[1] REYNOLDS O. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels [J]. Philosophical Transactions of the Royal society of London, 1883(174): 935-982.
[2] ORR W M. The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II: A viscous liquid[C]//Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences: volume 27. 1907: 69-138.
[3] SOMMERFELD A. Ein Beitrag zur hydrodynamischen Erkldrung der turbulent Flussigkeitsbewegung[C]//Atti del IV Congresso Internazionale dei Matematici: volume 3. Roma, 1908: 116-124.
[4] SCHLICHTING H, GERSTEN K. Boundary-layer theory, Ninth[M]. Verlag Berlin Heidelberg:Springer, 2016.
[5] GRANVILLE P S. The frictional resistance and turbulent boundary layer of rough surfaces[J].Journal of Ship Research, 1958, 2(04): 52-74.
[6] BUSHNELL D M. Hypersonic flight experimentation-status and shortfalls[J].Future Aerospace Technology in the Service of the Alliance, 1997, 3.
[7] BERTIN J J, CUMMINGS R M. Critical hypersonic aerothermodynamic phenomena[J]. Annual Review of Fluid Mechanics, 2006, 38(1): 129-157.
[8] CHEN X, FU S. Progress in the research of hypersonic and highenthalpy boundary layer instabilities and transition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 2937-2957.
[9] SLOTNICK J P, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: a path to revolutionary computational aerosciences[R]. The National Aeronautics and Space Administration, 2014.
[10] CHEN J, TU G, ZHANG Y, et al. Hypersnonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311-337.
[11] HAGEN G H L. Über den einfluss der temperatur auf die bewegung des wassers in röhren[M]. Berlin: Druckerei der Königl. akademie der wissenschaften, 1854: 17-98.
[12] DARCY H. Recherches expérimentales relatives au mouvement de l’eau dans les tuyaux: volume 1[M]. Paris: Mallet-Bachelier, 1857: 268.
[13] KADIVAR M, TORMEY D, MCGRANAGHAN G. A review on turbulent flow over rough surfaces: Fundamentals and theories[J]. International Journal of Thermofluids, 2021, 10: 100077.
[14] DANBERG J E, SIGAL A. Analysis of turbulent boundary-layer over rough surfaces with application to projectile aerodynamics[R]. Army Ballistic Research Lab Aberdeen Proving Ground MD, 1988.
[15] DOMEL A G, SAADAT M, WEAVER J C, et al. Shark skin-inspired designs that improve aerodynamic performance[J]. Journal of the Royal Society Interface, 2018, 15(139): 20170828.
[16] LI P, GUO D, HUANG X. Heat transfer enhancement, entropy generation and temperature uniformity analyses of shark-skin bionic modified microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118846.
[17] SOLEIMANI S, ECKELS S. A review of drag reduction and heat transfer enhancement by riblet surfaces in closed and open channel flow[J]. International Journal of Thermofluids, 2021, 9: 100053.
[18] SEEHAUSEN H, GILGE P, KELLERSMANN A, et al. Numerical study of stage roughness variations in a high pressure compressor[J]. International Journal of Gas Turbine, Propulsion and Power Systems, 2020, 11(3): 16-25.
[19] RAUPACH M, THOM A S. Turbulence in and above plant canopies[J]. Annual Review of Fluid Mechanics, 1981, 13(1): 97-129.
[20] FINNIGAN J. Turbulence in plant canopies[J]. Annual Review of Fluid Mechanics, 2000, 32(1): 519-571.
[21] COCEAL O, BELCHER S E. A canopy model of mean winds through urban areas[J]. Quarterly Journal of the Royal Meteorological Society, 2004, 130(599): 1349-1372.
[22] CHENG H, CASTRO I P. Near wall flow over urban-like roughness[J]. Boundary-Layer Meteorology, 2002, 104: 229-259.
[23] ZHANG W, ZHU X, YANG X I, et al. Evidence for Raupach et al.’s mixing-layer analogy in deep homogeneous urban-canopy flows[J]. Journal of Fluid Mechanics, 2022, 944: A46.
[24] STRIPF M, SCHULZ A, BAUER H J. Modeling of rough-wall boundary layer transition and heat transfer on turbine airfoils[J]. Journal of Turbomachinery, 2008, 130(2).
[25] BONS J P. A review of surface roughness effects in gas turbines[J]. Journal of Turbomachinery, 2010, 132(2).
[26] FOROOGHI P, WEIDENLENER A, MAGAGNATO F, et al. DNS of momentum and heat transfer over rough surfaces based on realistic combustion chamber deposit geometries[J]. International Journal of Heat and Fluid Flow, 2018, 69: 83-94.
[27] BALAN C, FRANCO J M. Influence of the geometry on the transient and steady flow of lubricating greases[J]. Tribology Transactions, 2001, 44(1): 53-58.
[28] MCHALE J P, GARIMELLA S V. Nucleate boiling from smooth and rough surfaces–Part 1:Fabrication and characterization of an optically transparent heater–sensor substrate with controlled surface roughness[J]. Experimental Thermal and Fluid Science, 2013, 44: 456-467.
[29] CHAMORRO L P, PORTÉ-AGEL F. A wind-tunnel investigation of wind-turbine wakes:boundary-layer turbulence effects[J]. Boundary-Layer Meteorology, 2009, 132: 129-149.
[30] LIU C, HU C. CFD simulation of a floating wind turbine platform in rough sea conditions[C]// The Twenty-fourth International Ocean and Polar Engineering Conference. OnePetro, 2014.
[31] CHUNG D, HUTCHINS N, SCHULTZ M P, et al. Predicting the drag of rough surfaces[J]. Annual Review of Fluid Mechanics, 2021, 53(1): 439-471.
[32] ZHANG W, WAN M, XIA Z, et al. Constrained large-eddy simulation of turbulent flow over rough walls[J]. Physical Review Fluids, 2021, 6(4): 044602.
