题名 | High Performance Capacitive Deionization Electrode Materials for the Selective Recovery of Hazardous Metal Ions from Wastewater |
姓名 | |
姓名拼音 | LU Jiming
|
学号 | 11859004
|
学位类型 | 博士
|
学位专业 | 材料科学与工程
|
导师 | |
导师单位 | 工学院
|
论文答辩日期 | 2023-07-18
|
论文提交日期 | 2023-12-26
|
学位授予单位 | The University of Leeds
|
学位授予地点 | Leeds, UK
|
摘要 | The current study focused on designing and preparing novel CDI electrode materials with high adsorption capacity, high selectivity and excellent cyclic performance for hazardous metal ions (HMI) recovery from wastewater. And the key process for practical application, enriching target ions from low concentration of wastewater to concentrated solution is elaborately designed and achieved. Mesoporous carbon electrode materials derived from pomelo peel were functionalized with pyrrolic-N (BNC-5 electrode) and pyridinic-N (BNC-6 electrode) for enhanced selective electroadsorption of Pb2+ and Cu2+. The preferential adsorption of Pb2+ from multi-ionic solution can be attributed to the interaction between soft acid ions (Pb2+) and soft base sites (pyrrolic-N), contributing to elevated electroadsorption capacity (2.0 mmol g-1). The effect of applied voltages on electrosorption capacities was studied to understand the adsorption behaviours of electrode materials, and adsorption–desorption hysteresis of BNC-5 confirmed the nature of chemisorption. BNC-5 electrode still maintained a capacity retention ≥ 80% after ~400 cycles, and such electrode could be almost fully restored (98.7%) by 0.1 M HNO3 washing to achieve much longer cyclic performance (over 1200 cycles). An ethylenediamine triacetic acid (EDTA) and 2D MXene (EDTA-MXene) was utilized as CDI electrode to recover Cs+ from strongly acidic process water. EDTA enriched the adsorption sites on MXene to increase its recovery capacity, and prevented the oxidation of electrode to enhance its long-term cyclic performance. EDTA-MXene exhibited high Cs+ adsorption capacity of 2.07 mmol g-1 at 1.2 V and outstanding cyclic performance with a capacity retention > 80% after 320 cycles. Moreover, the electrode maintained satisfactory adsorption capacity (0.66 mmol g-1) in strongly acidic solution (2M HNO3), and presented great ability to enrich Cs+ from low concentration of process water into a highly concentrated solution for element recovery or safe disposal. A sulfur and nitrogen co-doped MXene (S/N-MXene) electrode material was fabricated to recover palladium from wastewater. 2D MXene material was modified by abundant S and N-containing functional groups, which greatly increased the adsorption sites for Pd2+, and acted as pillars to expand the interlayer spacing of MXene for Pd2+ accommodation, thus contributing to high recovery capacity, high recovery efficiency and satisfactory long-term cycling performance. The low concentration of Pd2+ in industrial wastewater was enriched to highly concentrated solution (around 100 mmol L-1), and the selectivity was also evaluated in multi-ionic solution with almost 98% recovery efficiency for Pd2+. Furthermore, the adsorption mechanism was revealed using density functional theory (DFT) to show that the downward shift of the p-band centre of the MXene OH groups induced by pyrrolic-N and -C=S in S/N-MXene contributes to enhancement of the soft-soft interactions, which may enlighten the fabrications of doped MXene materials and their applications. |
关键词 | |
语种 | 英语
|
培养类别 | 联合培养
|
入学年份 | 2018
|
学位授予年份 | 2023-08
|
参考文献列表 | 1. Jarup, L., Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167-82.2. Fu, F.; Wang, Q., Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 2011, 92 (3), 407-418.3. Santhosh, C.; Velmurugan, V.; Jacob, G.; Jeong, S. K.; Grace, A. N.; Bhatnagar, A., Role of nanomaterials in water treatment applications: A review. Chem. Eng. J. 2016, 306, 1116-1137.4. Buesseler, K.; Dai, M.; Aoyama, M.; Benitez-Nelson, C.; Charmasson, S.; Higley, K.; Maderich, V.; Masque, P.; Morris, P. J.; Oughton, D.; Smith, J. N., Fukushima Daiichi-Derived Radionuclides in the Ocean: Transport, Fate, and Impacts. Annu. Rev. Mar. Sci. 2017, 9, 173-203.5. Suss, M. E.; Porada, S.; Sun, X.; Biesheuvel, P. M.; Yoon, J.; Presser, V., Water desalination via capacitive deionization: what is it and what can we expect from it? Energ. Environ. Sci. 2015, 8 (8), 2296-2319.6. Huang, Z.-H.; Yang, Z.; Kang, F.; Inagaki, M., Carbon electrodes for capacitive deionization. J. Mater. Chem. A 2017, 5 (2), 470-496.7. Li, J.; Wang, X.; Wang, H.; Wang, S.; Hayat, T.; Alsaedi, A.; Wang, X., Functionalization of biomass carbonaceous aerogels and their application as electrode materials for electro-enhanced recovery of metal ions. Environ. Sci. Nano 2017, 4 (5), 1114-1123.8. Wang, H.; He, Y.; Chai, L.; Lei, H.; Yang, W.; Hou, L.; Yuan, T.; Jin, L.; Tang, C.J.; Luo, J., Highly-dispersed Fe2O3@C electrode materials for Pb2+ removal by capacitive deionization. Carbon 2019, 153, 12-20.9. Tang, J. H.; Jin, J. C.; Li, W. A.; Zeng, X.; Ma, W.; Li, J. L.; Lv, T. T.; Peng, Y. C.; Feng, M. L.; Huang, X. Y., Highly selective cesium(I) capture under acidic conditions by a layered sulfide. Nat. Commun. 2022, 13 (1), 658.10. Bhattacharyya, K. G.; Gupta, S. S., Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv. Colloid Interface Sci. 2008, 140 (2), 114-131.11. Chowdhury, S.; Balasubramanian, R., Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv. Colloid Interface Sci. 2014, 204, 35-56.12. Ihsanullah; Abbas, A.; Al-Amer, A. M.; Laoui, T.; Al-Marri, M. J.; Nasser, M. S.; Khraisheh, M.; Atieh, M. A., Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Sep. Purif. Technol. 