[1] MOORE G E. Progress in digital integrated electronics[C]//International Electron Devices Meeting. Institute of Electrical and Electronics Engineers, 1975: 11-13.
[2] MOORE G E. Cramming more components onto integrated circuits[J]. Proceedings of the Institute of Electrical and Electronics Engineers, 1998, 86(1): 82-85.
[3] SHALF J. The future of computing beyond Moore's law[J]. Philosophical Transactions of the Royal Society A, 2020, 378(2166): 20190061.
[4] 黎明, 黄如. 后摩尔时代大规模集成电路器件与集成技术[J]. 中国科学: 信息科学, 2018, 48(8): 963-977.
[5] DEUTSCH D. Quantum theory, the Church-Turing principle and the universal quantum computer[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1985, 400(1818): 97-117.
[6] DEUTSCH D E. Quantum computational networks[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1989, 425(1868): 73-90.
[7] YAO A C C. Quantum circuit complexity[C]//Proceedings of 34th Annual Foundations of Computer Science. Institute of Electrical and Electronics Engineers, 1993: 352-361.
[8] KJAERGAARD M, SCHWARTZ M E, BRAUMÜLLER J, et al. Superconducting qubits: Current state of play[J]. Annual Review of Condensed Matter Physics, 2020, 11: 369-395.
[9] BLUME-KOHOUT R, GAMBLE J K, NIELSEN E, et al. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography[J]. Nature Communications, 2017, 8(1): 14485.
[10] HARROW A W, HASSIDIM A, LLOYD S. Quantum algorithm for linear systems of equations [J]. Physical Review Letters, 2009, 103(15): 150502.
[11] CAO Y, ROMERO J, OLSON J P, et al. Quantum chemistry in the age of quantum computing [J]. Chemical Reviews, 2019, 119(19): 10856-10915.
[12] DE LEON N P, ITOH K M, KIM D, et al. Materials challenges and opportunities for quantum computing hardware[J]. Science, 2021, 372(6539): eabb2823.
[13] HERMAN D, GOOGIN C, LIU X, et al. A survey of quantum computing for finance[A/OL]. arXiv, 2022, https://arxiv.org/abs/2201.02773.
[14] GISIN N, RIBORDY G, TITTEL W, et al. Quantum cryptography[J]. Reviews of Modern Physics, 2002, 74(1): 145.
[15] BIAMONTE J, WITTEK P, PANCOTTI N, et al. Quantum machine learning[J]. Nature, 2017, 549(7671): 195-202.
[16] FEYNMAN R P. Simulating physics with computers[J]. International Journal of Theoretical Physics, 1982, 21(6/7).
[17] GROVER L K. Quantum computers can search arbitrarily large databases by a single query[J]. Physical Review Letters, 1997, 79(23): 4709.
[18] SHOR P W. Algorithms for quantum computation: Discrete logarithms and factoring[C]// Proceedings of 35th annual symposium on foundations of computer science. Institute of Electrical and Electronics Engineers, 1994: 124-134.
[19] FARHI E, GOLDSTONE J, GUTMANN S, et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem[J]. Science, 2001, 292(5516): 472- 475.
[20] BARKOUTSOS P K, GONTHIER J F, SOKOLOV I, et al. Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions[J]. Physical Review A, 2018, 98(2): 022322.
[21] DEUTSCH D, JOZSA R. Rapid solution of problems by quantum computation[J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1992, 439 (1907): 553-558.
[22] POLLARD J M. Monte Carlo methods for index computation (𝑚𝑜𝑑𝑝)[J]. Mathematics of Computation, 1978, 32(143): 918-924.
[23] NIELSEN M A, CHUANG I L. Quantum computation and quantum information[J]. Physics Today, 2001, 54(2): 60.
[24] YAMAGUCHI F, YAMAMOTO Y. Quantum simulation of the t-J model[J]. Superlattices and Microstructures, 2002, 32(4-6): 343-345.