[33] PRANDTL L. Über Flüssigkeitsbewegung beisehr kleiner Reibung[C]//Verhandlungen des III. Internationalen Mathematiker Kongresses: volume 2. Heidelberg, 1904: 484-491.
[34] ZHONG X, WANG X. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers[J]. Annual Review of Fluid Mechanics, 2012, 44(1): 527-561.
[35] FEDOROV A V, RYZHOV A A, SOUDAKOV V G, et al. Receptivity of a high-speed boundary layer to temperature spottiness[J]. Journal of Fluid Mechanics, 2013, 722: 533-553.
[36] REMPFER D. Low-dimensional modeling and numerical simulation of transition in simple shear flows[J]. Annual Review of Fluid Mechanics, 2003, 35(1): 229-265.
[37] BORODULIN V, IVANOV A, KACHANOV Y, et al. Receptivity coefficients at excitation of cross-flow waves by free-stream vortices in the presence of surface roughness[J]. Journal of Fluid Mechanics, 2013, 716: 487-527.
[38] SCHMID P J, HENNINGSON D S, JANKOWSKI D. Stability and transition in shear flows [J]. Applied Mechanics Reviews, 2002, 55(3): B57-B59.
[39] 周恒, 赵耕夫. 流动稳定性[M]. 北京: 国防工业出版社, 2004.
[40] HERBERT T. Secondary instability of boundary layers[J]. Annual Review of Fluid Mechanics, 1988, 20(1): 487-526.
[41] LIN L, WU Y. Theoretical analysis of vorticity in a hairpin vortex in the viscous sublayer of a laminar boundary layer[J]. European Journal of Mechanics - B/Fluids, 2022, 94: 106-120.
[42] LANDAU L D. On the problem of turbulence[C]//Doklady Akademii Nauk USSR: volume 44.1944: 311.
[43] STUART J T. On the non-linear mechanics of wave disturbances in stable and unstable parallel flows Part 1. The basic behaviour in plane Poiseuille flow[J]. Journal of Fluid Mechanics, 1960, 9(3): 353-370.
[44] 周恒, 李骊. 流体层流运动稳定性中的 Ляпунов 方法[J]. 应用数学和力学, 1983, 4.
[45] 周恒, 尤学一. 流动稳定性弱非线性理论中的问题及其改进[J]. 力学学报, 1993, 25(5): 515-528.
[46] 周恒, 藤村薰. 流动稳定性弱非线性理论的进一步改进[J]. 中国科学: A 辑, 1997, 27(12):1111-1118.
[47] GASTER M. On the effects of boundary-layer growth on flow stability[J]. Journal of Fluid Mechanics, 1974, 66(3): 465-480.
[48] BERTOLOTTI F, HERBERT T. Analysis of the linear stability of compressible boundary layers using the PSE[J]. Theoretical and Computational Fluid Dynamics, 1991, 3(2): 117-124.
[49] HERBERT T, STUCKERT G, LIN N. Method for transition prediction in high-speed boundary layers: volume 93[M]. Flight Dynamics Directorate, Wright Laboratory, Air Force Materiel Command, 1993.
[50] HERBERT T. Parabolized stability equations[J]. Annual Review of Fluid Mechanics, 1997, 29 (1): 245-283.51] LEES L, LIN C C. Investigation of the stability of the laminar boundary layer in a compressible fluid: number 1115[M]. National Advisory Committee for Aeronautics, 1946.
[52] MACK L M. Boundary-layer linear stability theory[R]. California Inst of Tech Pasadena Jet Propulsion Lab, 1984.
[53] MALIK M R. Prediction and control of transition in supersonic and hypersonic boundary layers [J]. AIAA Journal, 1989, 27(11): 1487-1493.
[54] MALIK M R. Boundary-layer transition prediction toolkit[M]//Computational Fluid Dynamics Review 1998: (In 2 Volumes). World Scientific, 1998: 869-890.
[55] REED H L, SARIC W S, ARNAL D. Linear stability theory applied to boundary layers[J].Annual Review of Fluid Mechanics, 1996, 28(1): 389-428.
[56] GAPONOV S A, MASLOV A A. Development of disturbances in compressible flows[M].Nauka, Novosibirsk, 1980.
[57] MACK L M. Boundary-layer stability theory[M]. Jet Propulsion Laboratory, 1969.
[58] FEDOROV A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43: 79-95.
[59] ARNAL D. Boundary layer transition: predictions based on linear theory[R]. In Special Course on Progress in Transition Modelling, AGARD, 1994.
[60] MORKOVIN M V. Transition at hypersonic speeds[R]. The National Aeronautics and Space Administration, 1987.
[61] RESHOTKO E. Transition issues for atmospheric entry[J]. Journal of Spacecraft and Rockets, 2008, 45(2): 161-164.
[62] FEDOROV A, TUMIN A. Branching of discrete modes in high-speed boundary layers and terminology issues[C]//40th Fluid Dynamics Conference and Exhibit. 2010: 5003.
[63] KLEISER L, ZANG T A. Numerical simulation of transition in wall-bounded shear flows[J].Annual Review of Fluid Mechanics, 1991, 23(1): 495-537.
[64] FASEL H F. Instability and transition in boundary layers: direct numerical simulations[C]// IUTAM Symposium on One Hundred Years of Boundary Layer Research: Proceedings of the IUTAM Symposium held at DLR-Göttingen, Germany, August 12-14, 2004. Springer, 2006: 257-267.
[65] PIROZZOLI S. Numerical methods for high-speed flows[J]. Annual Review of Fluid Mechanics, 2011, 43(1): 163-194.
[66] BALAKUMAR P. Receptivity of a supersonic boundary layer to acoustic disturbances[J].AIAA Journal, 2009, 47(5): 1069-1078.
[67] BALAKUMAR P, KEGERISE M A. Receptivity of hypersonic boundary layers over straight and flared cones[J]. AIAA Journal, 2015, 53(8): 2097-2109.
