中文版 | English
题名

Dynamical Model Based Brain Network Control

其他题名
基于动力学模型的脑网络控制
姓名
姓名拼音
LIANG Zhichao
学号
11930756
学位类型
博士
学位专业
070104 应用数学
学科门类/专业学位类别
07 理学
导师
刘泉影
导师单位
生物医学工程系
论文答辩日期
2023-11-17
论文提交日期
2023-12-22
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

大脑是一个复杂的神经网络,由数以百亿计的神经元和数万亿的突触连接构成。这些神经元网络形成多个大脑区域,每个区域都承担特定的功能,涵盖基本的感知和运动控制到高级的思维和情感处理。近年来,随着神经影像技术(如功能磁共振成像和弥散张量成像)以及神经电生理信号采集技术(头皮脑电图和立体脑电图等)的快速发展,我们可以更容易地获得大脑结构和功能的各种数据,覆盖不同的尺度。深入研究不同脑区之间的连接模式、了解这些区域之间的相互作用和信息传递方式对于理解大脑功能至关重要。这些研究也有助于进一步探索如何操控大脑的神经活动。

脑网络动力学建模为深入研究大脑神经活动机制提供了理论框架。利用复杂系统和机器学习理论,我们可以通过数学建模和仿真来还原大脑的神经活动。这些计算模型不仅能够解释大脑内部的计算过程,还能揭示大脑如何处理信息、执行认知任务以及展现复杂行为。此外,大脑的控制干预问题也备受瞩目。网络控制理论为我们提供了理论框架,特别是关于神经调控输入如何影响大脑神经响应输出的问题。通过不同的控制干预方法,我们能够实现情绪调节、操控神经活动模式等目标。然而,与传统的经验性设计控制干预策略不同,精确的脑网络动力学建模和优化控制理论等计算方法的引入为我们提供了技术思路,帮助我们更好地理解如何控制大脑神经活动。

本文围绕常见的体外培养的神经元群体网络、癫痫传播网络和大尺度大脑结构网络开展脑网络动力学建模与控制研究。然而,针对大脑网络动力学建模与控制需要考虑以下关键问题:(1)基于数据驱动的传统机器学习方法在重构刺激输入和神经响应输出关系时缺乏生物信息先验;(2)重构刺激输入和神经响应输出的动力学模型需要考虑模型的复杂度和预测准确度的权衡问题;(3)大尺度大脑结构网络约束下实现大脑认知功能的神经环路调控机制不明确。鉴于这三种不同类型的大脑网络和上述关键问题,本文提出了相应的技术解决方案,其创新点和主要贡献包括以下几个方面:

(1)针对数据驱动的机器学习方法重构刺激输入和神经响应输出的动力学模型缺乏生物信息先验的问题,我们以体外培养的神经元群体网络的刺激输入神经响应输出为研究对象,提出了一种结合大脑生物信息先验的循环神经网络,用于重构体外培养的神经元群体网络的神经活动。并在此基础上,我们借助动力学模型的分析方法分析体外培养的神经元群体网络的动态特性,并基于辨识的动力学模型实现体外培养的神经元群体网络的动态调控。实验结果表明,我们提出的方法具有较高的预测准确度(可解释方差大于0.85),且兼顾生物可解释性。同时,我们也验证了优化控制理论在指导调控神经元群体网络到达目标的神经响应状态的可行性。

(2)针对刺激输入神经响应输出动力学模型需要考虑模型复杂度与预测准确度的权衡问题,我们以抑制癫痫传播网络的异常神经活动为研究对象,提出了一种基于库普曼算子的模型预测控制框架,用于重构并控制癫痫传播网络的神经活动。我们借助库普曼算子的思想(即非线性动力系统能够在无限维的空间变换为线性系统),将高度非线性的癫痫传播动力学通过编码器升维到有限维状态空间使之近似为线性动力学方程,并在此基础上构建模型预测控制器。实验结果表明,我们提出的方法相比于循环神经网络、高阶自回归模型、核方法等,具有更优的预测准确度,并且在求解最优刺激输入时具有更高的计算效率。我们提出的框架对于实现临床神经系统癫痫网络的闭环神经调控具有理论支撑。

(3)针对大脑结构网络约束下实现大脑认知功能的神经环路调控机制不明的问题,我们提出了一种基于大脑网络控制理论架构的推断大脑调控节点与控制输入的方法,用于重构大脑执行复杂认知任务的神经活动。我们借助大脑网络控制理论架构,充分考虑大脑网络的可控性问题,以推断大脑调控节点与控制策略为优化变量,构建最小化重构神经活动误差的联合优化问题,并采取增广拉格朗日乘子法进行优化问题求解。实验结果表明,我们提出的方法能推断出与认知任务相关的控制节点,具有一定的神经科学解释性,且从能量代价与网络可控性的角度解释了不同工作记忆任务的神经机理。我们提出的方法为我们理解大脑结构网络约束下,大脑如何组织任务相关的神经环路实现复杂认知功能提供调控机制的解释。

大脑网络动力学建模与控制在神经科学探索和应用领域有着广泛的前景。本文的研究成果借助数学建模思想(动力学建模、控制理论、优化理论等)和神经科学理论,提升了数据驱动模型在还原大脑神经活动的生物可解释性。同时,我们也在权衡刺激输入神经响应输出模型的复杂度与计算效率取得进展。此外,我们也揭示了大脑结构约束下实现复杂认知功能的调控机制等关键问题。这些研究为解析大脑认知功能以及实现认知障碍脑疾病的控制干预提供了重要的理论基础。

关键词
语种
英语
培养类别
独立培养
入学年份
2019
学位授予年份
2023-12
参考文献列表

[1] 陆林, 刘晓星, 袁凯. 中国脑科学计划进展[J]. Journal of Peking University (Health Sciences), 2022, 54(5): 791.
[2] 王立平. 也谈谈” 中国脑计划”[J]. 中国科学:生命科学, 2016, 46(2): 2.
[3] BASSETT D S, GAZZANIGA M S. Understanding complexity in the human brain[J]. Trends in cognitive sciences, 2011, 15(5): 200-209.
[4] AVENA-KOENIGSBERGER A, MISICB, SPORNS O. Communication dynamics in complex brain networks[J]. Nature reviews neuroscience, 2018, 19(1): 17-33.
[5] CHANG S, WEI X, SU F, et al. Model Predictive Control for Seizure Suppression Based on Nonlinear Auto-Regressive Moving-Average Volterra Model[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(10): 2173-2183.