[25] MANOUSAKIS E. A quantum-dot array as model for copper-oxide superconductors: A dedicated quantum simulator for the many-fermion problem[J]. Journal of low temperature physics, 2002, 126: 1501-1513.
[26] SIMON J, BAKR W S, MA R, et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice[J]. Nature, 2011, 472(7343): 307-312.
[27] ISLAM R, EDWARDS E, KIM K, et al. Onset of a quantum phase transition with a trapped ion quantum simulator[J]. Nature Communications, 2011, 2(1): 377.
[28] BAUMANN K, GUERLIN C, BRENNECKE F, et al. Dicke quantum phase transition with a superfluid gas in an optical cavity[J]. Nature, 2010, 464(7293): 1301-1306.
[29] LANYON B P, WHITFIELD J D, GILLETT G G, et al. Towards quantum chemistry on a quantum computer[J]. Nature Chemistry, 2010, 2(2): 106-111.
[30] ASPURU-GUZIK A, DUTOI A D, LOVE P J, et al. Simulated quantum computation of molecular energies[J]. Science, 2005, 309(5741): 1704-1707.
[31] O’MALLEY P J, BABBUSH R, KIVLICHAN I D, et al. Scalable quantum simulation of molecular energies[J]. Physical Review X, 2016, 6(3): 031007.
[32] GIOVANAZZI S. Hawking radiation in sonic black holes[J]. Physical Review Letters, 2005, 94(6): 061302.
[33] CROSS A. The IBM Q experience and QISKit open-source quantum computing software[J].Bulletin of the American Physical Society, 2018, 63.
[34] LIU W, WU Q, SHEN J, et al. An optimized quantum minimum searching algorithm with suresuccess probability and its experiment simulation with Cirq[J]. Journal of Ambient Intelligence and Humanized Computing, 2021: 1-10.
[35] KOCH D, WESSING L, ALSING P M. Introduction to coding quantum algorithms: A tutorial series using PyQuil[A/OL]. arXiv, 2019, https://arxiv.org/abs/1903.05195.
[36] STEIGER D S, HÄNER T, TROYER M. ProjectQ: An open source software framework for quantum computing[J]. Quantum, 2018, 2: 49.
[37] BENIOFF P. Quantum mechanical hamiltonian models of turing machines[J]. Journal of Statistical Physics, 1982, 29: 515-546.
[38] FEYNMAN R P. Quantum mechanical computers[C]//Conference on Lasers and ElectroOptics. Optica Publishing Group, 1984: TUAA2.
[39] BENHELM J, KIRCHMAIR G, ROOS C F, et al. Towards fault-tolerant quantum computing with trapped ions[J]. Nature Physics, 2008, 4(6): 463-466.
[40] LOSS D, DIVINCENZO D P. Quantum computation with quantum dots[J]. Physical Review A, 1998, 57(1): 120.
[41] DIRAC P, POLKINGHORNE J. The principles of quantum mechanics[J]. Physics Today, 1958, 11(6): 32-33.
[42] DIVINCENZO D P. The physical implementation of quantum computation[J]. Fortschritte der Physik: Progress of Physics, 2000, 48(9-11): 771-783.
[43] BOIXO S, ISAKOV S V, SMELYANSKIY V N, et al. Characterizing quantum supremacy in near-term devices[J]. Nature Physics, 2018, 14(6): 595-600.
[44] NEILL C, ROUSHAN P, KECHEDZHI K, et al. A blueprint for demonstrating quantum supremacy with superconducting qubits[J]. Science, 2018, 360(6385): 195-199.
[45] JURCEVIC P, JAVADI-ABHARI A, BISHOP L S, et al. Demonstration of quantum volume 64 on a superconducting quantum computing system[J]. Quantum Science and Technology, 2021, 6(2): 025020.
[46] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510.
[47] WU Y, BAO W S, CAO S, et al. Strong quantum computational advantage using a superconducting quantum processor[J]. Physical Review Letters, 2021, 127(18): 180501.
[48] YAN F, KRANTZ P, SUNG Y, et al. Tunable coupling scheme for implementing high-fidelity two-qubit gates[J]. Physical Review Applied, 2018, 10(5): 054062.