[68] JOHNSEN E, LARSSON J, BHAGATWALA A V, et al. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[J]. Journal of Computational Physics, 2010, 229(4): 1213-1237.
[69] RAWAT P S, ZHONG X. On high-order shock-fitting and front-tracking schemes for numerical simulation of shock–disturbance interactions[J]. Journal of Computational Physics, 2010, 229 (19): 6744-6780.
[70] MORETTI G. Thirty-six years of shock fitting[J]. Computers & Fluids, 2002, 31(4-7): 719-723.
[71] ZHONG X. High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition[J]. Journal of Computational Physics, 1998, 144(2): 662-709.
[72] WANG X, ZHONG X. Numerical simulations on mode S growth over feltmetal and regular porous coatings of a Mach 5.92 flow[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011: 375.
[73] IYER P S, MAHESH K. High-speed boundary-layer transition induced by a discrete roughness element[J]. Journal of Fluid Mechanics, 2013, 729: 524-562.
[74] WANG X, ZHONG X. Receptivity of a hypersonic flat-plate boundary layer to three-dimensional surface roughness[J]. Journal of Spacecraft and Rockets, 2008, 45(6): 1165-1175.
[75] DUAN L, WANG X, ZHONG X. A high-order cut-cell method for numerical simulation of hypersonic boundary-layer instability with surface roughness[J]. Journal of Computational Physics, 2010, 229(19): 7207-7237.
[76] WANG Y, YANG Y, YANG G, et al. DNS study on vortex and vorticity in late boundary layer transition[J]. Communications in Computational Physics, 2017, 22(2): 441-459.
[77] KOSINOV A, MASLOV A, SHEVELKOV S. Experiments on the stability of supersonic laminar boundary layers[J]. Journal of Fluid Mechanics, 1990, 219: 621-633.
[78] THUMM A, WOLZ W, FASEL H. Numerical simulation of spatially growing three-dimensional disturbance waves in compressible boundary layers[C]//Laminar-Turbulent Transition: IUTAM Symposium Toulouse/France September 11–15, 1989. Springer, 1990: 303-308.
[79] BESTEK H, THUMM A, FASEL H. Direct numerical simulation of the three-dimensional breakdown to turbulence in compressible boundary layers[C]//Thirteenth International Conference on Numerical Methods in Fluid Dynamics: Proceedings of the Conference Held at the Consiglio Nazionale delle Ricerche Rome, Italy, 6–10 July 1992. Springer, 2005: 145-149.
[80] JIANG L, CHOUDHARI M, CHANG C L, et al. Numerical simulations of laminar-turbulent transition in supersonic boundary layer[C]//36th AIAA Fluid Dynamics Conference and Exhibit. 2006: 3224.
[81] MUPPIDI S, MAHESH K. DNS of transition in supersonic boundary layers[C]//40th Fluid Dynamics Conference and Exhibit. 2010: 4440.
[82] MAYER C S, WERNZ S, FASEL H F. Numerical investigation of the nonlinear transition regime in a Mach 2 boundary layer[J]. Journal of Fluid Mechanics, 2011, 668: 113-149.
[83] KRISHNAN L, SANDHAM N. Effect of Mach number on the structure of turbulent spots[J].Journal of Fluid Mechanics, 2006, 566: 225-234.
[84] JOCKSCH A, KLEISER L. Growth of turbulent spots in high-speed boundary layers on a flat plate[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1543-1557.
[85] MAYER C S J, LAIBLE A C, FASEL H F. Numerical investigation of wave packets in a mach3.5 cone boundary layer[J]. AIAA Journal, 2011, 49(1): 67-86.
[86] SIVASUBRAMANIAN J, FASEL H. Transition initiated by a localized disturbance in a hypersonic flat-plate boundary layer[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011: 374.
[87] SMITH A M O. Transition, pressure gradient and stability theory[J]. Douglas Aircraft Co., Report ES26388, 1956.
[88] 周恒, 苏彩虹, 张永明. 超声速/高超声速边界层的转捩机理及预测[M]. 北京: 科学出版社, 2015.
[89] ARNAL D, CASALIS G. Laminar-turbulent transition prediction in three-dimensional flows [J]. Progress in Aerospace Sciences, 2000, 36(2): 173-191.
[90] SU C, ZHOU H. Transition prediction of a hypersonic boundary layer over a cone at small angle of attack—with the improvement of 𝑒 𝑁 method[J]. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52(1): 115-123.
[91] SU C, ZHOU H. Transition prediction for supersonic and hypersonic boundary layers on a cone with angle of attack[J]. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52(8): 1223-1232.
[92] SU C, ZHOU H. Transition prediction of the supersonic boundary layer on a cone under the consideration of receptivity to slow acoustic waves[J]. Science China Physics, Mechanics and Astronomy, 2011, 54: 1875-1882.
[93] KING R A. Three-dimensional boundary-layer transition on a cone at Mach 3.5[J]. Experiments in Fluids, 1992, 13(5): 305-314.
[94] LI X, FU D, MA Y. Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack[J]. Physics of Fluids, 2010, 22(2): 025105.
[95] LAU K Y. Hypersonic boundary-layer transition: application to high-speed vehicle design[J]. Journal of Spacecraft and Rockets, 2008, 45(2): 176-183.
[96] PARK C. Injection-induced turbulence in stagnation-point boundary layers[J]. AIAA Journal, 1984, 22(2): 219-225.
[97] BERRY S, KING R, KEGERISE M, et al. Orbiter boundary layer transition prediction tool enhancements[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010: 246.
[98] MAYLE R, SCHULZ A. The path to predicting bypass transition[C]//Turbo Expo: Power for Land, Sea, and Air: volume 78729. American Society of Mechanical Engineers, 1996: V001T01A065.
[99] DHAWAN S, NARASIMHA R. Some properties of boundary layer flow during the transition from laminar to turbulent motion[J]. Journal of Fluid Mechanics, 1958, 3(4): 418-436.