[6] CORONEL-ESCAMILLA A, GOMEZ-AGUILAR J F, STAMOVA I, et al. Fractional order controllers increase the robustness of closed-loop deep brain stimulation systems[J]. Chaos, Solitons & Fractals, 2020, 140: 110149.
[7] SUSSILLO D, BARAK O. Opening the black box: low-dimensional dynamics in high- dimensional recurrent neural networks[J]. Neural computation, 2013, 25(3): 626-649.
[8] GOLUB M D, SUSSILLO D. FixedPointFinder: A Tensorflow toolbox for identifying and characterizing fixed points in recurrent neural networks[J]. Journal of Open Source Software, 2018, 3(31): 1003.
[9] SMITH J, LINDERMANS, SUSSILLOD. Reverse engineering recurrent neural networks with jacobian switching linear dynamical systems[J]. Advances in Neural Information Processing Systems, 2021, 34: 16700-16713.
[10] GU S, PASQUALETTI F, CIESLAK M, et al. Controllability of structural brain networks[J]. Nature communications, 2015, 6(1): 8414.
[11] GU S, BETZEL R F, MATTAR M G, et al. Optimal trajectories of brain state transitions[J]. Neuroimage, 2017, 148: 305-317.
[12] KARRER T M, KIM JZ, STISOJ, et al. A practical guide to methodological considerations in the controllability of structural brain networks[J]. Journal of neural engineering, 2020, 17(2): 026031.
[13] BASSETT D S, ZURN P, GOLD J I. On the nature and use of models in network neuroscience [J]. Nature Reviews Neuroscience, 2018, 19(9): 566-578.
[14] EZZYAT Y, KRAGEL J E, BURKE J F, et al. Direct brain stimulation modulates encoding states and memory performance in humans[J]. Current biology, 2017, 27(9): 1251-1258.
[15] OSBORNE N N. Is Dale’s principle valid?[J]. Trends in Neurosciences, 1979, 2: 73-75.
[16] LEGRAIN V, GUÉRIT J M, BRUYER R, et al. Attentional modulation of the nociceptive processing into the human brain: selective spatial attention, probability of stimulus occurrence, and target detection effects on laser evoked potentials[J]. Pain, 2002, 99(1-2): 21-39.
[17] WAYDO S, KRASKOV A, QUIROGA R Q, et al. Sparse representation in the human medial temporal lobe[J]. Journal of Neuroscience, 2006, 26(40): 10232-10234.
[18] MCTEAGUE LM, HUEMER J, CARREON DM, et al. Identification of common neural circuit disruptions in cognitive control across psychiatric disorders[J]. American Journal of Psychiatry, 2017, 174(7): 676-685.
[19] CHIÊM B, CREVECOEUR F, DELVENNE J C. Structure-informed functional connectivity driven by identifiable and state-specific control regions[J]. Network Neuroscience, 2021, 5(2): 591-613.
[20] LYNN C W, BASSETT D S. The physics of brain network structure, function and control[J]. Nature Reviews Physics, 2019, 1(5): 318-332.
[21] XIONG H, CHU C, FAN L, et al. Digital twin brain: a bridge between biological intelligence and artificial intelligence[J]. Intelligent Computing, 2023.
[22] ASTLE D E, JOHNSON M H, AKARCA D. Toward computational neuroconstructivism: a framework for developmental systems neuroscience[J]. Trends in Cognitive Sciences, 2023.
[23] BETZEL R F, BASSETT D S. Multi-scale brain networks[J]. Neuroimage, 2017, 160: 73-83.
[24] WINDING M, PEDIGO B D, BARNES C L, et al. The Connectome of an Insect Brain[J]. Science, 2023.
[25] YE L, ALLEN W E, THOMPSON K R, et al. Wiring and Molecular Features of Prefrontal Ensembles Representing Distinct Experiences[J]. Cell, 2016, 165(7): 1776-1788.
[26] COOK S J, JARRELL T A, BRITTIN C A, et al. Whole-Animal Connectomes of Both Caenorhabditis Elegans Sexes[J]. Nature, 2019, 571(7763): 63-71.
[27] Ercsey-Ravasz M. A Predictive Network Model of Cerebral Cortical Connectivity Based on a Distance Rule[J]. Neuron, 2013: 14.
[28] LEE W C A, BONIN V, REED M, et al. Anatomy and Function of an Excitatory Network in the Visual Cortex[J]. Nature, 2016, 532(7599): 370-374.
[29] OH S W, HARRIS J A, NG L, et al. A Mesoscale Connectome of the Mouse Brain[J]. Nature, 2014: 21.
[30] BUCKNER R L. Opportunities and Limitations of Intrinsic Functional Connectivity MRI[J]. Nature Neuroscience, 2013, 16(7): 6.
[31] van den Heuvel M P, HULSHOFF POL H E. Exploring the Brain Network: A Review on Resting-State fMRI Functional Connectivity[J]. European Neuropsychopharmacology, 2010, 20(8): 519-534.
[32] MESHULAM L, GAUTHIER J L, BRODY C D, et al. Coarse–Graining and Hints of Scaling in a Population of 1000+ Neurons: arXiv:1812.11904[M]. arXiv, 2018.
[33] ROSENBAUM R, SMITH M A, KOHN A, et al. The Spatial Structure of Correlated Neuronal Variability[J]. Nature Neuroscience, 2017, 20(1): 107-114.
[34] BOLT T, NOMI J S, BZDOK D, et al. A Parsimonious Description of Global Functional Brain Organization in Three Spatiotemporal Patterns[J]. Nature Neuroscience, 2022, 25(8): 1093- 1103.
[35] KIM S, MOON H S, VO T T, et al. Whole-Brain Mapping of Effective Connectivity by fMRI with Cortex-Wide Patterned Optogenetics[J]. Neuron, 2023: S0896627323001708.
[36] TU T, PAISLEY J, HAUFE S, et al. A state-space model for inferring effective connectivity of latent neural dynamics from simultaneous EEG/fMRI[J]. Advances in Neural Information Processing Systems, 2019, 32.
[37] LUO Z, LIANG Z, XU C, et al. Effective Brain Connectome: The Whole-Brain Effective Connectivity from Neural Perturbational Inference[A]. 2022. arxiv: 2301.00148.
[38] van den Heuvel MP, SPORNS O. Rich-Club Organization of the Human Connectome[J]. Journal of Neuroscience, 2011, 31(44): 15775-15786.