2016, 157, 141-161.13. Abidli, A.; Huang, Y.; Ben Rejeb, Z.; Zaoui, A.; Park, C. B., Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. Chemosphere 2022, 292, 133102.14. Fu, F.; Xie, L.; Tang, B.; Wang, Q.; Jiang, S., Application of a novel strategy—Advanced Fenton-chemical precipitation to the treatment of strong stability chelated heavy metal containing wastewater. Chem. Eng. J. 2012, 189-190 (none), 283-287.15. Kumar, J. A.; Prakash, P.; Krithiga, T.; Amarnath, D. J.; Premkumar, J.; Rajamohan, N.; Vasseghian, Y.; Saravanan, P.; Rajasimman, M., Methods of synthesis, characteristics, and environmental applications of MXene: A comprehensive review. Chemosphere 2022, 286, 131607.16. Zhang, H.; Kim, Y. K.; Hunter, T. N.; Brown, A. P.; Lee, J. W.; Harbottle, D., Organically modified clay with potassium copper hexacyanoferrate for enhanced Cs+ adsorption capacity and selective recovery by flotation. J. Mater. Chem. A 2017, 5 (29), 15130-15143.17. Wang, J.; Zhuang, S., Removal of cesium ions from aqueous solutions using various separation technologies. Rev. Environ. Sci. Bio. 2019, 18 (2), 231-269.18. Azimi, A.; Azari, A.; Rezakazemi, M.; Ansarpour, M., Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Rev. 2017, 4 (1), 37-59.19. Yu, Y. H.; Su, J. F.; Shih, Y.; Wang, J.; Wang, P. Y.; Huang, C. P., Hazardous wastes treatment technologies. Water Environ. Res. 2020, 92 (10), 1833-1860.20. Pietrelli, L.; Ferro, S.; Reverberi, A. P.; Vocciante, M., Removal and recovery of heavy metals from tannery sludge subjected to plasma pyro-gasification process. J. Clean. Prod. 2020, 273, 123166.21. Vasconcellos, M. E. D.; Queiroz, C. A. D. S.; Abrão, A. D., Sequential separation of the yttrium—heavy rare earths by fractional hydroxide precipitation. J. Alloys Compd. 2004, 374 (1), 405-407.22. Peng, H.; Guo, J., Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review. Environ. Chem. Lett. 2020, 18 (6), 2055-2068.23. Dabrowski, A.; Hubicki, Z.; Podkościelny, P.; Robens, E., Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 2004, 56 (2), 91-106.24. Verma, P. K.; Kundu, A.; Puretz, M. S.; Dhoonmoon, C.; Chegwidden, O. S.; Londergan, C. H.; Cho, M., The Bend+Libration Combination Band Is an Intrinsic, Collective, and Strongly Solute-Dependent Reporter on the Hydrogen Bonding Network of Liquid Water. J. Phys. Chem. B 2018, 122 (9), 2587-2599.25. Bajpai, S.; Jung, G.; Dey, A., Batch studies on chromium removal from tannery effluent using cationic exchange resin. J. Environ. Res. Dev. 2009, 3 (4), 77-82.26. Singh, B. K.; Mahzan, N. S.; Abdul Rashid, N. S.; Isa, S. A.; Hafeez, M. A.; Saslow, S.; Wang, G.; Mo, C.; Um, W., Design and Application of Materials for Sequestration and Immobilization of (99)Tc. Environ. Sci. Technol. 2023, 57 (17), 6776-6798.27. Flores-Espinosa, R. M.; Ortíz-Oliveros, H. B.; Olguín, M. T.; Perusquia-Cueto, M. R.; Gallardo-San-Vicente, R., Separation and treatment of ion-exchange resins used in cleaning systems of a research nuclear reactor. Chem. Eng. J. 2012, 188, 71-76.28. Jay, J. A.; Keon, B. N.; Hemond, H. F.; Durant, J. L., Arsenic-sulfides confound anion exchange resin speciation of aqueous arsenic. Water Res. 2004, 38 (5), 1155-1158.29. Alexandratos, S. D., Ion-Exchange Resins: A Retrospective from Industrial and Engineering Chemistry Research. Ind. Eng. Chem. Res. 2009, 48 (1), 388-398.30. Xiang, H.; Min, X.; Tang, C.J.; Sillanpää, M.; Zhao, F., Recent advances in membrane filtration for heavy metal removal from wastewater: A mini review. J. Water Process Eng. 2022, 49, 103023.31. Yang, Z.; Zhou, Y.; Feng, Z.; Rui, X.; Zhang, T.; Zhang, Z., A Review on Reverse Osmosis and Nanofiltration Membranes for Water Purification. Polymers 2019, 11 (8), 1-22.32. Gurreri, L.; Tamburini, A.; Cipollina, A.; Micale, G., Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives. Membranes 2020, 10 (7), 1-93.33. Lim, A. L.; Bai, R., Membrane fouling and cleaning in microfiltration of activated sludge wastewater. J. Membr. Sci. 2003, 216 (1), 279-290.34. Lópezmaldonado, E. A.; Oropezaguzman, M. T.; Juradobaizaval, J. L.; Ochoaterán, A., Coagulation-flocculation mechanisms in wastewater treatment plants through zeta potential measurements. J. Hazard. Mater. 2014, 279, 1-10.35. Kitada, S.; Oikawa, T.; Watanabe, S.; Nagai, K.; Kobayashi, Y.; Matsuki, M.; Tsuchiya, K.; Nakamura, K.; Sasaki, M.; Shinoda, Y.; Iwamoto, T., Removal of radioactive iodine and cesium in water purification. Desalin. Water Treat. 2015, 54 (13), 3494-3501.36. Tang, X.; Zheng, H.; Teng, H.; Sun, Y.; Guo, J.; Xie, W.; Yang, Q.; Chen, W., Chemical coagulation process for the removal of heavy metals from water: a review. Desalin. Water Treat. 2016, 57 (4), 1733-1748.37. Heidari, M., Role of Natural Flocculation in Eliminating Toxic Metals. Arch. Environ. Contam. Toxicol. 2019, 76 (3), 366-374.38. Zhang, H.; Tangparitkul, S.; Hendry, B.; Harper, J.; Kon Kim, Y.; Hunter, T. N.; Lee, J. W.; Harbottle, D., Selective separation of cesium contaminated clays from pristine clays by flotation. Chem. Eng. J. 2018, 355, 797-804.39. Pooja, G.; Kumar, P. S.; Indraganti, S., Recent advancements in the removal/recovery of toxic metals from aquatic system using flotation techniques. Chemosphere 2022, 287, 132231.40. Wan Nafi, A.; Taseidifar, M., Removal of hazardous ions from aqueous solutions: Current methods, with a focus on green ion flotation. J. Environ. Manage. 2022, 319, 115666.41. Tichang, S.; Cui, Z.; Kou, J.; Fengbo, L., Crystallization and flotation mechanism of ammonia precipitates formed in wastewater. J. Univ. Sci. Technol. Beijing 2006, 28 (3), 231-236.42. Yuan, X.; Meng, Y.; Zeng, G.; Fang, Y.; Shi, J., Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation. Colloid Surface A. 2008, 317 (1), 256-261.43. Mizuike, A.; Hiraide, M.; Mizuno, K., Preconcentration of trace heavy metals in large aqueous samples by coprecipitation—flotation in a flow system. Anal. Chim. Acta 1983, 148 (00), 305-309.44. Thekkudan, V. N.; Vaidyanathan, V. K.; Ponnusamy, S. K.; Charles, C.; Sundar, S.; Vishnu, D.; Anbalagan, S.; Vaithyanathan, V. K.; Subramanian, S., Review on nanoadsorbents: a solution for heavy metal removal from wastewater. IET Nanobiotechnol. 