[100] LIBBY P A. On the prediction of intermittent turbulent flows[J]. Journal of Fluid Mechanics, 1975, 68(2): 273-295.
[101] LIBBY P A. Prediction of the intermittent turbulent wake of a heated cylinder[J]. Physics of Fluids, 1976, 19(4): 494-501.
[102] CHO J R, CHUNG M K. A K—𝜀—𝛾 equation turbulence model[J]. Journal of Fluid Mechanics, 1992, 237: 301-322.
[103] LAUNDER B E, SHARMA B I. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc[J]. Letters in Heat and Mass Transfer, 1974, 1(2): 131-137.
[104] STEELANT J, DICK E. Modelling of bypass transition with conditioned Navier–Stokes equations coupled to an intermittency transport equation[J]. International Journal for Numerical Methods in Fluids, 1996, 23(3): 193-220.
[105] SUZEN Y, HUANG P. An intermittency transport equation for modeling flow transition[C]// 38th Aerospace Sciences Meeting and Exhibit. 2000: 287.
[106] SUZEN Y, HUANG P. Modeling of flow transition using an intermittency transport equation [J]. Journal of Fluids Engineering, 2000, 122(2): 273-284.
[107] SUZEN Y B, HUANG P, HULTGREN L S, et al. Predictions of separated and transitional boundary layers under low-pressure turbine airfoil conditions using an intermittency transport equation[J]. Journal of Turbomachinery, 2003, 125(3): 455-464.
[108] DICK E, KUBACKI S. Transition models for turbomachinery boundary layer flows: A review [J]. International Journal of Turbomachinery, Propulsion and Power, 2017, 2(2).
[109] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables—part I: Model formulation[J]. Journal of Turbomachinery, 2004: 413-422.
[110] LANGTRY R B, MENTER F R, LIKKI S R, et al. A correlation-based transition Model using local variables: Part II —test cases and industrial applications[C]//Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air: volume 4. 2004: 69-79.
[111] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12): 2894-2906.
[112] KRAUSE M, BEHR M, BALLMANN J. Modeling of transition effects in hypersonic intake flows using a correlation-based intermittency model[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2008: 2598.
[113] CHENG G, NICHOLS R, NEROORKAR K, et al. Validation and assessment of turbulence transition models[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. 2009: 1141.
[114] ZHANG X D, GAO Z H. Numerical discussions on complete empirical correlation in Langtry’ s transition model[J]. Applied Mathematics and Mechanics, 2010, 31: 575-584.
[115] BENSASSI K, LANI A, RAMBAUD P. Numerical investigations of local correlation-based transition model in hypersonic flows[C]//42nd AIAA Fluid Dynamics Conference and Exhibit. 2012: 3151.
[116] MAO R, YAN P, QIANG X. Application of PSE analysis method with transitional turbulence model on hypersonic flows[C]//20th AIAA Computational Fluid Dynamics Conference. 2011: 3981.
[117] WALTERS D K, LEYLEK J H. A new model for boundary layer transition using a single-point RANS approach[J]. Journal of Turbomachinery, 2004, 126(1): 193-202.
[118] WALTERS D K, COKLJAT D. A three-equation eddy-viscosity model for Reynolds-averaged Navier–Stokes simulations of transitional flow[J]. Journal of Fluids Engineering, 2008, 130 (12).
[119] LOPEZ M, WALTERS D K. Prediction of transitional and fully turbulent flow using an alternative to the laminar kinetic energy approach[J]. Journal of Turbulence, 2016, 17(3): 253-273.
[120] CUTRONE L, De Palma P, PASCAZIO G, et al. Predicting transition in two- and three-dimensional separated flows[J]. International Journal of Heat and Fluid Flow, 2008, 29(2): 504-526.
[121] CHOUDHRY A, ARJOMANDI M, KELSO R. A study of long separation bubble on thick airfoils and its consequent effects[J]. International Journal of Heat and Fluid Flow, 2015, 52: 84-96.
[122] SANDERS D D, O’BRIEN W F, SONDERGAARD R, et al. Predicting separation and transitional flow in turbine blades at low reynolds numbers—part I: Development of prediction methodology[J]. Journal of Turbomachinery, 2010, 133(3).
[123] SANDERS D D, O’BRIEN W F, SONDERGAARD R, et al. Predicting separation and transitional flow in turbine blades at low reynolds numbers—Part II: The application to a highly separated turbine blade cascade geometry[J]. Journal of Turbomachinery, 2010, 133(3).
[124] 赵瑞, 周玲, 阎超, 等. 湍流与转捩数值模拟方法[M]. 北京: 北京理工大学出版社, 2019.
[125] QIN Y, YAN C, HAO Z, et al. A laminar kinetic energy transition model appropriate for hypersonic flow heat transfer[J]. International Journal of Heat and Mass Transfer, 2017, 107: 1054-1064.
[126] LIU Z, LU Y, WANG S, et al. Physics-based model for boundary layer transition prediction in a wide speed range[J]. Chinese Journal of Aeronautics, 2022, 35(9): 143-159.
[127] WANG L, FU S. Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition[J]. Flow, Turbulence and Combustion, 2011, 87: 165-187.
[128] MENTER F. Zonal two equation 𝑘−𝜔 turbulence models for aerodynamic flows[C]//23rd Fluid Dynamics, Plasma dynamics, and Lasers Conference. 1993.
[129] WANG L, FU S. Modelling flow transition in a hypersonic boundary layer with Reynolds averaged Navier-Stokes approach[J]. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52(5): 768-774.
[130] WANG L, FU S, CARNARIUS A, et al. A modular RANS approach for modelling laminar turbulent transition in turbomachinery flows[J]. International Journal of Heat and Fluid Flow, 2012, 34: 62-69.
[131] FU S, WANG L. RANS modeling of high-speed aerodynamic flow transition with consideration of stability theory[J]. Progress in Aerospace Sciences, 2013, 58: 36-59.
