D C, HOSSEINALIPOUR S, LOVE D J, et al. Latency optimization for blockchain- empowered federated learning in multi-server edge computing[J]. IEEE J. Sel. Areas Commun., Dec. 2022, 40(12): 3373-3390.
[88] KIM J, KIM D, LEE J, et al. A novel joint dataset and computation management scheme for energy-efficient federated learning in mobile edge computing[J]. IEEE Wireless Commun. Lett., May 2022, 11(5): 898-902.
[89] HUANG S, ZHANG Z, WANG S, et al. Accelerating federated edge learning via topology optimization[J]. IEEE Internet Things J., Feb. 2023, 10(3): 2056-2070.
[90] LUO S, CHEN X, WU Q, et al. HFEL: Joint edge association and resource allocation for cost- efficient hierarchical federated edge learning[J]. IEEE Trans. Wireless Commun., Oct. 2020, 19(10): 6535-6548.
[91] ZHOU T, LI X, PAN C, et al. Multi-server federated edge learning for low power consumption wireless resource allocation based on user QoE[J]. J Commun Netw, Dec. 2021, 23(6): 463-472.
[92] SHINDE S S, BOZORGCHENANI A, TARCHI D, et al. On the design of federated learning in latency and energy constrained computation offloading operations in vehicular edge computing systems[J]. IEEE Trans. Veh. Technol., Feb. 2022, 71(2): 2041-2057.
[93] TAM P, MATH S, KIM S. Optimized multi-service tasks offloading for federated learning in edge virtualization[J]. IEEE Trans. Netw. Sci. Eng., Nov.-Dec. 2022, 9(6): 4363-4378.
[94] ALBASEER A, ABDALLAH M, AL-FUQAHA A, et al. Semi-supervised federated learning over heterogeneous wireless IoT edge networks: Framework and algorithms[J]. IEEE Internet Things J., Dec. 2022, 9(24): 25626-25642.
[95] NGUYEN M N H, TRAN N H, TUN Y K, et al. Toward multiple federated learning services resource sharing in mobile edge networks[J]. IEEE Trans. Mobile Comput., Jan. 2023, 22(1): 541-555.
[96] QIAO D, GUO S, LIU D, et al. Adaptive federated deep reinforcement learning for proactive content caching in edge computing[J]. IEEE Trans. Parallel Distrib. Syst., Dec. 2022, 33(12): 4767-4782.
[97] WANG X, LI R, WANG C, et al. Attention-weighted federated deep reinforcement learning for device-to-device assisted heterogeneous collaborative edge caching[J]. IEEE J. Sel. Areas Commun., Jan. 2021, 39(1): 154-169.
[98] ZHOU Z, YANG S, PU L, et al. CEFL: Online admission control, data scheduling, and accuracy tuning for cost-efficient federated learning across edge nodes[J]. IEEE Internet Things J., Oct. 2020, 7(10): 9341-9356.
[99] SUN C, LI X, WEN J, et al. Federated deep reinforcement learning for recommendation-enabled edge caching in mobile edge-cloud computing networks[J]. IEEE J. Sel. Areas Commun., Mar. 2023, 41(3): 690-705.
[100] ZHU Z, WAN S, FAN P, et al. Federated multiagent actor–critic learning for age sensitive mobile-edge computing[J]. IEEE Internet Things J., Jan. 2022, 9(2): 1053-1067.
[101] MHAISEN N, ABDELLATIF A A, MOHAMED A, et al. Optimal user-edge assignment in hierarchical federated learning based on statistical properties and network topology constraints [J]. IEEE Trans. Netw. Sci. Eng., Jan.-Feb. 2022, 9(1): 55-66.
[102] ZHENG C, LIU S, HUANG Y, et al. Unsupervised recurrent federated learning for edge pop- ularity prediction in privacy-preserving mobile-edge computing networks[J]. IEEE Internet Things J., Dec. 2022, 9(23): 24328-24345.
[103] FENG T, XIE L, YAO J, et al. UAV-enabled data collection for wireless sensor networks with distributed beamforming[J]. IEEE Trans. Wireless Commun., Feb. 2022, 21(2): 1347-1361.
[104] DU R, ÖZçELIKKALE A, FISCHIONE C, et al. Towards immortal wireless sensor networks by optimal energy beamforming and data routing[J]. IEEE Trans. Wireless Commun., Aug. 2018, 17(8): 5338-5352.
[105] LIU Y, LI J, WANG H. Robust linear beamforming in wireless sensor networks[J]. IEEE Trans. Commun., June 2019, 67(6): 4450-4463.