[39] DECO G, JIRSA V K, MCINTOSH A R. Emerging Concepts for the Dynamical Organization of Resting-State Activity in the Brain[J]. Nature Reviews Neuroscience, 2011, 12(1): 43-56.
[40] WILSON H R, COWAN J D. Excitatory and inhibitory interactions in localized populations of model neurons[J]. Biophysical journal, 1972, 12(1): 1-24.
[41] JANSEN B H, RIT V G. Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns[J]. Biological cybernetics, 1995, 73(4): 357- 366.
[42] LARTER R, SPEELMAN B, WORTH R M. A coupled ordinary differential equation lattice model for the simulation of epileptic seizures[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 1999, 9(3): 795-804.
[43] BREAKSPEAR M, TERRY J R, FRISTON K J. Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics [J]. Network: Computation in Neural Systems, 2003, 14(4): 703.
[44] WONG K F, WANG X J. A recurrent network mechanism of time integration in perceptual decisions[J]. Journal of Neuroscience, 2006, 26(4): 1314-1328.
[45] BREAKSPEAR M, WILLIAMS LM, STAM CJ. A novel method for the topographic analysis of neural activity reveals formation and dissolution of ‘dynamic cell assemblies’[J]. Journal of computational neuroscience, 2004, 16: 49-68.
[46] AMARIS I. Dynamics of pattern formation in lateral-inhibition type neural fields[J]. Biological cybernetics, 1977, 27(2): 77-87.
[47] COOMBES S. Large-scale neural dynamics: simple and complex[J]. NeuroImage, 2010, 52 (3): 731-739.
[48] JIRSA V K, HAKEN H. Field theory of electromagnetic brain activity[J]. Physical review letters, 1996, 77(5): 960.
[49] ROBINSON P A, RENNIE C J, WRIGHT J J. Propagation and stability of waves of electrical activity in the cerebral cortex[J]. Physical Review E, 1997, 56(1): 826.
[50] COOMBES S, VENKOV N A, SHIAU L, et al. Modeling electrocortical activity through improved local approximations of integral neural field equations[J]. Physical Review E, 2007, 76 (5): 051901.
[51] ROBINSON P, RENNIE C, ROWED. Dynamics of large-scale brain activity in normal arousal states and epileptic seizures[J]. Physical Review E, 2002, 65(4): 041924.
[52] PHILLIPS A, ROBINSON P A. A quantitative model of sleep-wake dynamics based on the physiology of the brainstem ascending arousal system[J]. Journal of Biological Rhythms, 2007, 22(2): 167-179.
[53] BREAKSPEAR M, ROBERTS J A, TERRY J R, et al. A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis[J]. Cerebral Cortex, 2006, 16(9): 1296-1313.
[54] RENNIE C J, ROBINSON P A, WRIGHT J J. Unified neurophysical model of EEG spectra and evoked potentials[J]. Biological cybernetics, 2002, 86(6): 457-471.
[55] PINOTSIS D A, FRISTON K J. Neural fields, spectral responses and lateral connections[J]. Neuroimage, 2011, 55(1): 39-48.
[56] MULLER L, REYNAUD A, CHAVANE F, et al. The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave[J]. Nature communications, 2014, 5(1): 3675.
[57] RUBINO D, ROBBINS K A, HATSOPOULOS N G. Propagating waves mediate information transfer in the motor cortex[J]. Nature neuroscience, 2006, 9(12): 1549-1557.
[58] HEITMANN S, BOONSTRAT, BREAKSPEAR M. A dendritic mechanism for decoding traveling waves: principles and applications to motor cortex[J]. PLoS computational biology, 2013, 9(10): e1003260.
[59] SANI O G, ABBASPOURAZAD H, WONG Y T, et al. Modeling behaviorally relevant neural dynamics enabled by preferential subspace identification[J]. Nature Neuroscience, 2021, 24(1): 140-149.
[60] VYAS S, GOLUB MD, SUSSILLOD, et al. Computation through neural population dynamics [J]. Annual review of neuroscience, 2020, 43: 249-275.
[61] SHENOY K V, KAO J C. Measurement, Manipulation and Modeling of Brain-Wide Neural Population Dynamics[J]. Nature Communications, 2021, 12(1): 633.
[62] BREAKSPEAR M. Dynamic Models of Large-Scale Brain Activity[J]. Nature Neuroscience, 2017, 20(3): 340-352.
[63] BRUNTON SL, KUTZ JN. Data-driven science and engineering: Machine learning, dynamical systems, and control[M]. Cambridge University Press, 2022.
[64] HAZAN E, SINGH K, ZHANG C. Learning linear dynamical systems via spectral filtering[J]. Advances in Neural Information Processing Systems, 2017, 30: 6702-6712.
[65] LANZETTI N, LIAN Y Z, CORTINOVIS A, et al. Recurrent neural network based MPC for process industries[C]//2019 18th European Control Conference (ECC). IEEE, 2019: 1005- 1010.
[66] BIEKER K, PEITZ S, BRUNTON S L, et al. Deep model predictive flow control with limited sensor data and online learning[J]. Theoretical and Computational Fluid Dynamics, 2020: 1-15.
[67] YANG G R, JOGLEKAR M R, SONG H F, et al. Task Representations in Neural Networks Trained to Perform Many Cognitive Tasks[J]. Nature Neuroscience, 2019, 22(2): 297-306.
[68] MANTE V, SUSSILLO D, SHENOY K V, et al. Context-dependent computation by recurrent dynamics in prefrontal cortex[J]. nature, 2013, 503(7474): 78-84.
[69] SONG H F, YANG G R, WANG X J. Training excitatory-inhibitory recurrent neural networks for cognitive tasks: a simple and flexible framework[J]. PLoS computational biology, 2016, 12 (2): e1004792.
[70] REMINGTON E D, NARAIN D, HOSSEINI E A, et al. Flexible sensorimotor computations through rapid reconfiguration of cortical dynamics[J]. Neuron, 2018, 98(5): 1005-1019.
[71] BANINO A, BARRY C, URIAB, et al. Vector-based navigation using grid-like representations in artificial agents[J]. Nature, 2018, 557(7705): 429-433.
[72] MICHAELS J A, DANN B, SCHERBERGER H. Neural population dynamics during reaching are better explained by a dynamical system than representational tuning[J]. PLoS computational biology, 2016, 12(11): e1005175.