[132] PIOMELLI U, ZANG T A, SPEZIALE C G, et al. On the large-eddy simulation of transitional wall-bounded flows[J]. Physics of Fluids, 1990, 2(2): 257-265.
[133] HORIUTI K. On the use of SGS modeling in the simulation of transition in plane channel flow [J]. Journal of the Physical Society of Japan, 1986, 55(5): 1528-1541.
[134] DUCROS F, COMTE P, LESIEUR M. Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate[J]. Journal of Fluid Mechanics, 1996, 326: 1-36.
[135] HUAI X, JOSLIN R D, PIOMELLI U. Large-eddy simulation of transition to turbulence in boundary layers[J]. Theoretical and Computational Fluid Dynamics, 1997, 9: 149-163.
[136] SAYADI T, MOIN P. A comparative study of subgrid scale models for the prediction of transition in turbulent boundary layers[J]. Center for Turbulence Research Annual Research Briefs, 2010: 237-247.
[137] SAYADI T, MOIN P. Large eddy simulation of controlled transition to turbulence[J]. Physics of Fluids, 2012, 24(11): 114103.
[138] YU C, HONG R, XIAO Z, et al. Subgrid-scale eddy viscosity model for helical turbulence[J].Physics of Fluids, 2013, 25(9): 095101.
[139] ZHOU H, LI X, QI H, et al. Subgrid-scale model for large-eddy simulation of transition and turbulence in compressible flows[J]. Physics of Fluids, 2019, 31(12): 125118.
[140] CHEN S, XIA Z, PEI S, et al. Reynolds-stress-constrained large-eddy simulation of wallbounded turbulent flows[J]. Journal of Fluid Mechanics, 2012, 703: 1-28.
[141] TESSICINI F, LI N, LESCHZINER M. Simulation of separation from curved surfaces with combined LES and RANS schemes[C]//Complex Effects in Large Eddy Simulations. Springer Berlin Heidelberg, 2007: 305-324.
[142] XIA Z, SHI Y, HONG R, et al. Constrained large-eddy simulation of separated flow in a channel with streamwise-periodic constrictions[J]. Journal of Turbulence, 2013, 14(1): 1-21.
[143] ZHAO Y, XIA Z, SHI Y, et al. Constrained large-eddy simulation of laminar-turbulent transition in channel flow[J]. Physics of Fluids, 2014, 26: 095103.
[144] JIANG Z, XIAO Z, SHI Y, et al. Constrained large-eddy simulation of wall-bounded compressible turbulent flows[J]. Physics of Fluids, 2013, 25: 106102.
[145] WANG X, XIAO Z. Transition-based constrained large-eddy simulation method with application to an ultrahigh-lift low-pressure turbine cascade flow[J]. Journal of Fluid Mechanics, 2022, 941: A22.
[146] KAYS W M, CRAWFORD M E, WEIGAND B. Convective heat and mass transfer: volume 4 [M]. McGraw-Hill New York, 1980.
[147] SCHULTZ M, FLACK K. Outer layer similarity in fully rough turbulent boundary layers[J].Experiments in Fluids, 2005, 38: 328-340.
[148] NIKURADSE J. Stromungsgesetze in rauhen Rohren[J]. Vdi-Forschungsheft, 1933, 361: 1.
[149] IOSELEVICH V, PILIPENKO V. Logarithmic velocity profile for flow of a weak polymer solution near a rough surface[C]//Soviet Physics Doklady: volume 18. 1974: 790.
[150] LIGRANI P M, MOFFAT R J. Structure of transitionally rough and fully rough turbulent boundary layers[J]. Journal of Fluid Mechanics, 1986, 162: 69-98.
[151] CLAUSER F H. The turbulent boundary layer[J]. Advances in Applied Mechanics, 1956, 4:1-51.
[152] SCHULTZ M, FLACK K. The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime[J]. Journal of Fluid Mechanics, 2007, 580: 381-405.
[153] Cebeci T, Bradshaw P. Momentum transfer in boundary layers[M]. Washington, 1977.
[154] SCHLICHTING H. Experimentelle untersuchungen zum rauhigkeitsproblem[J]. IngenieurArchiv, 1936, 7(1): 1-34.
[155] COLEBROOK C F, WHITE C M. Experiments with fluid friction in roughened pipes[J]. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 1937, 161(906): 367-381.
[156] BOTROS K. Experimental investigation into the relationship between the roughness height in use with Nikuradse or Colebrook roughness functions and the internal wall roughness profile for commercial steel pipes[J]. Journal of Fluids Engineering, 2016, 138(8).
[157] YUAN J, PIOMELLI U. Estimation and prediction of the roughness function on realistic surfaces[J]. Journal of Turbulence, 2014, 15(6): 350-365.
[158] FLACK K A, SCHULTZ M P. Review of hydraulic roughness scales in the fully rough regime [J]. Journal of Fluids Engineering, 2010, 132(4).
[159] THAKKAR M, BUSSE A, SANDHAM N. Surface correlations of hydrodynamic drag for transitionally rough engineering surfaces[J]. Journal of Turbulence, 2017, 18(2): 138-169.
[160] FOROOGHI P, STROH A, MAGAGNATO F, et al. Toward a universal roughness correlation [J]. Journal of Fluids Engineering, 2017, 139(12).
[161] NAPOLI E, ARMENIO V, DE MARCHIS M. The effect of the slope of irregularly distributed roughness elements on turbulent wall-bounded flows[J]. Journal of Fluid Mechanics, 2008, 613: 385-394.
[162] AGHAEI JOUYBARI M, YUAN J, BRERETON G J, et al. Data-driven prediction of the equivalent sand-grain height in rough-wall turbulent flows[J]. Journal of Fluid Mechanics, 2021, 912: A8.
[163] PERRY A E, SCHOFIELD W H, JOUBERT P N. Rough wall turbulent boundary layers[J].Journal of Fluid Mechanics, 1969, 37(2): 383-413.
[164] COLEMAN S, NIKORA V I, MCLEAN S, et al. Spatially averaged turbulent flow over square ribs[J]. Journal of Engineering Mechanics, 2007, 133(2): 194-204.