2017, 11 (3), 213-224.45. Xu, J.; Cao, Z.; Zhang, Y.; Yuan, Z.; Lou, Z.; Xu, X.; Wang, X., A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere 2018, 195, 351-364.46. Zhang, X. F.; Wang, B.; Yu, J.; Wu, X. N.; Zang, Y. H.; Gao, H. C.; Su, P. C.; Hao, S. Q., Three-dimensional honeycomb-like porous carbon derived from corncob for the removal of heavy metals from water by capacitive deionization. Rsc Adv. 2018, 8 (3), 1159-1167.47. Shen, Y., Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification. Renew. Sust. Energ. Rev. 2015, 43, 281-295.48. Joseph, L.; Jun, B. M.; Flora, J. R. V.; Park, C. M.; Yoon, Y., Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere 2019, 229, 142-159.49. Hoang, A. T.; Nizetic, S.; Cheng, C. K.; Luque, R.; Thomas, S.; Banh, T. L.; Pham, V. V.; Nguyen, X. P., Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review. Chemosphere 2022, 287, 131959.50. Qin, H.; Hu, T.; Zhai, Y.; Lu, N.; Aliyeva, J., The improved methods of heavy metals removal by biosorbents: A review. Environ. Pollut. 2020, 258, 113777.51. Duru, I.; Ege, D.; Kamali, A. R., Graphene oxides for removal of heavy and precious metals from wastewater. J. Mater. Sci. 2016, 51 (13), 6097-6116.52. Wang, J.; Chen, C., Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour. Technol. 2014, 160, 129-41.53. Alby, D.; Charnay, C.; Heran, M.; Prelot, B.; Zajac, J., Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: Synthesis and shaping, sorption capacity, mechanisms, and selectivity-A review. J. Hazard. Mater. 2018, 344, 511-530.54. Novikau, R.; Lujaniene, G., Adsorption behaviour of pollutants: Heavy metals, radionuclides, organic pollutants, on clays and their minerals (raw, modified and treated): A review. J. Environ. Manage. 2022, 309, 114685.55. Liu, P.; Yan, T.; Shi, L.; Park, H. S.; Chen, X.; Zhao, Z.; Zhang, D., Graphene-based materials for capacitive deionization. J. Mater. Chem. A 2017, 5 (27), 13907-13943.56. Lodder, A.; Dekker, J. P. The electromigration force in metallic bulk, 4th International Workshop on Stress Induced Phenomena in Metallization, Univ. Tokyo, Tokyo, Japan, 1998, 315-328.57. Li, Q.; Zheng, Y.; Xiao, D.; Or, T.; Gao, R.; Li, Z.; Feng, M.; Shui, L.; Zhou, G.; Wang, X.; Chen, Z., Faradaic Electrodes Open a New Era for Capacitive Deionization. Adv Sci (Weinh) 2020, 7 (22), 2002213.58. Blair, J. W.; Murphy, G. W., Electrochemical Demineralization of Water with Porous Electrodes of Large Surface Area. In Saline Water Conversion, American Chemical Society: 1960, 27, 206-223.59. Gamaethiralalage, J. G.; Singh, K.; Sahin, S.; Yoon, J.; Elimelech, M.; Suss, M. E.; Liang, P.; Biesheuvel, P. M.; Zornitta, R. L.; de Smet, L. C. P. M., Recent advances in ion selectivity with capacitive deionization. Energ. Environ. Sci. 2021, 14 (3), 1095-1120.60. Liu, L.; Guo, X.; Tallon, R.; Huang, X.; Chen, J., Highly porous N-doped graphene nanosheets for rapid removal of heavy metals from water by capacitive deionization. Chem. Commun. 2017, 53 (5), 881-884.61. Choi, J.H., Fabrication of a carbon electrode using activated carbon powder and application to the capacitive deionization process. Sep. Purif. Technol. 2010, 70 (3), 362-366.62. Lim, J.A.; Park, N.-S.; Park, J.-S.; Choi, J.-H., Fabrication and characterization of a porous carbon electrode for desalination of brackish water. Desalination 2009, 238 (1), 37-42.63. Mossad, M.; Zou, L., A study of the capacitive deionisation performance under various operational conditions. J. Hazard. Mater. 2012, 213-214, 491-497.64. Huang, S. Y.; Fan, C. S.; Hou, C. H., Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization. J. Hazard. Mater. 2014, 278, 8-15.65. Huang, Z.; Lu, L.; Cai, Z.; Ren, Z. J., Individual and competitive removal of heavy metals using capacitive deionization. J. Hazard. Mater. 2016, 302, 323-331.66. Liu, X.; Wu, J.; Wang, J., Electro-enhanced removal of cobalt ions from aqueous solution by capacitive deionization. Sci. Total Environ. 2019, 697, 134144.67. Ma, F.; Zhu, W.; Cheng, W.; Chen, J.; Gao, J.; Xue, Y.; Yan, Y., Removal of cobalt ions (II) from simulated radioactive effluent by electrosorption on potassium hydroxide modified activated carbon fiber felt. J. Water Process Eng. 2023, 53, 103635.68. Xiang, S.; Mao, H.; Geng, W.; Xu, Y.; Zhou, H., Selective removal of Sr(II) from saliferous radioactive wastewater by capacitive deionization. J. Hazard. Mater. 2022, 431, 128591.69. Wang, S.; Chen, D.; Zhang, Z.-X.; Hu, Y.; Quan, H., Mesopore dominated capacitive deionization of N-doped hierarchically porous carbon for water purification. Sep. Purif. Technol. 2022, 290, 120912.70. Chang, L.; Fei, Y.; Hu, Y. H., Structurally and chemically engineered graphene for capacitive deionization. J. Mater. Chem. A 2021, 9 (3), 1429-1455.71. Liu, P.; Yan, T.; Zhang, J.; Shi, L.; Zhang, D., Separation and recovery of heavy metal ions and salt ions from wastewater by 3D graphene-based asymmetric electrodes via capacitive deionization. J. Mater. Chem. A 2017, 5 (28), 14748-14757.72. Xue, J.; Sun, Q.; Zhang, Y.; Mao, W.; Li, F.; Yin, C., Preparation of a Polypyrrole/Graphene Oxide Composite Electrode by Electrochemical Codeposition for Capacitor Deionization. ACS Omega 2020, 5 (19), 10995-11004.73. Liao, Y.; Wang, M.; Chen, D., Electrosorption of uranium(VI) by highly porous phosphate-functionalized graphene hydrogel. Appl. Surf. Sci. 2019, 484, 83-96.74. Zhao, C.; Wang, X.; Zhang, S.; Sun, N.; Zhou, H.; Wang, G.; Zhang, Y.; Zhang, H.; Zhao, H., Porous carbon nanosheets functionalized with Fe3O4 nanoparticles for capacitive removal of heavy metal ions from water. Environ. Sci. Water Res. 2020, 6 (2), 331-340.75. Liu, Y.; Wang, K.; Xu, X.; Eid, K.; Abdullah, A. M.; Pan, L.; Yamauchi, Y., Recent Advances in Faradic Electrochemical Deionization: System Architectures versus Electrode Materials. ACS Nano 2021, 15 (9), 13924-13942.76. Bharath, G.; Rambabu, K.; Banat, F.; Hai, A.; Arangadi, A. F.; Ponpandian, N., Enhanced electrochemical performances of peanut shell derived activated carbon and its Fe3O4 nanocomposites for capacitive deionization of Cr(VI) ions. Sci. Total Environ. 2019, 691, 713-726.77. Bautista-Patacsil, L.; Lazarte, J. P. L.; Dipasupil, R. C.; Pasco, G. Y.; Eusebio, R. C.; Orbecido, A.; Doong, R., Deionization utilizing reduced graphene oxide-titanium dioxide nanotubes composite for the removal of Pb2+ and Cu2+. J. Environ. Chem. Eng. 2020, 8 (3), 103063.78. Sun, J.; Liu, L.; Yang, F., A WO3/PPy/ACF modified electrode in electrochemical system for simultaneous removal of heavy metal ion Cu2+ and organic acid. J. Hazard. Mater. 