[73] PINTO L, RAJAN K, DEPASQUALE B, et al. Task-dependent changes in the large-scale dynamics and necessity of cortical regions[J]. Neuron, 2019, 104(4): 810-824.
[74] KLEINMAN M, CHANDRASEKARAN C, KAO J C. Recurrent neural network models of multi-area computation underlying decision-making[J]. bioRxiv, 2019: 798553.
[75] GENKIN M, ENGEL TA. Moving beyond Generalization to Accurate Interpretation of Flexible Models[J]. Nature Machine Intelligence, 2020, 2(11): 674-683.
[76] TANG E, BASSETT D S. Colloquium: Control of dynamics in brain networks[J]. Reviews of modern physics, 2018, 90(3): 031003.
[77] KALMAN R E. On the general theory of control systems[C]//Proceedings First International Conference on Automatic Control, Moscow, USSR. 1960: 481-492.
[78] TAJIMA S, MITAT, BAKKUM DJ, et al. Locally embedded presages of global network bursts [J]. Proceedings of the National Academy of Sciences, 2017, 114(36): 9517-9522.
[79] ZHAO Y, PARK I M. Interpretable Nonlinear Dynamic Modeling of Neural Trajectories[J]. Advances in Neural Information Processing Systems, 2016, 29: 3333-3341.
[80] WILLIAMS A H, KIM T H, WANG F, et al. Unsupervised discovery of demixed, low-dimensional neural dynamics across multiple timescales through tensor component analysis[J]. Neuron, 2018, 98(6): 1099-1115.
[81] NASSAR J, LINDERMAN S, BUGALLO M, et al. Tree-Structured Recurrent Switching Linear Dynamical Systems for Multi-Scale Modeling[C]//International Conference on Learning Representations (ICLR). 2019.
[82] PEI F, YE J, ZOLTOWSKI D, et al. Neural Latents Benchmark’21: Evaluating latent variable models of neural population activity[A]. 2021.
[83] HURWITZ C, KUDRYASHOVA N, ONKEN A, et al. Building population models for large-scale neural recordings: opportunities and pitfalls[A]. 2021.
[84] CUNNINGHAM J P, BYRON M Y. Dimensionality reduction for large-scale neural recordings[J]. Nature neuroscience, 2014, 17(11): 1500-1509.
[85] PANDARINATH C, O’SHEA D J, COLLINS J, et al. Inferring single-trial neural population dynamics using sequential auto-encoders[J]. Nature methods, 2018, 15(10): 805-815.
[86] Overview of TheVirtualBrain — TVB 2.7.2-17797 Documentation[Z].
[87] JIRSA V, PROIX T, PERDIKIS D, et al. The Virtual Epileptic Patient: Individualized Whole-Brain Models of Epilepsy Spread[J]. NeuroImage, 2017, 145: 377-388.
[88] HASHEMI M, VATTIKONDAAN, JHAJ, et al. Amortized Bayesian Inference on Generative Dynamical Network Models of Epilepsy Using Deep Neural Density Estimators[J]. Neural Networks, 2023, 163: 178-194.
[89] GONÇALVES P J, LUECKMANN J M, DEISTLER M, et al. Training Deep Neural Density Estimators to Identify Mechanistic Models of Neural Dynamics[J]. eLife, 2020, 9: e56261.
[90] GENKIN M, HUGHES O, ENGEL T A. Learning Non-Stationary Langevin Dynamics from Stochastic Observations of Latent Trajectories[J]. Nature Communications, 2021, 12(1): 1-9.
[91] SHINE JM, MÜLLER EJ, MUNNB, et al. Computational Models Link Cellular Mechanisms of Neuromodulation to Large-Scale Neural Dynamics[J]. Nature Neuroscience, 2021, 24(6): 765-776.
[92] GENKIN M, ENGEL TA. Moving beyond Generalization to Accurate Interpretation of Flexible Models[J]. Nature Machine Intelligence, 2020, 2(11): 674-683.
[93] KHAMBHATI A N, SIZEMORE A E, BETZEL R F, et al. Modeling and Interpreting Mesoscale Network Dynamics[J]. NeuroImage, 2018, 180: 337-349.
[94] EDWARDS C A, KOUZANI A, LEE K H, et al. Neurostimulation devices for the treatment of neurologic disorders[C]//Mayo Clinic Proceedings: volume 92. Elsevier, 2017: 1427-1444.
[95] BRADLEY C, NYDAM A S, DUX P E, et al. State-dependent effects of neural stimulation on brain function and cognition[J]. Nature Reviews Neuroscience, 2022, 23(8): 459-475.
[96] SANI O G, YANG Y, LEE M B, et al. Mood variations decoded from multi-site intracranial human brain activity[J]. Nature biotechnology, 2018, 36(10): 954-961.
[97] SCANGOS K W, KHAMBHATI A N, DALY P M, et al. Closed-loop neuromodulation in an individual with treatment-resistant depression[J]. Nature Medicine, 2021: 1-5.
[98] NASR K, HASLACHER D, DAYAN E, et al. Breaking the boundaries of interacting with the human brain using adaptive closed-loop stimulation[J]. Progress in Neurobiology, 2022, 216: 102311.
[99] WAGENAARDA, MADHAVANR, PINE J, et al. Controlling bursting in cortical cultures with closed-loop multi-electrode stimulation[J]. Journal of Neuroscience, 2005, 25(3): 680-688.
[100] BONIFAZI P, GOLDIN M, PICARDO M A, et al. GABAergic hub neurons orchestrate synchrony in developing hippocampal networks[J]. Science, 2009, 326(5958): 1419-1424.
[101] HERZ D M, LITTLE S, PEDROSA D J, et al. Mechanisms underlying decision-making as revealed by deep-brain stimulation in patients with Parkinson’s disease[J]. Current Biology, 2018, 28(8): 1169-1178.
[102] MARTÍNEZ S, GARCÍA-VIOLINI D, BELLUSCIO M, et al. Dynamical models in neuroscience from a closed-loop control perspective[J]. IEEE Reviews in Biomedical Engineering, 2022.
[103] LIANG Z, LUOZ, LIUK, et al. Online Learning Koopman Operator for Closed-Loop Electrical Neurostimulation in Epilepsy[J]. IEEE Journal of Biomedical and Health Informatics, 2022.
[104] SCANGOS KW, MAKHOUL G S, SUGRUE L P, et al. State-dependent responses to intracranial brain stimulation in a patient with depression[J]. Nature medicine, 2021, 27(2): 229-231.