[165] DJENIDI L, ANTONIA R, ANSELMET F. LDA measurements in a turbulent boundary layer over a d-type rough wall[J]. Experiments in Fluids, 1994, 16(5): 323-329.
[166] JIMÉNEZ J. Turbulent flows over rough walls[J]. Annual Review of Fluid Mechanics, 2004, 36: 173-196.
[167] CHOI K S, FUJISAWA N. Possibility of drag reduction using d-type roughness[J]. Applied Scientific Research, 1993, 50: 315-324.
[168] GHADDAR N, MAGEN M, MIKIC B, et al. Numerical investigation of incompressible flow in grooved channels. Part 2. Resonance and oscillatory heat-transfer enhancement[J]. Journal of Fluid Mechanics, 1986, 168: 541-567.
[169] MACDONALD M, CHAN L, CHUNG D, et al. Turbulent flow over transitionally rough surfaces with varying roughness densities[J]. Journal of Fluid Mechanics, 2016, 804: 130-161.
[170] LEONARDI S, ORLANDI P, ANTONIA R A. Properties of d-and k-type roughness in a turbulent channel flow[J]. Physics of Fluids, 2007, 19(12): 125101.
[171] HAMA F R. Boundary Layer characteristics for smooth and rough surfaces[J]. Transactions, 1954, 62: 333.
[172] SCHULTZ M P, FLACK K A. Turbulent boundary layers on a systematically varied rough wall [J]. Physics of Fluids, 2009, 21(1): 015104.
[173] FLACK K A, SCHULTZ M P. Roughness effects on wall-bounded turbulent flows[J]. Physics of Fluids, 2014, 26(10): 101305.
[174] OKE T R. Street design and urban canopy layer climate[J]. Energy and Buildings, 1988, 11 (1-3): 103-113.
[175] MACDONALD R, GRIFFITHS R, HALL D. An improved method for the estimation of surface roughness of obstacle arrays[J]. Atmospheric Environment, 1998, 32(11): 1857-1864.
[176] LEONARDI S, CASTRO I P. Channel flow over large cube roughness: a direct numerical simulation study[J]. Journal of Fluid Mechanics, 2010, 651: 519-539.
[177] DIRLING R, JR. A method for computing roughwall heat transfer rates on reentry nosetips [C]//8th Thermophysics Conference. 1973: 763.
[178] WAIGH D, KIND R. Improved aerodynamic characterization of regular three-dimensional roughness[J]. AIAA Journal, 1998, 36(6): 1117-1119.
[179] CHAN L, MACDONALD M, CHUNG D, et al. A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime[J]. Journal of Fluid Mechanics, 2015, 771: 743-777.
[180] MA G Z, XU C X, SUNG H J, et al. Scaling of rough-wall turbulence by the roughness height and steepness[J]. Journal of Fluid Mechanics, 2020, 900: R7.
[181] CLAUSER F H. The Structure of Turbulent Shear Flow[J]. Nature, 1957, 179: 60-60.
[182] PERRY A E, CHONG M S. On the mechanism of wall turbulence[J]. Journal of Fluid Mechanics, 1982, 119: 173-217.
[183] RAUPACH M R, ANTONIA R A, RAJAGOPALAN S. Rough-wall turbulent boundary layers [J]. Applied Mechanics Reviews, 1991, 44(1): 1-25.
[184] SHOCKLING M, ALLEN J, SMITS A. Roughness effects in turbulent pipe flow[J]. Journal of Fluid Mechanics, 2006, 564: 267-285.
[185] KUNKEL G J, MARUSIC I. Study of the near-wall-turbulent region of the high-Reynoldsnumber boundary layer using an atmospheric flow[J]. Journal of Fluid Mechanics, 2006, 548: 375-402.
[186] FLACK K, SCHULTZ M, CONNELLY J. Examination of a critical roughness height for outer layer similarity[J]. Physics of Fluids, 2007, 19(9): 095104.
[187] KROGSTADT P Å, ANTONIA R. Surface roughness effects in turbulent boundary layers[J].Experiments in Fluids, 1999, 27(5): 450-460.
[188] TACHIE M, BERGSTROM D, BALACHANDAR R. Rough wall turbulent boundary layers in shallow open channel flow[J]. Journal of Fluids Engineering, 2000, 122(3): 533-541.
[189] LEONARDI S, ORLANDI P, SMALLEY R, et al. Direct numerical simulations of turbulent channel flow with transverse square bars on one wall[J]. Journal of Fluid Mechanics, 2003, 491: 229-238.
[190] EKOTO I W, BOWERSOX R D, BEUTNER T, et al. Supersonic boundary layers with periodic surface roughness[J]. AIAA Journal, 2008, 46(2): 486-497.
[191] MODESTI D, SATHYANARAYANA S, SALVADORE F, et al. Direct numerical simulation of supersonic turbulent flows over rough surfaces[J]. Journal of Fluid Mechanics, 2022, 942.
[192] SHENG ZHANG Y, BI W T, HUSSAIN F, et al. A generalized Reynolds analogy for compressible wall-bounded turbulent flows[J]. Journal of Fluid Mechanics, 2013, 739: 392 - 420.
[193] AGHAEI-JOUYBARI M, YUAN J, LI Z, et al. Supersonic turbulent flows over sinusoidal rough walls[J]. Journal of Fluid Mechanics, 2023, 956: A3.
[194] SPALART P R. Direct simulation of a turbulent boundary layer up to 𝑅 𝜃 = 1410[J]. Journal of Fluid Mechanics, 1988, 187: 61-98.
[195] MANSOUR N N, KIM J, MOIN P. Reynolds-stress and dissipation-rate budgets in a turbulent channel flow[J]. Journal of Fluid Mechanics, 1988, 194: 15-44.
[196] MIURA H, KIDA S. Acoustic energy exchange in compressible turbulence[J]. Physics of Fluids, 1995, 7(7): 1732-1742.