2020, 394, 122534.79. Mao, M.; Yan, T.; Chen, G.; Zhang, J.; Shi, L.; Zhang, D., Selective Capacitive Removal of Pb2+ from Wastewater over Redox-Active Electrodes. Environ. Sci. Technol. 2021, 55 (1), 730-737.80. Amarray, A.; El Ghachtouli, S.; Samih, Y.; Dahbi, M.; Azzi, M., Enhancement of Cd(II) electrosorption using electrosorption process with manganese oxide nanomaterial electrodeposited. Desalination 2022, 521, 115307.81. Li, Y. G.; Xu, R.; Qiao, L.; Li, Y.; Wang, D.; Li, D. W.; Liang, X.; Xu, G. C.; Gao, M.; Gong, H. Y.; Zhang, X. S.; Qiu, H. B.; Liang, K.; Chen, P.; Li, Y., Controlled synthesis of ZnO modified N-doped porous carbon nanofiber membrane for highly efficient removal of heavy metal ions by capacitive deionization. Microporous Mesoporous Mater. 2022, 338, 111889.82. Zhou, J.; Zhou, H.; Zhang, Y.; Wu, J.; Zhang, H.; Wang, G.; Li, J., Pseudocapacitive deionization of uranium(VI) with WO3/C electrode. Chem. Eng. J. 2020, 398, 125460.83. Gao, Y.; Xu, Y.; Xiang, S.; Zhang, X.; Li, Z.; Zhou, H., Nitrogen-doped carbon nanotube encapsulated Fe7S8 nanoparticles for the high-efficiency and selective removal of Pb2+ by pseudocapacitive coupling. Environ. Sci. Nano 2022, 9 (6), 2051-2060.84. Yin, T.; Zhang, Y.; Dong, D.; Wang, T.; Wang, J., Highly efficient capacitive removal of Cd2+ over MoS2-Carbon framework composite material in desulphurisation wastewater from coal-fired power plants. J. Clean. Prod. 2022, 355, 131814.85. Hao, Z.; Cai, Y.; Wang, Y.; Xu, S.; Wang, J., A coupling technology of capacitive deionization and MoS2/nitrogen-doped carbon spheres with abundant active sites for efficiently and selectively adsorbing low-concentration copper ions. J. Colloid Interface Sci. 2020, 564, 428-441.86. Jin, W.; Hu, M. Q., High-Performance Capacitive Deionization of Copper Ions at Nanoporous ZnS-Decorated Carbon Felt. J. Electrochem. Soc. 2019, 166 (2), E29-E34.87. Liu, D.; Xu, S.; Cai, Y.; Wang, Y.; Guo, J.; Li, Y., A coupling technology of capacitive deionization and carbon-supported petal-like VS2 composite for effective and selective adsorption of lead (II) ions. J. Electroanal. Chem. 2022, 910, 116152.88. Zhuang, H.; Wang, S.; Zhao, L.; Pan, Z.; Liu, L.; Sillanpää, M.; Lv, S.; Wang, G., Selective Capture of Cu2+ Using a Redox-Active CuS Cathode Material in Hybrid Capacitive Deionization. ACS EST. Eng. 2022, 2 (9), 1722–1731.89. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23 (37), 4248-53.90. Pang, J.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z.; Rummeli, M. H., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48 (1), 72-133.91. Guo, Z.; Zhou, J.; Zhu, L.; Sun, Z., MXene: a promising photocatalyst for water splitting. J. Mater. Chem. A 2016, 4 (29), 11446-11452.92. Chaudhari, N. K.; Jin, H.; Kim, B.; San Baek, D.; Joo, S. H.; Lee, K., MXene: an emerging two-dimensional material for future energy conversion and storage applications. J. Mater. Chem. A 2017, 5 (47), 24564-24579.93. Xiong, D.; Li, X.; Bai, Z.; Lu, S., Recent Advances in Layered Ti3 C2 Tx MXene for Electrochemical Energy Storage. Small 2018, 14 (17), e1703419.94. Zhang, Y.; Zhou, J.; Wang, D.; Cao, R.; Li, J., Performance of MXene incorporated MOF-derived carbon electrode on deionization of uranium(VI). Chem. Eng. J. 2022, 430, 132702.95. Hemmatifar, A.; Ozbek, N.; Halliday, C.; Hatton, T. A., Electrochemical Selective Recovery of Heavy Metal Vanadium Oxyanion from Continuously Flowing Aqueous Streams. ChemSusChem 2020.96. Liao, Y.; Yan, C.; Zeng, K.; Liao, C.; Wang, M., Asymmetric polysaccharide-bound graphene electrode configuration with enhanced electrosorption performance for uranium (VI) ions. Chem. Eng. J. 2021, 424, 130351.97. Yuan, J.; Ma, Y.; Yu, F.; Sun, Y.; Dai, X.; Ma, J., Simultaneous in situ nutrient recovery and sustainable wastewater purification based on metal anion- and cation-targeted selective adsorbents. J. Hazard. Mater. 2020, 382, 121039.98. Sun, Y.; Su, Y.; Zhao, Z.; Zhao, J.; Ye, M.; Wen, X., Capacitive heavy metal ion removal of 3D self-supported nitrogen-doped carbon-encapsulated titanium nitride nanorods via the synergy of faradic-reaction and electro-adsorption. Chem. Eng. J. 2022, 443, 136542.99. Lee, S.-H.; Choi, M.; Moon, J.K.; Kim, S.-W.; Lee, S.; Ryu, I.; Choi, J.; Kim, S., Electrosorption removal of cesium ions with a copper hexacyanoferrate electrode in a capacitive deionization (CDI) system. Colloid Surface A. 2022, 647, 129175.100. Zhang, X.; Zuo, K.; Zhang, X.; Zhang, C.; Liang, P., Selective ion separation by capacitive deionization (CDI) based technologies: a state-of-the-art review. Environ. Sci. Water Res. 2020, 6 (2), 243-257.101. Ho, T.L., Hard soft acids bases (HSAB) principle and organic chemistry. Chem. Rev. 1975, 75 (1), 1-20.102. Ji, Q.; Hu, C.; Liu, H.; Qu, J., Development of nitrogen-doped carbon for selective metal ion capture. Chem. Eng. J. 2018, 350, 608-615.103. Huang, X. K.; Guo, X. R.; Dong, Q. Q.; Liu, L. J.; Tallon, R.; Chen, J. H., Zero-wastewater capacitive deionization: selective removal of heavy metal ions in tap water assisted by phosphate ions. Environ. Sci. Nano 2019, 6 (11), 3225-3231.104. Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, Y. S.; Jiang, Y.; Gao, B., Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chem. Eng. J. 2019, 366, 608-621.105. Vasseghian, Y.; Almomani, F.; Dragoi, E. N., Health risk assessment induced by trace toxic metals in tap drinking water: Condorcet principle development. Chemosphere 2021, 286, 131821-131827.106. Chen, Q.; Luo, Z.; Hills, C.; Xue, G.; Tyrer, M., Precipitation of heavy metals from wastewater using simulated flue gas: Sequent additions of fly ash, lime and carbon dioxide. Water Res. 2009, 43 (10), 2605-2614.107. Vilensky, M. Y.; Berkowitz, B.; Warshawsky, A., In situ remediation of groundwater contaminated by heavy- and transition-metal ions by selective ion-exchange methods. Environ. Sci. Technol. 