[49] NAKAMURA Y, PASHKIN Y A, TSAI J. Coherent control of macroscopic quantum states in a single-Cooper-pair box[J]. Nature, 1999, 398(6730): 786-788.
[50] CLARKE J, WILHELM F K. Superconducting quantum bits[J]. Nature, 2008, 453(7198): 1031-1042.
[51] KRANTZ P, KJAERGAARD M, YAN F, et al. A quantum engineer’s guide to superconducting qubits[J]. Applied Physics Reviews, 2019, 6(2): 021318.
[52] VION D, AASSIME A, COTTET A, et al. Manipulating the quantum state of an electrical circuit[J]. Science, 2002, 296(5569): 886-889.
[53] 李晓巍, 付祥, 燕飞, 等. 量子计算研究现状与未来发展[J]. 中国工程科学, 2022, 24(4).
[54] DEVORET M, WALLRAFF A, MARTINIS J. Superconducting qubits: A short review[A/OL]. arXiv, 2004, https://arxiv.org/abs/cond-mat/0411174.
[55] CHIAVERINI J, LEIBFRIED D, SCHAETZ T, et al. Realization of quantum error correction [J]. Nature, 2004, 432(7017): 602-605.
[56] DEVORET M H, SCHOELKOPF R J. Superconducting circuits for quantum information: An outlook[J]. Science, 2013, 339(6124): 1169-1174.
[57] CREEDON D L, RESHITNYK Y, FARR W, et al. High Q-factor sapphire whispering gallery mode microwave resonator at single photon energies and millikelvin temperatures[J]. Applied Physics Letters, 2011, 98(22): 222903.
[58] MARTINIS J M, NAM S, AUMENTADO J, et al. Rabi oscillations in a large Josephson-junction qubit[J]. Physical Review Letters, 2002, 89(11): 117901.
[59] PELOFSKE E, BÄRTSCHI A, EIDENBENZ S. Quantum annealing vs. QAOA: 127 qubit higher-order ising problems on NISQ computers[A/OL]. arXiv, 2023, https: //arxiv.org/abs/2301.00520.
[60] SHELDON S, MAGESAN E, CHOW J M, et al. Procedure for systematically tuning up crosstalk in the cross-resonance gate[J]. Physical Review A, 2016, 93(6): 060302.
[61] KYSER D, TING C. Voltage dependence of proximity effects in electron beam lithography[J]. Journal of Vacuum Science and Technology, 1979, 16(6): 1759-1763.
[62] OWEN G, RISSMAN P. Proximity effect correction for electron beam lithography by equalization of background dose[J]. Journal of Applied Physics, 1983, 54(6): 3573-3581.
[63] SEWELL H. Control of pattern dimensions in electron lithography[J]. Journal of Vacuum Science and Technology, 1978, 15(3): 927-930.
[64] MOROHASHI S, SHINOKI F, SHOJI A, et al. High quality Nb/Al − AlO𝑥/Nb Josephson junction[J]. Applied Physics Letters, 1985, 46(12): 1179-1181.
[65] MARTINIS J M, COOPER K B, MCDERMOTT R, et al. Decoherence in Josephson qubits from dielectric loss[J]. Physical Review Letters, 2005, 95(21): 210503.
[66] ITHIER G, COLLIN E, JOYEZ P, et al. Decoherence in a superconducting quantum bit circuit [J]. Physical Review B, 2005, 72(13): 134519.
[67] GRABOVSKIJ G J, PEICHL T, LISENFELD J, et al. Strain tuning of individual atomic tunneling systems detected by a superconducting qubit[J]. Science, 2012, 338(6104): 232-234.
[68] CATELANI G, NIGG S E, GIRVIN S M, et al. Decoherence of superconducting qubits caused by quasiparticle tunneling[J]. Physical Review B, 2012, 86(18): 184514.
[69] WENNER J, YIN Y, LUCERO E, et al. Excitation of superconducting qubits from hot nonequilibrium quasiparticles[J]. Physical Review Letters, 2013, 110(15): 150502.