[106] LIU F, MASOUROS C. A tutorial on joint radar and communication transmission for vehicular networks—part I: Background and fundamentals[J]. IEEE Commun. Lett., Feb. 2021, 25(2): 322-326.
[107] KUMARI P, MYERS N J, HEATH R W. Adaptive and fast combined waveform-beamforming design for MMWave automotive joint communication-radar[J]. IEEE J. Sel. Topics Signal Pro- cess., June 2021, 15(4): 996-1012.
[108] LIU F, ZHOU L, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Trans. Signal Process., Aug. 2018, 66(16): 4264-4279.
[109] LIU R, LI M, LIU Q, et al. Dual-functional radar-communication waveform design: A symbol- level precoding approach[J]. IEEE J. Sel. Topics Signal Process., Nov. 2021, 15(6): 1316-1331.
[110] SU N, LIU F, MASOUROS C. Secure radar-communication systems with malicious targets: Integrating radar, communications and jamming functionalities[J]. IEEE Trans. Wireless Com- mun., Jan. 2021, 20(1): 83-95.
[111] ZHANG J A, HUANG X, GUO Y J, et al. Multibeam for joint communication and radar sensing using steerable analog antenna arrays[J]. IEEE Trans. Veh. Technol., Jan. 2019, 68(1): 671-685.
[112] YANG J, ZENG Y, JIN S, et al. Communication and localization with extremely large lens antenna array[J]. IEEE Trans. Wireless Commun., May 2021, 20(5): 3031-3048.
[113] TONG X, ZHANG Z, WANG J, et al. Joint multi-user communication and sensing exploiting both signal and environment sparsity[J]. IEEE J. Sel. Topics Signal Process., Nov. 2021, 15(6): 1409-1422.
[114] WANG Z, HAN K, SHEN X, et al. Achieving the performance bounds for sensing and commu- nications in perceptive networks: Optimal bandwidth allocation[J]. IEEE Wireless Commun. Lett., Sept. 2022, 11(9): 1835-1839.
[115] YOU L, QIANG X, TSINOS C G, et al. Beam squint-aware integrated sensing and communi- cations for hybrid massive MIMO LEO satellite systems[J/OL]. IEEE J. Sel. Areas Commun., Oct. 2022, 40(10): 2994-3009. DOI: 10.1109/JSAC.2022.3196114.
[116] CHEN X, FENG Z, WEI Z, et al. Performance of joint sensing-communication cooperative sensing UAV network[J]. IEEE Trans. Veh. Technol., Dec. 2020, 69(12): 15545-15556.
[117] CAI X, GIALLORENZO M, SARABANDI K. Machine learning-based target classification for MMW radar in autonomous driving[J]. IEEE Trans. Intell. Veh., Dec. 2021, 6(4): 678-689.
[118] LUO F, BODANESE E, KHAN S, et al. Spectro-temporal modeling for human activity recog- nition using a radar sensor network[J]. IEEE Trans. Geosci. Remote Sens., 2023, 61: 1-13.
[119] STEINER M, GREBNER T, WALDSCHMIDT C. Millimeter-wave SAR-imaging with radar networks based on radar self-localization[J]. IEEE Trans. Microw. Theory Techn., Nov. 2020, 68(11): 4652-4661.
[120] SUN H, LI M, ZUO L, et al. Resource allocation for multitarget tracking and data reduction in radar network with sensor location uncertainty[J]. IEEE Trans. Signal Process., 2021, 69: 4843-4858.
[121] BAI L, LIU J, HAN R, et al. Wireless radar sensor networks: Epidemiological modeling and optimization[J]. IEEE J. Sel. Areas Commun., Jun. 2022, 40(6): 1993-2005.
[122] ZHAI X, CHEN X, XU J, et al. Hybrid beamforming for massive MIMO over-the-air compu- tation[J]. IEEE Trans. Commun., April 2021, 69(4): 2737-2751.
[123] LIU W, ZANG X, LI Y, et al. Over-the-air computation systems: Optimization, analysis and scaling laws[J]. IEEE Trans. Wireless Commun., Aug. 2020, 19(8): 5488-5502.
[124] CAO X, ZHU G, XU J, et al. Transmission power control for over-the-air federated averaging at network edge[J]. IEEE J. Sel. Areas Commun., May 2022, 40(5): 1571-1586.
[125] LI X, ZHU G, GONG Y, et al. Wirelessly powered data aggregation for IoT via over-the-air function computation: Beamforming and power control[J]. IEEE Trans. Wireless Commun., July 2019, 18(7): 3437-3452.