2002, 36 (8), 1851-1855.108. Yap, P. L.; Auyoong, Y. L.; Hassan, K.; Farivar, F.; Tran, D. N. H.; Ma, J.; Losic, D., Multithiol functionalized graphene bio-sponge via photoinitiated thiol-ene click chemistry for efficient heavy metal ions adsorption. Chem. Eng. J. 2020, 395, 124965.109. Efome, J. E.; Rana, D.; Matsuura, T.; Lan, C. Q., Experiment and modeling for flux and permeate concentration of heavy metal ion in adsorptive membrane filtration using a metal-organic framework incorporated nanofibrous membrane. Chem. Eng. J. 2018, 352, 737-744.110. Liu, X.; Wu, J.; Hou, L. A.; Wang, J., Removal of Co, Sr and Cs ions from simulated radioactive wastewater by forward osmosis. Chemosphere 2019, 232, 87-95.111. Porada, S.; Borchardt, L.; Oschatz, M.; Bryjak, M.; Atchison, J. S.; Keesman, K. J.; Kaskel, S.; Biesheuvel, P. M.; Presser, V., Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energ. Environ. Sci. 2013, 6 (12), 3700-3712.112. Fan, C. S.; Tseng, S. C.; Li, K. C.; Hou, C. H., Electro-removal of arsenic(III) and arsenic(V) from aqueous solutions by capacitive deionization. J. Hazard. Mater. 2016, 312, 208-215.113. Dai, M.; Xia, L.; Song, S.; Peng, C.; Rangel-Mendez, J. R.; Cruz-Gaona, R., Electrosorption of As(III) in aqueous solutions with activated carbon as the electrode. Appl. Surf. Sci. 2018, 434, 816-821.114. Liu, Y. X.; Yuan, D. X.; Yan, J. M.; Li, Q. L.; Ouyang, T., Electrochemical removal of chromium from aqueous solutions using electrodes of stainless steel nets coated with single wall carbon nanotubes. J. Hazard. Mater. 2011, 186 (1), 473-80.115. Yang, L.; Shi, Z.; Yang, W., Enhanced capacitive deionization of lead ions using air-plasma treated carbon nanotube electrode. Surf. Coat. Technol. 2014, 251, 122-127.116. Wei, Y.; Xu, L.; Yang, K.; Wang, Y.; Wang, Z.; Kong, Y.; Xue, H., Electrosorption of toxic heavy metal ions by mono S-or N-doped and S, N-codoped 3D graphene aerogels. J. Electrochem. Soc. 2017, 164 (2), E17-E22.117. Hou, S.; Xu, X.; Wang, M.; Lu, T.; Sun, C. Q.; Pan, L., Synergistic conversion and removal of total Cr from aqueous solution by photocatalysis and capacitive deionization. Chem. Eng. J. 2018, 337, 398-404.118. Li, G.; Yang, F.; Wu, L.; Qian, L.; Hu, X.; Wang, Z.; Chen, W., Agricultural waste buckwheat husk derived bifunctional nitrogen, sulfur and oxygen-co-doped porous carbon for symmetric supercapacitors and capacitive deionization. New J. Chem. 2021, 45 (23), 10432-10447.119. Benítez, A.; Amaro-Gahete, J.; Chien, Y.C.; Caballero, Á.; Morales, J.; Brandell, D., Recent advances in lithium-sulfur batteries using biomass-derived carbons as sulfur host. Renew. Sust. Energ. Rev. 2022, 154, 111783.120. Fdez-Sanromán, A.; Pazos, M.; Rosales, E.; Sanromán, M. A., Unravelling the environmental application of biochar as low-cost biosorbent: a review. Appl. Sci. 2020, 10 (21), 7810.121. Gaikwad, M. S.; Balomajumder, C.; Tiwari, A. K., Acid treated RHWBAC electrode performance for Cr(VI) removal by capacitive deionization and CFD analysis study. Chemosphere 2020, 254, 126781.122. Rouhani, F.; Morsali, A., Fast and selective heavy metal removal by a novel metal-organic framework designed with in-situ ligand building block fabrication bearing free nitrogen. Chemistry 2018, 24 (21), 5529-5537.123. Yang, G.; Tang, L.; Zeng, G.; Cai, Y.; Tang, J.; Pang, Y.; Zhou, Y.; Liu, Y.; Wang, J.; Zhang, S.; Xiong, W., Simultaneous removal of lead and phenol contamination from water by nitrogen-functionalized magnetic ordered mesoporous carbon. Chem. Eng. J. 2015, 259, 854-864.124. Gao, Y.; Li, Z.; Fu, Z.; Zhang, H.; Wang, G.; Zhou, H., Highly selective capacitive deionization of copper ions in FeS2@N, S co-doped carbon electrode from wastewater. Sep. Purif. Technol. 2021, 262, 118336.125. Jafari, Z.; Avargani, V. M.; Rahimi, M. R.; Mosleh, S., Magnetic nanoparticles-embedded nitrogen-doped carbon nanotube/porous carbon hybrid derived from a metal-organic framework as a highly efficient adsorbent for selective removal of Pb(II) ions from aqueous solution. J. Mol. Liq. 2020, 318, 113987.126. Fan, H.-T.; Sun, X.-T.; Zhang, Z.-G.; Li, W.-X., Selective removal of lead(II) from aqueous solution by an ion-imprinted silica sorbent functionalized with chelating N-donor atoms. J. Chem. Eng. Data 2014, 59 (6), 2106-2114.127. Tang, J.; Chen, Y.; Zhao, M.; Wang, S.; Zhang, L., Phenylthiosemicarbazide-functionalized UiO-66-NH2 as highly efficient adsorbent for the selective removal of lead from aqueous solutions. J. Hazard. Mater. 2021, 125278.128. Nakamoto, K.; Ohshiro, M.; Kobayashi, T., Mordenite zeolite—Polyethersulfone composite fibers developed for decontamination of heavy metal ions. J. Environ. Chem. Eng. 2017, 5 (1), 513-525.129. Zheng, W.; Chen, S.; Liu, H.; Ma, Y.; Xu, W., Study of the modification mechanism of heavy metal ions adsorbed by biomass-activated carbon doped with a solid nitrogen source. Rsc Adv. 2019, 9 (64), 37440-37449.130. Chen, J.; Yuan, M.; Cai, W.; Wei, J.; Zhou, J.; Liu, P.; Yang, Z.; Luo, J.; Xia, Q.; Cai, Z., Constructing the frustrated Lewis pairs within N, S-codoped carbon to reveal the role of adjacent heteroatom sites for highly effective removal of heavy metal ions. Chem. Eng. J. 2021, 422, 130153.131. McMurry; John, Organic chemistry / 7th ed. Organic chemistry / 7th ed.132. Chengzhi Hu, F. L., Huachun Lan, Huijuan Liu, Jiuhui Qu, Preparation of a manganese dioxide carbon fiber electrode for electrosorptive removal of copper ions from water. J. Colloid Interface Sci. 2015, 446, 359–365.133. Wu, S.; Yan, P.; Yang, W.; Zhou, J.; Wang, H.; Che, L.; Zhu, P., ZnCl2 enabled synthesis of activated carbons from ion-exchange resin for efficient removal of Cu2+ ions from water via capacitive deionization. Chemosphere 2021, 264, 128557.134. Wang, R.; Xu, B.; Chen, Y.; Yin, X.; Liu, Y.; Yang, W., Electro-enhanced adsorption of lead ions from slightly-polluted water by capacitive deionization. Sep. Purif. Technol. 2021, 120122.135. Huang, Z.; Lu, L.; Cai, Z.; Ren, Z. J., Individual and competitive removal of heavy metals using capacitive deionization. J. hazard. Mater. 2016, 302, 323-331.136. Wei, Y.; Xu, L.; Tao, Y.; Yao, C.; Xue, H.; Kong, Y., Electrosorption of lead ions by nitrogen-doped graphene aerogels via one-pot hydrothermal route. Ind. Eng. Chem. Res. 2016, 55 (7), 1912-1920.137. Tocmo, R.; Pena-Fronteras, J.; Calumba, K. F.; Mendoza, M.; Johnson, J. J., Valorization of pomelo (Citrus grandis Osbeck) peel: A review of current utilization, phytochemistry, bioactivities, and mechanisms of action. Compr. Rev. Food sci. F. 2020, 19, 1969-2011.138. Cheng, D.; Ngo, H. H.; Guo, W.; Chang, S. W.; Nguyen, D. D.; Zhang, X.; Varjani, S.; Liu, Y., Feasibility study on a new pomelo peel derived biochar for tetracycline antibiotics removal in swine wastewater. Sci. Total Environ. 