[70] RISTÈ D, BULTINK C, TIGGELMAN M J, et al. Millisecond charge-parity fluctuations and induced decoherence in a superconducting transmon qubit[J]. Nature Communications, 2013, 4(1): 1913.
[71] KIM Z, ZARETSKEY V, YOON Y, et al. Anomalous avoided level crossings in a Cooper-pair box spectrum[J]. Physical Review B, 2008, 78(14): 144506.
[72] LAFARGE P, JOYEZ P, ESTEVE D, et al. Measurement of the even-odd free-energy difference of an isolated superconductor[J]. Physical Review Letters, 1993, 70(7): 994.
[73] O’CONNELL A D, ANSMANN M, BIALCZAK R C, et al. Microwave dielectric loss at single photon energies and millikelvin temperatures[J]. Applied Physics Letters, 2008, 92(11): 112903.
[74] MCDERMOTT R. Materials origins of decoherence in superconducting qubits[J]. Institute of Electrical and Electronics Engineers Transactions on Applied Superconductivity, 2009, 19(1): 2-13.
[75] WEN C P. Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications[J]. Institute of Electrical and Electronics Engineers Transactions on Microwave Theory and Techniques, 1969, 17(12): 1087-1090.
[76] WENNER J, BARENDS R, BIALCZAK R, et al. Surface loss simulations of superconducting coplanar waveguide resonators[J]. Applied Physics Letters, 2011, 99(11): 113513.
[77] MEGRANT A, NEILL C, BARENDS R, et al. Planar superconducting resonators with internal quality factors above one million[J]. Applied Physics Letters, 2012, 100(11): 113510.
[78] DOLAN G. Offset masks for lift-off photoprocessing[J]. Applied Physics Letters, 1977, 31(5): 337-339.
[79] ROOKS M, KRATSCHMER E, VISWANATHAN R, et al. Low stress development of poly (methylmethacrylate) for high aspect ratio structures[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2002, 20(6): 2937-2941.
[80] MOHSIN M A, COWIE J M. Enhanced sensitivity in the electron beam resist poly (methyl methacrylate) using improved solvent developer[J]. Polymer, 1988, 29(12): 2130-2135.
[81] HASKO D, YASIN S, MUMTAZ A. Influence of developer and development conditions on the behavior of high molecular weight electron beam resists[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2000, 18(6): 3441-3444.
[82] YASIN S, HASKO D, AHMED H. Comparison of MIBK/IPA and water/IPA as PMMA developers for electron beam nanolithography[J]. Microelectronic Engineering, 2002, 61: 745-753.
[83] HENTZELL H, GROVENOR C, SMITH D. Grain structure variation with temperature for evaporated metal films[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1984, 2(2): 218-219.
[84] AZIMI S M, BRITZ D, ENGSTLER M, et al. Advanced steel microstructural classification by deep learning methods[J]. Scientific Reports, 2018, 8(1): 2128.
[85] ZENG L, NIK S, GREIBE T, et al. Direct observation of the thickness distribution of ultra thin AlO𝑥 barriers in Al/AlO𝑥/Al Josephson junctions[J]. Journal of Physics D: Applied Physics, 2015, 48(39): 395308.
[86] NIK S, KRANTZ P, ZENG L, et al. Correlation between AlO𝑥 grain size, grain boundary grooves and local variations in oxide barrier thickness of Al/AlO𝑥/Al tunnel junctions by transmission electron microscopy[J]. SpringerPlus, 2016, 5(1): 1-7.
[87] AMBEGAOKAR V, BARATOFF A. Tunneling between superconductors[J]. Physical Review Letters, 1963, 10(11): 486.
[88] OZAWA T, PRICE H M, AMO A, et al. Topological photonics[J]. Reviews of Modern Physics, 2019, 91(1): 015006.
[89] MA R, SAXBERG B, OWENS C, et al. A dissipatively stabilized Mott insulator of photons[J]. Nature, 2019, 566(7742): 51-57.