[126] ZHU G, HUANG K. MIMO over-the-air computation for high-mobility multimodal sensing [J]. IEEE Internet Things J., Aug. 2019, 6(4): 6089-6103.
[127] WANG S, HONG Y, WANG R, et al. Edge federated learning via unit-modulus over-the-air computation[J]. IEEE Trans. Commun., May 2022, 70(5): 3141-3156.
[128] HAN F, LAU V K N, GONG Y. Over-the-air computation of large-scale nomographic functions in mapreduce over the edge cloud network[J]. IEEE Internet Things J., July 2022, 9(14): 11843- 11857.
[129] FANG W, JIANG Y, SHI Y, et al. Over-the-air computation via reconfigurable intelligent surface [J]. IEEE Trans. Commun., Dec. 2021, 69(12): 8612-8626.
[130] QI Q, CHEN X, KHALILI A, et al. Integrating sensing, computing, and communication in 6G wireless networks: design and optimization[J]. IEEE Trans. Commun., Sept. 2022, 70(9): 6212-6227.
[131] DING C, WANG J B, ZHANG H, et al. Joint MIMO precoding and computation resource allocation for dual-function radar and communication systems with mobile edge computing[J]. IEEE J. Sel. Areas Commun., July 2022, 40(7): 2085-2102.
[132] LI X, LIU F, ZHOU Z, et al. Integrated sensing, communication, and computation over-the-air: MIMO beamforming design[J]. IEEE Trans. Wireless Commun., Aug. 2023, 22(8): 5383-5398.
[133] LI X, GONG Y, HUANG K, et al. Over-the-air integrated sensing, communication, and com- putation in IoT networks[J]. IEEE Wireless Commun., Feb. 2023, 30(1): 32-38.
[134] WANG S, GONG Y. A generalized primal-dual correction method for saddle-point problems with the nonlinear coupling operator[A]. 2023. arXiv: 2308.05388.
[135] BECK A. First-order methods in optimization[M]. Philadelphia: SIAM, 2017.
[136] HE B, YUAN X. On the 𝑂(1/𝑛) convergence rate of the Douglas–Rachford alternating direc- tion method[J]. SIAM J. Numer. Anal., 2012, 50(2): 700-709.
[137] HE B, YUAN X. Convergence analysis of primal-dual algorithms for a saddle-point problem: From contraction perspective[J]. SIAM J. Imaging Sci, 2012, 5(1): 119-149.
[138] CAI X, GU G, HE B. On the O(1/t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators[J]. Comput. Optim. Appl., 2014, 57: 339-363.
[139] HE B, HE X Z, LIU H X, et al. Self-adaptive projection method for co-coercive variational inequalities[J]. Eur. J. Oper. Res, July 2009, 196(1): 43-48.
[140] HE B, LIAO L. Improvements of some projection methods for monotone nonlinear variational inequalities[J]. J. Optim. Theory Appl., Jan. 2002, 112(1): 111–128.
[141] KRONQVIST J, BERNAL D E, LUNDELL A, et al. A review and comparison of solvers for convex MINLP[J]. Optim Eng, June 2019, 20(2): 397-455.
[142] WANG S, WU Y C, XIA M, et al. Machine intelligence at the edge with learning centric power allocation[J]. IEEE Trans. Wireless Commun., Nov. 2020, 19(11): 7293-7308.
[143] LI X, WANG S, ZHU G, et al. Data partition and rate control for learning and energy efficient edge intelligence[J]. IEEE Trans. Wireless Commun., Nov. 2022, 21(11): 9127-9142.
[144] LI J, STOICA P. MIMO Radar Signal Processing[M]. Hoboken, NJ, USA: Wiley, Oct. 2008.
[145] WANG S, GONG Y. Low-complexity iterative methods for complex-variable matrix optimiza- tion problems in Frobenius norm[A]. 2023. arXiv: 2303.07614.
[146] PETERS B, HERRMANN F J. Algorithms and software for projections onto intersections of convex and non-convex sets with applications to inverse problems[A]. 2019. arXiv: 1902.09699.
[147] TIBSHIRANI R J. Dykstra’s algorithm, ADMM, and coordinate descent: connections, insights, and extensions[J]. Adv. Neural Inf. Process Syst., Dec. 2017, 30.
[148] LóPEZ W, RAYDAN M. An acceleration scheme for Dykstra’s algorithm[J]. Comput. Optim. Appl, 2016, 63(1): 29–44.
修改评论