[197] WANG J, YANG Y, SHI Y, et al. Cascade of kinetic energy in three-dimensional compressible turbulence[J]. Physical Review Letters, 2013, 110(21): 214505.
[198] XU D, WANG J, WAN M, et al. Compressibility effect in hypersonic boundary layer with isothermal wall condition[J]. Physical Review Fluids, 2021, 6: 054609.
[199] ORLANDI P. Turbulent kinetic energy production and flow structures in flows past smooth and rough walls[J]. Journal of Fluid Mechanics, 2019, 866: 897-928.
[200] TONICELLO N, LODATO G, VERVISCH L. Turbulence kinetic energy transfers in direct numerical simulation of shock-wave–turbulence interaction in a compression/expansion ramp [J]. Journal of Fluid Mechanics, 2022, 935: A31.
[201] VYAS M A, YODER D A, GAITONDE D V. Reynolds-stress budgets in an impinging shockwave/boundary-layer interaction[J]. AIAA Journal, 2019, 57(11): 4698-4714.
[202] SUN Z, ZHU Y, HU Y, et al. Direct numerical simulation of a fully developed compressible wall turbulence over a wavy wall[J]. Journal of Turbulence, 2018, 19: 105 - 72.
[203] BATCHELOR G K. Cambridge Mathematical Library: An introduction to fluid dynamics[M]. Cambridge University Press, 2000.
[204] SUTHERLAND W. LII. The viscosity of gases and molecular force[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1893, 36(223): 507-531.
[205] BOSE S, PARK G I. Wall-modeled large-Eddy simulation for complex turbulent flows.[J].Annual Review of Fluid Mechanics, 2018, 50: 535-561.
[206] MENEVEAU C, KATZ J. Scale-invariance and turbulence models for large-eddy simulation [J]. Annual Review of Fluid Mechanics, 2000, 32: 1-32.
[207] SPALART P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41: 181-202.
[208] YOSHIZAWA A. Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling[J]. Physics of Fluids, 1986, 29(7): 2152-2164.
[209] MOIN P, SQUIRES K, CABOT W, et al. A dynamic subgrid-scale model for compressible turbulence and scalar transport[J]. Physics of Fluids, 1991, 3(11): 2746-2757.
[210] WILCOX D C, et al. Turbulence modeling for CFD: volume 2[M]. Canada: DCW industries La Canada, CA, 1998.
[211] BALDWIN B, LOMAX H. Thin-layer approximation and algebraic model for separated turbulent flows[C]//16th Aerospace Sciences Meeting. 1978: 257.
[212] MENTER F, RUMSEY C. Assessment of two-equation turbulence models for transonic flows [C]//Fluid Dynamics Conference. 1994: 2343.
[213] HONG R, XIA Z, SHI Y, et al. Constrained Large-Eddy Simulation of compressible flow past a circular cylinder[J]. Communications in Computational Physics, 2014, 15(2): 388-421.
[214] SIMON F, DECK S, GUILLEN P, et al. Numerical simulation of the compressible mixing layer past an axisymmetric trailing edge[J]. Journal of Fluid Mechanics, 2007, 591: 215-253.
[215] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]// 30th Aerospace Sciences Meeting and Exhibit. 1992: 439.
[216] LIANG X, LI X. DNS of a spatially evolving hypersonic turbulent boundary layer at Mach 8 [J]. Science China Physics, Mechanics and Astronomy, 2013, 56: 1408-1418.
[217] LIANG X, LI X. Direct numerical simulation on mach number and wall temperature effects in the turbulent flows of flat-plate boundary layer[J]. Communications in Computational Physics, 2015, 17: 189-212.
[218] SHE Z, ZOU H Y, JUAN XIAO M, et al. Prediction of compressible turbulent boundary layer via a symmetry-based length model[J]. Journal of Fluid Mechanics, 2018, 857: 449 - 468.
[219] XU D, WANG J, WAN M, et al. Effect of wall temperature on the kinetic energy transfer in a hypersonic turbulent boundary layer[J]. Journal of Fluid Mechanics, 2021, 929.
[220] XU D, WANG J, CHEN S. Skin-friction and heat-transfer decompositions in hypersonic transitional and turbulent boundary layers[J]. Journal of Fluid Mechanics, 2022, 941.
[221] JIANG G S, SHU C W. Efficient Implementation of Weighted ENO Schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228.
[222] 李新亮, 马延文, 傅德薰. 迎风紧致格式的混淆误差分析及其同谱方法的比较[J]. 计算物 理, 2002, 19(4): 7.
[223] SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II[J]. Journal of Computational Physics, 1989, 83: 32-78.
[224] LENORMAND E, SAGAUT P, PHUOC L T. Large eddy simulation of subsonic and supersonic channel flow at moderate Reynolds number[J]. International Journal for Numerical Methods in Fluids, 2000, 32: 369-406.
[225] COLEMAN G N, KIM J, MOSER R D. A numerical study of turbulent supersonic isothermal wall channel flow[J]. Journal of Fluid Mechanics, 1995, 305: 159–183.
[226] MORINISHI Y, TAMANO S, NAKABAYASHI K. Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls[J]. Journal of Fluid Mechanics, 2004, 502: 273 - 308.
[227] VAN DRIEST E R. Turbulent boundary layer in compressible fluids[J]. Journal of Spacecraft and Rockets, 2003, 40: 1012-1028.
[228] BRUN C, BOIARCIUC M P, HABERKORN M, et al. Large eddy simulation of compressible channel flow[J]. Theoretical and Computational Fluid Dynamics, 2008, 22: 189-212.
[229] FUKAGATA K, IWAMOTO K, KASAGI N. Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows[J]. Physics of Fluids, 2002, 14(11): L73-L76.
[230] GOMEZ T, FLUTET V, SAGAUT P. Contribution of Reynolds stress distribution to the skin friction in compressible turbulent channel flows[J]. Physical Review E, 2009, 79: 035301.