[90] XU K, SUN Z H, LIU W, et al. Probing dynamical phase transitions with a superconducting quantum simulator[J]. Science Advances, 2020, 6(25): eaba4935.
[91] GUO X Y, GE Z Y, LI H, et al. Observation of Bloch oscillations and Wannier-Stark localization on a superconducting quantum processor[J]. Nature Partner Journals Quantum Information, 2021, 7(1): 51.
[92] FEDOROV G, REMIZOV S, SHAPIRO D, et al. Photon transport in a Bose-Hubbard chain of superconducting artificial atoms[J]. Physical Review Letters, 2021, 126(18): 180503.
[93] MI X, IPPOLITI M, QUINTANA C, et al. Time-crystalline eigenstate order on a quantum processor[J]. Nature, 2022, 601(7894): 531-536.
[94] SAXBERG B, VRAJITOAREA A, ROBERTS G, et al. Disorder-assisted assembly of strongly correlated fluids of light[J]. Nature, 2022, 612(7940): 435-441.
[95] MI X, SONNER M, NIU M, et al. Noise-resilient edge modes on a chain of superconducting qubits[J]. Science, 2022, 378(6621): 785-790.
[96] HU S, KE Y, LEE C. Topological quantum transport and spatial entanglement distribution via a disordered bulk channel[J]. Physical Review A, 2020, 101(5): 052323.
[97] TAO Z, HUANG W, NIU J, et al. Interaction-induced topological pumping in a solid-state quantum system[A/OL]. arXiv, 2023, https://arxiv.org/abs/2303.04582.
[98] BUMBLE B, FUNG A, KAUL A B, et al. Submicrometer Nb/Al − AlO𝑥/Nb integratedcircuit fabrication process for quantum computing applications[J]. Institute of Electrical and Electron-ics Engineers Transactions on Applied Superconductivity, 2009, 19(3): 226-229.
[99] KETCHEN M, PEARSON D, KLEINSASSER A, et al. Sub-𝜇m, planarized, Nb − AlO𝑥 − Nb Josephson process for 125 mm wafers developed in partnership with Si technology[J]. Applied Physics Letters, 1991, 59(20): 2609-2611.
[100] LOTKHOV S, TOLKACHEVA E, BALASHOV D, et al. Self-shunted Al/AlO𝑥/Al Josephson junctions[A/OL]. arXiv, 2006, https://arxiv.org/abs/cond-mat/0605532.
[101] TOLPYGO S K, BOLKHOVSKY V, WEIR T J, et al. Fabrication process and properties of fully-planarized deep-submicron Nb/Al − AlO𝑥/Nb Josephson junctions for VLSI circuits[J]. Institute of Electrical and Electronics Engineers Transactions on Applied Superconductivity, 2014, 25(3): 1-12.
[102] KRANTZ P. Investigation of transmon qubit designs-A study of plasma frequency predictability[D]. Chalmers University of Technology, Göteborg, 2010.
[103] NUGROHO C, ORLYANCHIK V, VAN HARLINGEN D. Low frequency resistance and critical current fluctuations in Al-based Josephson junctions[J]. Applied Physics Letters, 2013, 102(14): 142602.
[104] ROSENBLATT S, HERTZBERG J, CHAVEZ-GARCIA J, et al. Enablement of near-term quantum processors by architectural yield engineering[J]. Bulletin of the American Physical Society, 2019, 64.
[105] POP I M, FOURNIER T, CROZES T, et al. Fabrication of stable and reproducible submicron tunnel junctions[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2012, 30(1): 010607.
[106] NIEDZIELSKI B M, KIM D K, SCHWARTZ M E, et al. Silicon hard-stop spacers for 3D integration of superconducting qubits[C]//International Electron Devices Meeting. Institute of Electrical and Electronics Engineers, 2019: 31.3.1-31.3.4.
[107] KIM H, JÜNGER C, MORVAN A, et al. Effects of laser-annealing on fixed-frequency superconducting qubits[J]. Applied Physics Letters, 2022, 121(14): 142601.88
修改评论