[105] YANG Y, QIAOS, SANI OG, et al. Modelling and prediction of the dynamic responses of large- scale brain networks during direct electrical stimulation[J]. Nature biomedical engineering, 2021, 5(4): 324-345.
[106] BEVANDA P, SOSNOWSKI S, HIRCHE S. Koopman operator dynamical models: Learning, analysis and control[J]. Annual Reviews in Control, 2021, 52: 197-212.
[107] BAGGIO G, BASSETT D S, PASQUALETTI F. Data-driven control of complex networks[J]. Nature communications, 2021, 12(1): 1429.
[108] TAKEUCHI Y, HARANGOZÓ M, PEDRAZA L, et al. Closed-loop stimulation of the medial septum terminates epileptic seizures[J]. Brain, 2021, 144(3): 885-908.
[109] SALAM M T, VELAZQUEZ J L P, GENOV R. Seizure suppression efficacy of closed-loop versus open-loop deep brain stimulation in a rodent model of epilepsy[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 24(6): 710-719.
[110] NAKAHIRA Y, LIU Q, SEJNOWSKI T J, et al. Diversity-enabled sweet spots in layered architectures and speed–accuracy trade-offs in sensorimotor control[J]. Proceedings of the National Academy of Sciences, 2021, 118(22).
[111] STIEVE B J, RICHNER T J, KROOK-MAGNUSON C, et al. Optimization of closed-loop electrical stimulation enables robust cerebellar-directed seizure control[J]. Brain, 2023, 146(1): 91-108.
[112] GHEISARNEJAD M, FARAJI B, ESFAHANI Z, et al. A Close loop multi-area brain stimulation control for Parkinson’s Patients Rehabilitation[J]. IEEE Sensors Journal, 2019, 20(4): 2205-2213.
[113] ROSIN B, SLOVIK M, MITELMAN R, et al. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism[J]. Neuron, 2011, 72(2): 370-384.
[114] VELISAR A, SYRKIN-NIKOLAU J, BLUMENFELD Z, et al. Dual threshold neural closed loop deep brain stimulation in Parkinson disease patients[J]. Brain stimulation, 2019, 12(4): 868-876.
[115] GORZELIC P, SCHIFF S, SINHA A. Model-based rational feedback controller design for closed-loop deep brain stimulation of Parkinson’s disease[J]. Journal of neural engineering, 2013, 10(2): 026016.
[116] KAGAN B J, KITCHEN A C, TRAN N T, et al. In vitro neurons learn and exhibit sentience when embodied in a simulated game-world[J]. Neuron, 2022, 110(23): 3952-3969.
[117] BASU I, YOUSEFI A, CROCKER B, et al. Closed-loop enhancement and neural decoding of cognitive control in humans[J]. Nature Biomedical Engineering, 2023, 7(4): 576-588.
[118] BELIAEVA V, SAVVATEEV I, ZERBI V, et al. Toward integrative approaches to study the causal role of neural oscillations via transcranial electrical stimulation[J]. Nature Communications, 2021, 12(1): 2243.
[119] ALAGAPAN S, LUSTENBERGER C, HADAR E, et al. Low-frequency direct cortical stimulation of left superior frontal gyrus enhances working memory performance[J]. Neuroimage, 2019, 184: 697-706.
[120] OKUN M S. Deep-brain stimulation for Parkinson’s disease[J]. New England Journal of Medicine, 2012, 367(16): 1529-1538.
[121] REICH MM, HSU J, FERGUSON M, et al. A brain network for deep brain stimulation induced cognitive decline in Parkinson’s disease[J]. Brain, 2022, 145(4): 1410-1421.
[122] PELTOLAJ, COLON AJ, PIMENTEL J, et al. Deep brain stimulation of the anterior nucleus of the thalamus in drug-resistant epilepsy in the MORE multicenter patient registry[J]. Neurology, 2023, 100(18): e1852-e1865.
[123] AJIBOYE A B, WILLETT F R, YOUNG D R, et al. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof- of-concept demonstration[J]. The Lancet, 2017, 389(10081): 1821-1830.
[124] PASLEY BN, ALLENEA, FREEMAN RD. State-dependent variability of neuronal responses to transcranial magnetic stimulation of the visual cortex[J]. Neuron, 2009, 62(2): 291-303.
[125] LUO Z, LIANG Z, XU C, et al. Effective Brain Connectome: the whole-brain effective con- nectivity from neural perturbational inference[A]. 2022.
[126] SELLERS K K, COHEN J L, KHAMBHATI A N, et al. Closed-loop neurostimulation for the treatment of psychiatric disorders[J]. Neuropsychopharmacology, 2023: 1-16.
[127] ZAAIMIB, TURNBULL M,HAZRA A, et al. Closed-loop optogenetic control of the dynamics of neural activity in non-human primates[J]. Nature biomedical engineering, 2023, 7(4): 559- 575.
[128] SISTERSON N D, KOKKINOS V, URBAN A, et al. Responsive neurostimulation of the thalamus improves seizure control in idiopathic generalised epilepsy: initial case series[J]. Journal of Neurology, Neurosurgery & Psychiatry, 2022, 93(5): 491-498.
[129] CHATTERJEE S, ROMERO O, ASHOURVAN A, et al. Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy[J]. Journal of Neural Engineering, 2020, 17(6): 066017.
[130] ISERLES A. A first course in the numerical analysis of differential equations: number 44[M]. Cambridge university press, 2009.
[131] WACHSMUTHE, ORAMM,PERRETTD. Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque[J]. Cerebral Cortex, 1994, 4(5): 509-522.
[132] CAI D, HE X, HAN J, et al. Graph regularized nonnegative matrix factorization for data representation[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 33(8): 1548-1560.
[133] RAJAN K, ABBOTT LF. Eigenvalue spectra of random matrices for neural networks[J]. Physical review letters, 2006, 97(18): 188104.
[134] ÅSTRÖM K J, WITTENMARK B. Computer-controlled systems: theory and design[M]. Courier Corporation, 2013.
[135] FISHER R S, ACEVEDO C, ARZIMANOGLOU A, et al. ILAE official report: a practical clinical definition of epilepsy[J]. Epilepsia, 2014, 55(4): 475-482.
[136] YUAN J, RAN X, LIUK, et al. Machine Learning Applications on Neuroimaging for Diagnosis and Prognosis of Epilepsy: A Review[J]. Journal of neuroscience methods, 2021: 109441.