2020, 720, 137662.139. Ren, Y.; Chang, C.; Wang, P., Pomelo peel modified with citrate as a sustainable adsorbent for removal of methylene blue from aqueous solution. Molecules 2018, 23 (6), 1342-1352.140. Li, J.; Bai, H.; Li, X.; Li, W.; Zhai, J.; Li, M.; Xi, G., Hierarchical porous carbon microspheres with superhydrophilic surface for efficient adsorption and detection of water-soluble contaminants. J. Mater. Chem. A 2018, 6 (25), 12153-12161.141. Haizhen; Sun; Zebin; Zhang; Li; Tian; Yaxi; Cui; Guijia; Yan, A cost-effective porous carbon derived from pomelo peel for the removal of methyl orange from aqueous solution. Colloid Surface A. 2016, 489, 191-199.142. Liu, Y.; Cao, S.; Xi, C.; Su, H.; Chen, Z., A new nanocomposite assembled with metal organic framework and magnetic biochar derived from pomelo peels: A highly efficient adsorbent for ketamine in wastewater. J. Environ. Chem. Eng. 2021, 9 (5), 106207.143. Tasaso, P., Adsorption of Copper Using Pomelo Peel and Depectinated Pomelo Peel. J. Clean Energ. Technol. 2014, 154-157.144. Chen, Y.; Liu, Y.; Li, Y.; Chen, Y.; Wu, Y.; Li, H.; Wang, S.; Peng, Z.; Xu, R.; Zeng, Z., Novel Magnetic Pomelo Peel Biochar for Enhancing Pb(II) And Cu(II) Adsorption: Performance and Mechanism. Water. Air. Soil Pollut. 2020, 231 (8).145. Zhao, T.; Yao, Y.; Li, D.; Wu, F.; Zhang, C.; Gao, B., Facile low-temperature one-step synthesis of pomelo peel biochar under air atmosphere and its adsorption behaviors for Ag(I) and Pb(II). Sci. Total Environ. 2018, 640-641, 73-79.146. Xu, D.; Tong, Y.; Yan, T.; Shi, L.; Zhang, D., N,P-Codoped meso-/microporous marbon merived from biomass materials via a dual-activation strategy as high-performance electrodes for deionization capacitors. Acs Sustain. Chem. Eng. 2017, 5 (7), 5810-5819.147. Gao, F.; Shao, G.; Qu, J.; Lv, S.; Li, Y.; Wu, M., Tailoring of porous and nitrogen-rich carbons derived from hydrochar for high-performance supercapacitor electrodes. Electrochim. Acta 2015, 155, 201-208.148. Chen, H.; Lin, J.; Zhang, N.; Chen, L.; Zhong, S.; Wang, Y.; Zhang, W.; Ling, Q., Preparation of MgAl-EDTA-LDH based electrospun nanofiber membrane and its adsorption properties of copper(II) from wastewater. J. Hazard. Mater. 2018, 345, 1-9.149. Biswal, M.; Banerjee, A.; Deo, M.; Ogale, S., From dead leaves to high energy density supercapacitors. Energ. Environ. Sci. 2013, 6 (4), 1249-1259.150. Lu, M. G.; Zhao, X. S., Nanoporous materials: science and engineering. Imperial College Press 2004.151. Liu, Y.; Fu, R.; Lou, Z.; Fang, W.; Wang, Z.; Xu, X., Preparation of functional carbon-based materials for removal of heavy metals from aqueous solution. Progress in Chemistry 2015, 27 (11), 1665-1678.152. Zhou, Y.; Xu, X.; Shan, B.; Wen, Y.; Jiang, T.; Lu, J.; Zhang, S.; Wilkinson, D. P.; Zhang, J.; Huang, Y., Tuning and understanding the supercapacitance of heteroatom-doped graphene. Energy Storage Mater. 2015, 1, 103-111.153. Zhao, Y.; Zhou, Y.; O’Hayre, R.; Shao, Z., Electrocatalytic oxidation of methanol on Pt catalyst supported on nitrogen-doped graphene induced by hydrazine reduction. J. Phys. Chem. Solids 2013, 74 (11), 1608-1614.154. Lee, K. R.; Lee, K. U.; Lee, J. W.; Ahn, B. T.; Woo, S. I., Electrochemical oxygen reduction on nitrogen doped graphene sheets in acid media. Electrochem. Commun. 2010, 12 (8), 1052-1055.155. Xiong, B.; Zhou, Y.; Zhao, Y.; Wang, J.; Chen, X.; O’Hayre, R.; Shao, Z., The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation. Carbon 2013, 52, 181-192.156. Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.; Dubey, M.; Ajayan, P. M., Synthesis Of Nitrogen-Doped Graphene Films For Lithium Battery Application. ACS Nano 2010, 4 (11), 6337-6342.157. Sigel, H.; Griesser, R.; Prijs, B.; Mccormick, D. B.; Joiner, M. G., "Hard and soft" behavior of Mn2+, Cu2+, and Zn2+ with respect-to carboxylic acids and α-oxy- or α-thio-substituted carboxylic acids of biochemical significance. Arch. Biochem. Biophys. 1969, 130, 514-520.158. Wang, J.; Sun, X., Olivine LiFePO4: the remaining challenges for future energy storage. Energ. Environ. Sci. 2015, 8 (4), 1110-1138.159. Rojas, J.; Quintana, A.; Lopeandia, A.; Salguero, J.; Muniz, B.; Ibrahim, F.; Chshiev, M.; Nicolenco, A.; Liedke, M. O.; Butterling, M.; Wagner, A.; Sireus, V.; Abad, L.; Jensen, C. J.; Liu, K.; Nogues, J.; Costa-Kramer, J. L.; Menendez, E.; Sort, J., Voltage-driven motion of nitrogen ions: a new paradigm for magneto-ionics. Nat. Commun. 2020, 11 (1), 5871.160. Krasucka, P.; Pan, B.; Sik Ok, Y.; Mohan, D.; Sarkar, B.; Oleszczuk, P., Engineered biochar – A sustainable solution for the removal of antibiotics from water. Chem. Eng. J. 2021, 405, 126926.161. Baker, A.; Fells, A.; Carrott, M. J.; Maher, C. J.; Hanson, B. C., Process intensification of element extraction using centrifugal contactors in the nuclear fuel cycle. Chem. Soc. Rev. 2022, 51 (10), 3964-3999.162. Zhang, C.; Ma, J.; Wu, L.; Sun, J.; Wang, L.; Li, T.; Waite, T. D., Flow electrode capacitive deionization (FCDI): recent developments, environmental applications, and future perspectives. Environ. Sci. Technol. 2021, 55 (8), 4243-4267.163. Liu, X.; Wang, J., Electro-assisted adsorption of Cs(I) and Co(II) from aqueous solution by capacitive deionization with activated carbon cloth/graphene oxide composite electrode. Sci. Total Environ. 2020, 141524.164. Liu, X.; Wang, J., Adsorptive removal of Sr2+ and Cs+ from aqueous solution by capacitive deionization. Environ. Sci. Pollut. R. 2021, 28 (3), 3182-3195.165. Yang, S.; Wu, G.; Song, J.; Hu, B., Preparation of chitosan-based asymmetric electrodes by co-imprinting technology for simultaneous electro-adsorption of multi-radionuclides. Sep. Purif. Technol. 2022, 297, 121568.166. Kong, L.; Su, M.; Mai, Z.; Li, H.; Diao, Z.; Xiong, Y.; Chen, D., Removal of uranium from aqueous solution by two-dimensional electrosorption reactor. Environ. Technol. Innov. 