[231] MEHDI F, WHITE C M. Integral form of the skin friction coefficient suitable for experimental data[J]. Experiments in Fluids, 2011, 50(1): 43-51.
[232] MEHDI F, JOHANSSON T G, WHITE C M, et al. On determining wall shear stress in spatially developing two-dimensional wall-bounded flows[J]. Experiments in Fluids, 2014, 55(1): 1656.
[233] RENARD N, DECK S. A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer[J]. Journal of Fluid Mechanics, 2016, 790: 339-367.
[234] LI W, FAN Y, MODESTI D, et al. Decomposition of the mean skin-friction drag in compressible turbulent channel flows[J]. Journal of Fluid Mechanics, 2019, 875: 101–123.
[235] FAN Y, LI W, PIROZZOLI S. Decomposition of the mean friction drag in zero-pressuregradient turbulent boundary layers[J]. Physics of Fluids, 2019, 31(8): 086105.
[236] ZHANG P, XIA Z. Contribution of viscous stress work to wall heat flux in compressible turbulent channel flows[J]. Physical Review E, 2020, 102(4): 043107.
[237] WENZEL C, GIBIS T, KLOKER M. About the influences of compressibility, heat transfer and pressure gradients in compressible turbulent boundary layers[J]. Journal of Fluid Mechanics, 2022, 930.
[238] BRANDT L, HENNINGSON D S. Transition of streamwise streaks in zero-pressure-gradient boundary layers[J]. Journal of Fluid Mechanics, 2002, 472: 229-261.
[239] PIROZZOLI S, GRASSO F, GATSKI T. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M= 2.25[J]. Physics of Fluids, 2004, 16(3): 530-545.
[240] FRANKO K J, LELE S K. Breakdown mechanisms and heat transfer overshoot in hypersonic zero pressure gradient boundary layers[J]. Journal of Fluid Mechanics, 2013, 730: 491–532.
[241] HORVATH T, BERRY S, HOLLIS B, et al. Boundary layer transition on slender cones in conventional and low disturbance Mach 6 wind tunnels[C]//32nd AIAA Fluid Dynamics Conference and Exhibit. 2002: 2743.
[242] MAYER C S, VON TERZI D A, FASEL H F. Direct numerical simulation of complete transition to turbulence via oblique breakdown at Mach 3[J]. Journal of Fluid Mechanics, 2011, 674: 5-42.
[243] 傅德薰, 马延文, 李新亮, 等. 可压缩湍流直接数值模拟[M]. 科学出版社, 2010.
[244] OBAYASHI S, KUWAHARA K, FUJII K, et al. Improvements in efficiency and reliability for Navier-Stokes computations using the LU-ADI factorization algorithm[C]//24th Aerospace Sciences Meeting. Reno, Nevada: American Institute of Aeronautics and Astronautics, 1986:338.
[245] FOROOGHI P, STRIPF M, FROHNAPFEL B. A systematic study of turbulent heat transfer over rough walls[J]. International Journal of Heat and Mass Transfer, 2018.
[246] GANJU S, BAILEY S C C, BREHM C. Amplitude and wavelength scaling of sinusoidal roughness effects in turbulent channel flow at fixed 𝑹𝒆 𝝉 = 𝟕𝟐𝟎[J]. Journal of Fluid Mechanics, 2022,937.
[247] NIKORA V I, STOESSER T, CAMERON S M, et al. Friction factor decomposition for rough wall flows: theoretical background and application to open-channel flows[J]. Journal of Fluid Mechanics, 2019, 872: 626-664.
[248] ANDERSON J D. Modern compressible flow: with historical perspective: volume 12[M]. New York, USA: McGraw-Hill, 1990.
[249] TOWNSEND A A. The structure of turbulent shear flow. 2nd edition[M]. Cambridge: Cambridge University Press, 1976.
[250] TRETTEL A J, LARSSON J. Mean velocity scaling for compressible wall turbulence with heat transfer[J]. Physics of Fluids, 2016, 28: 026102.
[251] VOLPIANI P S, IYER P S, PIROZZOLI S, et al. Data-driven compressibility transformation for turbulent wall layers[J]. Physical Review Fluids, 2020, 5: 052602.
[252] JACKSON P. On the displacement height in the logarithmic velocity profile[J]. Journal of Fluid Mechanics, 1981, 111: 15-25.
[253] ABDERRAHAMAN-ELENA N, FAIRHALL C T, GARCIA-MAYORAL R. Modulation of near-wall turbulence in the transitionally rough regime[J]. Journal of Fluid Mechanics, 2019, 865: 1042-1071.
[254] POPE S B. Turbulent flows[M]. Cambridge University Press, 2000.
[255] TOUBER E, LESCHZINER M A. Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms[J]. Journal of Fluid Mechanics, 2012, 693: 150-200.
[256] JIMéNEZ J. Coherent structures in wall-bounded turbulence[J]. Journal of Fluid Mechanics, 2018, 842: P1.
[257] JIMéNEZ J. The streaks of wall-bounded turbulence need not be long[J]. Journal of Fluid Mechanics, 2022, 945: R3.
[258] HUANG J, DUAN L, CHOUDHARI M M. Direct numerical simulation of hypersonic turbulent boundary layers: effect of spatial evolution and Reynolds number[J]. Journal of Fluid Mechanics, 2022, 937: A3.
[259] MITTAL A, GIRIMAJI S S. Mathematical framework for analysis of internal energy dynamics and spectral distribution in compressible turbulent flows[J]. Physical Review Fluids, 2019, 4 (4): 042601.
[260] HUANG P, COLEMAN G N, BRADSHAW P. Compressible turbulent channel flows: DNS results and modelling[J]. Journal of Fluid Mechanics, 1995, 305: 185-218.
[261] ALUIE H, LI S, LI H. Conservative cascade of kinetic energy in compressible turbulence[J].The Astrophysical Journal Letters, 2012, 751(2): L29.
修改评论