[137] WETJENN M, MARSH W R, MEYER F B, et al. Intracranial electroencephalography seizure onset patterns and surgical outcomes in nonlesional extratemporal epilepsy[J]. Journal of neurosurgery, 2009, 110(6): 1147-1152.
[138] JAYAKARP, GOTMAN J, HARVEY A S, et al. Diagnostic utility of invasive EEG for epilepsy surgery: indications, modalities, and techniques[J]. Epilepsia, 2016, 57(11): 1735-1747.
[139] COGAN D, BIRJANDTALAB J, NOURANI M, et al. Multi-biosignal analysis for epileptic seizure monitoring[J]. International journal of neural systems, 2017, 27(01): 1650031.
[140] LOWE AJ, DAVIDE, KILPATRICK CJ, et al. Epilepsy surgery for pathologically proven hippocampal sclerosis provides long-term seizure control and improved quality of life[J]. Epilepsia, 2004, 45(3): 237-242.
[141] MOSHÉ S L, PERUCCA E, RYVLIN P, et al. Epilepsy: new advances[J]. The Lancet, 2015, 385(9971): 884-898.
[142] BERÉNYI A, BELLUSCIO M, MAO D, et al. Closed-loop control of epilepsy by transcranial electrical stimulation[J]. Science, 2012, 337(6095): 735-737.
[143] LI M C, COOK M J. Deep brain stimulation for drug-resistant epilepsy[J]. Epilepsia, 2018, 59 (2): 273-290.
[144] ODERIZ CC, VON ELLENRIEDERN, DUBEAUF, et al. Association of cortical stimulation-induced seizure with surgical outcome in patients with focal drug-resistant epilepsy[J]. JAMA neurology, 2019, 76(9): 1070-1078.
[145] PEQUITO S, ASHOURVAN A, BASSETT D, et al. Spectral control of cortical activity[C]// 2017 American Control Conference (ACC). 2017.
[146] ASHOURVAN A, PEQUITO S D G M, KHAMBHATI A N, et al. Model-based design for seizure control by stimulation[J]. Journal of Neural Engineering, 2020, 17(2).
[147] JIRSA V K, STACEY W C, QUILICHINI P P, et al. On the nature of seizure dynamics[J]. Brain, 2014, 137(8): 2210-2230.
[148] VERDUGO C D, MYREN-SVELSTAD S, AYDIN E, et al. Glia-neuron interactions underlie state transitions to generalized seizures[J]. Nature communications, 2019, 10(1): 1-13.
[149] ARRAIS M, MODOLO J, MOGUL D, et al. Design of optimal multi-site brain stimulation protocols via neuro-inspired epilepsy models for abatement of interictal discharges[J]. Journal of Neural Engineering, 2021, 18(1): 016024.
[150] LI Y, LIU Y, GUO Y Z, et al. Spatio-temporal-spectral hierarchical graph convolutional network with semisupervised active learning for patient-specific seizure prediction[J]. IEEE Transactions on Cybernetics, 2021.
[151] ZHANG Y, GUO Y, YANG P, et al. Epilepsy seizure prediction on EEG using common spatial pattern and convolutional neural network[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 24(2): 465-474.
[152] ZABIHIM, KIRANYAZ S, JÄNTTI V, et al. Patient-specific seizure detection using nonlinear dynamics and nullclines[J]. IEEE journal of biomedical and health informatics, 2019, 24(2): 543-555.
[153] ALAM S S,BHUIYAN MIH. Detection of seizure and epilepsy using higher order statistics in the EMD domain[J]. IEEE journal of biomedical and health informatics, 2013, 17(2): 312-318.
[154] GUO J, YANG K, LIU H, et al. A stacked sparse autoencoder-based detector for automatic identification of neuromagnetic high frequency oscillations in epilepsy[J]. IEEE transactions on medical imaging, 2018, 37(11): 2474-2482.
[155] CRALEY J, JOHNSON E, VENKATARAMAN A. A spatio-temporal model of seizure propagation in focal epilepsy[J]. IEEE transactions on medical imaging, 2019, 39(5): 1404-1418.
[156] ZHANG C, ALTAF M A B, YOO J. Design and implementation of an on-chip patient-specific closed-loop seizure onset and termination detection system[J]. IEEE journal of biomedical and health informatics, 2016, 20(4): 996-1007.
[157] KOOPMAN B O. Hamiltonian systems and transformation in Hilbert space[J]. Proceedings of the national academy of sciences of the united states of america, 1931, 17(5): 315.
[158] TAKEISHIN, KAWAHARA Y, YAIRI T. Learning Koopman invariant subspaces for dynamic mode decomposition[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 1130-1140.
[159] MORTON J, WITHERDEN F D, JAMESON A, et al. Deep dynamical modeling and control of unsteady fluid flows[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. 2018: 9278-9288.
[160] KORDA M, PUTINAR M, MEZIĆ I. Data-driven spectral analysis of the Koopman operator [J]. Applied and Computational Harmonic Analysis, 2020, 48(2): 599-629.
[161] WILLIAMS M O, KEVREKIDIS I G, ROWLEY C W. A data-driven approximation of the koopman operator: Extending dynamic mode decomposition[J]. Journal of Nonlinear Science, 2015, 25(6): 1307-1346.
[162] LI A, HUYNH C, FITZGERALD Z, et al. Neural fragility as an EEG marker of the seizure onset zone[J]. Nature neuroscience, 2021, 24(10): 1465-1474.
[163] BRUNTON S L, PROCTOR J L, KUTZ J N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems[J]. Proceedings of the national academy of sciences, 2016, 113(15): 3932-3937.
[164] LUSCH B, KUTZ J N, BRUNTON S L. Deep learning for universal linear embeddings of nonlinear dynamics[J]. Nature communications, 2018, 9(1): 1-10.
[165] FUKUSHIMA M, SPORNS O. Structural determinants of dynamic fluctuations between segregation and integration on the human connectome[J]. Communications biology, 2020, 3(1): 1-11.
[166] ZHENG S, LIANG Z, QU Y, et al. Kuramoto model based analysis reveals oxytocin effects on brain network dynamics[J]. International Journal of Neural Systems, 2021: 2250002-2250002.
[167] GAZZALEY A,RISSMAN J, D’ESPOSITO M. Functional connectivity during working memory maintenance[J]. Cognitive, Affective, & Behavioral Neuroscience, 2004, 4: 580-599.