2017, 8, 57-63.167. Tang, X.; Zhou, L.; Xi, J.; Ouyang, J.; Liu, Z.; Chen, Z.; Adesina, A. A., Porous chitosan/biocarbon composite membrane as the electrode material for the electrosorption of uranium from aqueous solution. Sep. Purif. Technol. 2021, 274, 119005.168. Khan, A. R.; Husnain, S. M.; Shahzad, F.; Mujtaba-Ul-Hassan, S.; Mehmood, M.; Ahmad, J.; Mehran, M. T.; Rahman, S., Two-dimensional transition metal carbide (Ti3C2Tx) as an efficient adsorbent to remove cesium (Cs+). Dalton Trans. 2019, 48 (31), 11803-11812.169. Jun, B.-M.; Jang, M.; Park, C. M.; Han, J.; Yoon, Y., Selective adsorption of Cs+ by MXene (Ti3C2Tx) from model low-level radioactive wastewater. Nucl. Eng. Technol. 2020, 52 (6), 1201-1207.170. Shahzad, A.; Moztahida, M.; Tahir, K.; Kim, B.; Jeon, H.; Ghani, A. A.; Maile, N.; Jang, J.; Lee, D. S., Highly effective prussian blue-coated MXene aerogel spheres for selective removal of cesium ions. J. Nucl. Mater. 2020, 539, 152277.171. Zhang, H.; Hodges, C. S.; Mishra, P. K.; Yoon, J. Y.; Hunter, T. N.; Lee, J. W.; Harbottle, D., Bio-Inspired Preparation of Clay-Hexacyanoferrate Composite Hydrogels as Super Adsorbents for Cs+. ACS Appl. Mater. Interfaces 2020, 12, 33173−33185.172. Kim, Y. K.; Kim, S.; Kim, Y.; Bae, K.; Harbottle, D.; Lee, J. W., Facile one-pot synthesis of dual-cation incorporated titanosilicate and its deposition to membrane surfaces for simultaneous removal of Cs+ and Sr2+. Appl. Surf. Sci. 2019, 493, 165-176.173. Yoon, J. Y.; Zhang, H.; Kim, Y. K.; Harbottle, D.; Lee, J. W., A high-strength polyvinyl alcohol hydrogel membrane crosslinked by sulfosuccinic acid for strontium removal via filtration. J. Environ. Chem. Eng. 2019, 7 (1), 102824.174. Shang, T.; Lin, Z.; Qi, C.; Liu, X.; Li, P.; Tao, Y.; Wu, Z.; Li, D.; Simon, P.; Yang, Q. H., 3D macroscopic architectures from self‐assembled MXene hydrogels. Adv. Funct. Mater. 2019, 29 (33), 1903960.175. Hwang, S. K.; Kang, S. M.; Rethinasabapathy, M.; Roh, C.; Huh, Y. S., MXene: An emerging two-dimensional layered material for removal of radioactive pollutants. Chem. Eng. J. 2020, 397, 125428.176. Huang, C. J.; Liu, J. C., Precipitate flotation of fluoride-containing wastewater from a semiconductor manufacturer. Water Res. 1999, 33 (16), 3403-3412.177. Sun, W.; Shah, S. A.; Chen, Y.; Tan, Z.; Gao, H.; Habib, T.; Radovic, M.; Green, M. J., Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 2017, 5 (41), 21663-21668.178. Shuck, C. E.; Sarycheva, A.; Anayee, M.; Levitt, A.; Zhu, Y.; Uzun, S.; Balitskiy, V.; Zahorodna, V.; Gogotsi, O.; Gogotsi, Y., Scalable Synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 2020, 22 (3), 1901241.179. Kim, Y. H.; Tang, K.; Chang, J.; Sharma, K.; Yiacoumi, S.; Mayes, R. T.; Bilheux, H. Z.; Santodonato, L. J.; Tsouris, C., Potential limits of capacitive deionization and membrane capacitive deionization for water electrolysis. Sep. Sci. Technol. 2019, 54 (13), 2112-2125.180. Peng, Q.; Guo, J.; Zhang, Q.; Xiang, J.; Liu, B.; Zhou, A.; Liu, R.; Tian, Y., Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J. Am. Chem. Soc. 2014, 136 (11), 4113-6.181. Jansen, R. J. J.; van Bekkum, H., XPS of nitrogen-containing functional groups on activated carbon. Carbon 1995, 33 (8), 1021-1027.182. Peng, C.; Yang, X.; Li, Y.; Yu, H.; Wang, H.; Peng, F., Hybrids of Two-Dimensional Ti3C2 and TiO2 Exposing {001} Facets toward Enhanced Photocatalytic Activity. ACS Appl. Mater. Interfaces 2016, 8 (9), 6051-60.183. Xing, M.; Zhuang, S.; Wang, J., Efficient removal of Cs(I) from aqueous solution using graphene oxide. Prog. Nucl. Energy 2020, 119, 103167.184. Rethinasabapathy, M.; Hwang, S. K.; Kang, S. M.; Roh, C.; Huh, Y. S., Amino-functionalized POSS nanocage-intercalated titanium carbide (Ti3C2Tx) MXene stacks for efficient cesium and strontium radionuclide sequestration. J. Hazard. Mater. 2021, 418, 126315.185. Beck, S., Fragmentation behavior of EDTA complexes under different activation conditions. J. Mass Spectrom. 2021, 56 (7), e4775.186. Halim, J.; Lukatskaya, M. R.; Cook, K. M.; Lu, J.; Smith, C. R.; Naslund, L. A.; May, S. J.; Hultman, L.; Gogotsi, Y.; Eklund, P.; Barsoum, M. W., Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films. Chem. Mater. 2014, 26 (7), 2374-2381.187. Li, J.; Yuan, X.; Lin, C.; Yang, Y.; Xu, L.; Du, X.; Xie, J.; Lin, J.; Sun, J., Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energ. Mater. 2017, 7 (15), 1602725.188. Cao, F.; Zhang, Y.; Wang, H.; Khan, K.; Tareen, A. K.; Qian, W.; Zhang, H.; Agren, H., Recent Advances in Oxidation Stable Chemistry of 2D MXenes. Adv. Mater. 2022, 34 (13), e2107554.189. Srimuk, P.; Kaasik, F.; Krüner, B.; Tolosa, A.; Fleischmann, S.; Jäckel, N.; Tekeli, M. C.; Aslan, M.; Suss, M. E.; Presser, V., MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. J. Mater. Chem. A 2016, 4 (47), 18265-18271.190. Mu, W.; Du, S.; Li, X.; Yu, Q.; Wei, H.; Yang, Y.; Peng, S., Removal of radioactive palladium based on novel 2D titanium carbides. Chem. Eng. J. 2019, 358, 283-290.191. Davis, M. W.; Bowers, C. B., Extraction of cesium and strontium from nuclear waste. EP: 1988.192. Jiang, Y.; Liu, C.; Huang, A., EDTA-Functionalized Covalent Organic Framework for the Removal of Heavy-Metal Ions. ACS Appl. Mater. Interfaces 2019, 11 (35), 32186-32191.193. Skach Jr, E. J.; Claus, K. G.; Earlam, M. R., Metallothermic reduction or rare earth metals. Google Patents: 1991.194. Wu, F.; Li, H.; Pan, Y.; Sun, Y.; Pan, J., Bioinspired construction of magnetic nano stirring rods with radially aligned dual mesopores and intrinsic rapid adsorption of palladium. J. Hazard. Mater. 2023, 441, 129917.195. Wu, H.; Kim, S. Y.; Miwa, M.; Matsuyama, S., Synergistic adsorption behavior of a silica-based adsorbent toward palladium, molybdenum, and zirconium from simulated high-level liquid waste. J. Hazard. Mater. 