[168] MAHMOUDI A, TAKERKART S, REGRAGUI F, et al. Multivoxel pattern analysis for FMRI data: a review[J]. Computational and mathematical methods in medicine, 2012, 2012.
[169] WALTHER A, NILI H, EJAZ N, et al. Reliability of dissimilarity measures for multi-voxel pattern analysis[J]. Neuroimage, 2016, 137: 188-200.
[170] YE Z, QU Y, LIANG Z, et al. Explainable fMRI-based brain decoding via spatial temporal- pyramid graph convolutional network[J]. Human Brain Mapping, 2023, 44(7): 2921-2935.
[171] ZHANG Y, TETREL L, THIRION B, et al. Functional annotation of human cognitive states using deep graph convolution[J]. NeuroImage, 2021, 231: 117847.
[172] BOSE A. Smart transmission grid applications and their supporting infrastructure[J]. IEEE transactions on Smart Grid, 2010, 1(1): 11-19.
[173] DIAO Z, ZHANG D, WANG X, et al. A hybrid model for short-term traffic volume prediction in massive transportation systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(3): 935-946.
[174] MASLOV S, ISPOLATOV I. Propagation of large concentration changes in reversible protein-binding networks[J]. Proceedings of the National Academy of Sciences, 2007, 104(34): 13655- 13660.
[175] DECO G, TONONI G, BOLY M, et al. Rethinking segregation and integration: contributions of whole-brain modelling[J]. Nature Reviews Neuroscience, 2015, 16(7): 430-439.
[176] LIU Q, FARAHIBOZORG S, PORCARO C, et al. Detecting large-scale networks in the human brain using high-density electroencephalography[J]. Human brain mapping, 2017, 38(9): 4631- 4643.
[177] BAKER AP, BROOKES MJ, REZEKI A, et al. Fast transient networks in spontaneous human brain activity[J]. elife, 2014, 3: e01867.
[178] DUC N T, LEE B. Microstate functional connectivity in EEG cognitive tasks revealed by a multivariate Gaussian hidden Markov model with phase locking value[J]. Journal of neural engineering, 2019, 16(2): 026033.
[179] CUI Z, STISO J, BAUM G L, et al. Optimization of energy state transition trajectory supports the development of executive function during youth[J]. elife, 2020, 9: e53060.
[180] PASQUALETTI F, GU S, BASSETT D S. RE: Warnings and caveats in brain controllability [J]. NeuroImage, 2019, 197: 586-588.
[181] KAMIYA S, KAWAKITA G, SASAI S, et al. Optimal control costs of brain state transitions in linear stochastic systems[J]. Journal of Neuroscience, 2023, 43(2): 270-281.
[182] SCHEID B H, ASHOURVAN A, STISO J, et al. Time-evolving controllability of effective connectivity networks during seizure progression[J]. Proceedings of the National Academy of Sciences, 2021, 118(5): e2006436118.
[183] HONEY C J, SPORNS O, CAMMOUN L, et al. Predicting human resting-state functional connectivity from structural connectivity[J]. Proceedings of the National Academy of Sciences, 2009, 106(6): 2035-2040.
[184] STISO J, KHAMBHATI A N, MENARA T, et al. White matter network architecture guides direct electrical stimulation through optimal state transitions[J]. Cell reports, 2019, 28(10): 2554-2566.
[185] DENG S, LI J, THOMAS YEO B, et al. Control theory illustrates the energy efficiency in the dynamic reconfiguration of functional connectivity[J]. Communications Biology, 2022, 5(1): 295.
[186] NUGROHO S A, TAHA A F, GATSIS N, et al. Algorithms for joint sensor and control nodes selection in dynamic networks[J]. Automatica, 2019, 106: 124-133.
[187] HABER A, NUGROHO S A, TORRES P, et al. Control node selection algorithm for nonlinear dynamic networks[J]. IEEE Control Systems Letters, 2020, 5(4): 1195-1200.
[188] HABER A. Joint sensor node selection and state estimation for nonlinear networks and systems [J]. IEEE Transactions on Network Science and Engineering, 2021, 8(2): 1722-1732.
[189] JIANG Z Y, ZENG Y, LIU Z H, et al. Identifying critical nodes’ group in complex networks[J]. Physica A: Statistical Mechanics and its Applications, 2019, 514: 121-132.
[190] FÜGENSCHUH A, MARTIN A. Computational integer programming and cutting planes[J]. Handbooks in Operations Research and Management Science, 2005, 12: 69-121.
[191] DING J, WEN C, LI G, et al. Key nodes selection in controlling complex networks via convex optimization[J]. IEEE Transactions on Cybernetics, 2019, 51(1): 52-63.
[192] PARK H J, FRISTON K. Structural and functional brain networks: from connections to cognition [J]. Science, 2013, 342(6158): 1238411.
[193] KHAMBHATI A N, MEDAGLIA J D, KARUZA E A, et al. Subgraphs of functional brain networks identify dynamical constraints of cognitive control[J]. PLoS computational biology, 2018, 14(7): e1006234.
[194] SHINE J M, BREAKSPEAR M, BELL P T, et al. Human cognition involves the dynamic integration of neural activity and neuromodulatory systems[J]. Nature neuroscience, 2019, 22 (2): 289-296.
[195] FRIEDMAN N P, ROBBINS T W. The role of prefrontal cortex in cognitive control and executive function[J]. Neuropsychopharmacology, 2022, 47(1): 72-89.
[196] JIANG L, LI F, CHEN Z, et al. Information transmission velocity-based dynamic hierarchical brain networks[J]. NeuroImage, 2023, 270: 119997.
[197] LIU Y Y, SLOTINE J J, BARABÁSI A L. Controllability of complex networks[J]. nature, 2011, 473(7346): 167-173.
[198] CHEN C T. Linear system theory and design[M]. Saunders college publishing, 1984.
[199] KALMAN RE. Mathematical description of linear dynamical systems[J]. Journal of the Society for Industrial and Applied Mathematics, Series A: Control, 1963, 1(2): 152-192.
[200] GARG A K, LI P, RASHID M S, et al. Color and orientation are jointly coded and spatially organized in primate primary visual cortex[J]. Science, 2019, 364(6447): 1275-1279.
[201] BALDASSANO C, CHEN J, ZADBOOD A, et al. Discovering event structure in continuous narrative perception and memory[J]. Neuron, 2017, 95(3): 709-721.
[202] YEO B T, KRIENEN F M, SEPULCRE J, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity[J]. Journal of neurophysiology, 2011.
[203] TOURNIER J D, SMITH R, RAFFELT D, et al. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation[J]. Neuroimage, 2019, 202: 116137.
[204] JEURISSEN B, TOURNIER J D, DHOLLANDER T, et al. Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data[J]. NeuroImage, 2014, 103: 411-426.
[205] SMITH RE, TOURNIERJ D, CALAMANTEF, et al. Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information [J]. Neuroimage, 2012, 62(3): 1924-1938.
[206] SMITH R E, TOURNIER J D, CALAMANTE F, et al. SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography[J]. Neuroimage, 2015, 119: 338-351.
[207] SPRENG R N, SEPULCRE J, TURNER G R, et al. Intrinsic architecture underlying the reactions among the default, dorsal attention, and frontoparietal control networks of the human brain[J]. Journal of cognitive neuroscience, 2013, 25(1): 74-86.
[208] BRISSENDEN J A, LEVIN E J, OSHER D E, et al. Functional evidence for a cerebellar node of the dorsal attention network[J]. Journal of Neuroscience, 2016, 36(22): 6083-6096.
[209] POSNER M I, PETERSEN S E. The attention system of the human brain[J]. Annual review of neuroscience, 1990, 13(1): 25-42.
[210] HAN Y, HAO W, VAIDYA U. Deep learning of koopman representation for control[C]//2020 59th IEEE Conference on Decision and Control (CDC). IEEE, 2020: 1890-1895.
[211] ZHANG H, ZHAO M, WEI C, et al. Eegdenoisenet: A benchmark dataset for deep learning solutions of eeg denoising[J]. Journal of Neural Engineering, 2021, 18(5): 056057.
[212] YU J, LI C, LOU K, et al. Embedding Decomposition for Artifacts Removal in EEG Signals [A]. 2021.
[213] BULLMORE E, SPORNS O. The economy of brain network organization[J]. Nature reviews neuroscience, 2012, 13(5): 336-349.
[214] YUANY, TANG X, ZHOU W, et al. Data driven discovery of cyber physical systems[J]. Nature communications, 2019, 10(1): 1-9.
[215] HARRISON L, DAVID O, FRISTONK. Stochastic models of neuronal dynamics[J]. Philosoph- ical Transactions of the Royal Society B: Biological Sciences, 2005, 360(1457): 1075-1091.
[216] GENKIN M, HUGHES O, ENGEL T A. Learning non-stationary Langevin dynamics from stochastic observations of latent trajectories[J]. Nature communications, 2021, 12(1): 5986.
[217] GENKIN M, ENGEL T A. Moving beyond generalization to accurate interpretation of flexible models[J]. Nature machine intelligence, 2020, 2(11): 674-683.
[218] YE L, FENG J, LI C. Controlling brain dynamics: Landscape and transition path for working memory[J]. PLOS Computational Biology, 2023, 19(9): e1011446.
[219] BERTSEKAS D P. Nonlinear programming[J]. Journal of the Operational Research Society, 1997, 48(3): 334-334.
[220] 刘浩洋等. 最优化: 建模, 算法与理论网络技术[M]. 最优化: 建模、算法与理论网络技术, 2020.
[221] ROCKAFELLAR R T, WETS R J B. Variational analysis: volume 317[M]. Springer Science & Business Media, 2009.
[222] MARKOV N T, ERCSEY-RAVASZM, VANESSEN D C, et al. Cortical high-density counter-stream architectures[J]. Science, 2013, 342(6158): 1238406.
[223] VANDEN HEUVEL MP, SPORNSO. Network hubs in the human brain[J]. Trends in cognitive sciences, 2013, 17(12): 683-696.
[224] TEWARIEP, PRASSEB, MEIER JM, et al. Mapping functional brain networks from the structural connectome: Relating the series expansion and eigenmode approaches[J]. NeuroImage, 2020, 216: 116805.
[225] DESLAURIERS-GAUTHIER S, ZUCCHELLI M, FRIGO M, et al. A unified framework for multimodal structure–function mapping based on eigenmodes[J]. Medical Image Analysis, 2020, 66: 101799.
[226] HONEY CJ, KÖTTER R, BREAKSPEAR M, et al. Network structure of cerebral cortex shapes functional connectivity on multiple time scales[J]. Proceedings of the National Academy of Sciences, 2007, 104(24): 10240-10245.
[227] ATASOY S, DONNELLY I, PEARSON J. Human brain networks function in connectome-specific harmonic waves[J]. Nature communications, 2016, 7(1): 10340.
[228] WANG R, LIN P, LIU M, et al. Hierarchical connectome modes and critical state jointly maximize human brain functional diversity[J]. Physical review letters, 2019, 123(3): 038301.
[229] PRETI M G, VAN DE VILLE D. Decoupling of brain function from structure reveals regional behavioral specialization in humans[J]. Nature communications, 2019, 10(1): 1-7.
[230] CASORSO J, KONG X, CHI W, et al. Dynamic mode decomposition of resting-state and task fMRI[J]. NeuroImage, 2019, 194: 42-54.
[231] HAIMOVICI A, TAGLIAZUCCHI E, BALENZUELA P, et al. Brain organization into resting state networks emerges at criticality on a model of the human connectome[J]. Physical review letters, 2013, 110(17): 178101.
[232] ROBINSON P, SARKAR S, PANDEJEE G M, et al. Determination of effective brain connectivity from functional connectivity with application to resting state connectivities[J]. Physical Review E, 2014, 90(1): 012707.
[233] CHIALVO D R. Emergent complex neural dynamics[J]. Nature physics, 2010, 6(10): 744-750.
[234] BOTCHAROVA M, FARMER S F, BERTHOUZE L. Power-law distribution of phase-locking intervals does not imply critical interaction[J]. Physical Review E, 2012, 86(5): 051920.
[235] EZAKIT, DOS REISE F, WATANABE T, et al. Closer to critical resting-state neural dynamics in individuals with higher fluid intelligence[J]. Communications biology, 2020, 3(1): 1-9.

所在学位评定分委会
数学
国内图书分类号
Q189; TP183; TN911.7
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/633417
专题工学院_生物医学工程系
推荐引用方式
GB/T 7714
Liang ZC. Dynamical Model Based Brain Network Control[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930756-梁智超-生物医学工程系(26284KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[梁智超]的文章
百度学术
百度学术中相似的文章
[梁智超]的文章
必应学术
必应学术中相似的文章
[梁智超]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。