2021, 411, 125136.196. Kim, D. I.; Gwak, G.; Dorji, P.; He, D.; Phuntsho, S.; Hong, S.; Shon, H., Palladium Recovery through Membrane Capacitive Deionization from Metal Plating Wastewater. ACS Sustain. Chem. Eng. 2017, 6 (2), 1692-1701.197. Zha, M.; Liu, J.; Wong, Y.L.; Xu, Z., Extraction of palladium from nuclear waste-like acidic solutions by a metal–organic framework with sulfur and alkene functions. J. Mater. Chem. A 2015, 3 (7), 3928-3934.198. Xie, Q. L.; Liang, G. J.; Lin, T.; Chen, F.; Wang, D., Selective chelating precipitation of palladium metal from electroplating wastewater using chitosan and its derivative. Adsorpt. Sci. Technol. 2020, 38 (3-4), 113-126.199. Huang, Z.; Wang, C.; Zhao, J.; Wang, S.; Zhou, Y.; Zhang, L., Adsorption behavior of Pd(II) ions from aqueous solution onto pyromellitic acid modified-UiO-66-NH2. Arab. J. Chem. 2020, 13 (9), 7007-7019.200. Li, M.; Tang, S.; Zhao, Z.; Meng, X.; Gao, F.; Jiang, S.; Chen, Y.; Feng, J.; Feng, C., A novel nanocomposite based silica gel/graphene oxide for the selective separation and recovery of palladium from a spent industrial catalyst. Chem. Eng. J. 2020, 386, 123947.201. Awual, M. R.; Hasan, M. M.; Znad, H., Organic–inorganic based nano-conjugate adsorbent for selective palladium(II) detection, separation and recovery. Chem. Eng. J. 2015, 259, 611-619.202. Lu, J.; Kumar Mishra, P.; Hunter, T. N.; Yang, F.; Lu, Z.; Harbottle, D.; Xu, Z., Functionalization of mesoporous carbons derived from pomelo peel as capacitive electrodes for preferential removal/recovery of copper and lead from contaminated water. Chem. Eng. J. 2022, 433, 134508.203. Zhang, W.; Wei, X. J.; Zhang, X. L.; Huo, S. L.; Gong, A.; Mo, X. P.; Li, K. X., Well-dispersed Prussian blue analogues connected with carbon nanotubes for efficient capacitive deionization process. Sep. Purif. Technol. 2022, 287.204. Iftekhar, S.; Farooq, M. U.; Sillanpää, M.; Asif, M. B.; Habib, R., Removal of Ni(II) Using Multi-walled Carbon Nanotubes Electrodes: Relation Between Operating Parameters and Capacitive Deionization Performance. Arab. J. Sci. Eng. 2016, 42 (1), 235-240.205. Zhang, Y.; Wu, J. Y.; Zhang, S. H.; Shang, N. Z.; Zhao, X. X.; Alshehri, S. M.; Ahamad, T.; Yamauchi, Y.; Xu, X. T.; Bando, Y., MOF-on-MOF nanoarchitectures for selectively functionalized nitrogen-doped carbon-graphitic carbon/carbon nanotubes heterostructure with high capacitive deionization performance. Nano Energy 2022, 97, 107146.206. Luo, L.; He, Q.; Chen, S. Q.; Yang, D. X.; Chen, Y., Metal-organic framework derived carbon nanoarchitectures for highly efficient flow-electrode CDI desalination. Environ. Res. 2022, 208, 112727.207. Feng, J. H.; Xiong, S.; Ren, L.; Wang, Y., Atomic layer deposition of TiO2 on carbon-nanotubes membrane for capacitive deionization removal of chromium from water. Chin. J. Chem. Eng. 2022, 45, 15-21.208. Ihsanullah, I., Potential of MXenes in Water Desalination: Current Status and Perspectives. Nano-Micro Lett. 2020, 12 (1), 1-20.209. Chen, B.; Feng, A.; Deng, R.; Liu, K.; Yu, Y.; Song, L., MXene as a Cation-Selective Cathode Material for Asymmetric Capacitive Deionization. ACS Appl. Mater. Interfaces 2020, 12 (12), 13750-13758.210. Zhang, B. J.; Boretti, A.; Castelletto, S., Mxene pseudocapacitive electrode material for capacitive deionization. Chem. Eng. J. 2022, 435.211. Li, B.; Sun, K.; Xu, W. Y.; Liu, X. J.; Wang, A.; Boles, S.; Xu, B.; Hu, H. B.; Yao, D. R., Tailoring interlayer spacing in MXene cathodes to boost the desalination performance of hybrid capacitive deionization systems. Nano Res. 2022.212. Khurshid, H.; Mustafa, M. R. U.; Isa, M. H., Adsorption of chromium, copper, lead and mercury ions from aqueous solution using bio and nano adsorbents: A review of recent trends in the application of AC, BC, nZVI and MXene. Environ. Res. 2022, 212, 113138.213. Ying, Y.; Liu, Y.; Wang, X.; Mao, Y.; Cao, W.; Hu, P.; Peng, X., Two-Dimensional Titanium Carbide for Efficiently Reductive Removal of Highly Toxic Chromium(VI) from Water. ACS Appl. Mater. Interfaces 2015, 7 (3), 1795-1803.214. Hassan, M. u.; Lee, S.; Mehran, M. T.; Shahzad, F.; Husnain, S. M.; Ryu, H. J., Post-decontamination treatment of MXene after adsorbing Cs from contaminated water with the enhanced thermal stability to form a stable radioactive waste matrix. J. Nucl. Mater. 2021, 543, 152566.215. Wang, S.; Wang, L.; Li, Z.; Zhang, P.; Du, K.; Yuan, L.; Ning, S.; Wei, Y.; Shi, W., Highly efficient adsorption and immobilization of U(VI) from aqueous solution by alkalized MXene-supported nanoscale zero-valent iron. J. Hazard. Mater. 2021, 408, 124949.216. Tian, H.; Guo, J.; Pang, Z.; Hu, M.; He, J., A sulfur, nitrogen dual-doped porous graphene nanohybrid for ultraselective Hg(II) separation over Pb(II) and Cu(II). Nanoscale 2020, 16543-16555.217. Wang, W.; Guo, S.; Zhang, P.; Liu, J.; Zhou, C.; Zhou, J.J.; Xu, L.; Chen, F.; Chen, L., Interlayer Expanded MoS2/Nitrogen-Doped Carbon Hydrangea Nanoflowers Assembled on Nitrogen-Doped Three-Dimensional Graphene for High-Performance Lithium and Sodium Storage. ACS Appl. Energ. Mater. 2021, 4 (6), 5775-5786.218. Zou, G.; Wang, C.; Hou, H.; Wang, C.; Qiu, X.; Ji, X., Controllable Interlayer Spacing of Sulfur-Doped Graphitic Carbon Nanosheets for Fast Sodium-Ion Batteries. Small 2017, 13 (31), 1700762.219. Hao, C.; Li, G.; Wang, G.; Chen, W.; Wang, S., Preparation of acrylic acid modified alkalized MXene adsorbent and study on its dye adsorption performance. Colloid Surface A. 2022, 632, 127730.220. Sun, Y.; Jin, D.; Sun, Y.; Meng, X.; Gao, Y.; Dall’Agnese, Y.; Chen, G.; Wang, X.F., g-C3N4/Ti3C2Tx (MXenes) composite with oxidized surface groups for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2018, 6 (19), 9124-9131.221. Guo, J.; Peng, Q.; Fu, H.; Zou, G.; Zhang, Q., Heavy-Metal Adsorption Behavior of Two-Dimensional Alkalization-Intercalated MXene by First-Principles Calculations. J. Phys. Chem. C 2015, 119 (36), 20923-20930.222. Luo, J.; Zhang, W.; Yuan, H.; Jin, C.; Zhang, L.; Huang, H.; Liang, C.; Xia, Y.; Zhang, J.; Gan, Y.; Tao, X., Pillared Structure Design of MXene with Ultralarge Interlayer Spacing for High-Performance Lithium-Ion Capacitors. ACS Nano 2017, 11 (3), 2459-2469.223. Bao, W.; Liu, L.; Wang, C.; Choi, S.; Wang, D.; Wang, G., Facile Synthesis of Crumpled Nitrogen-Doped MXene Nanosheets as a New Sulfur Host for Lithium-Sulfur Batteries. Adv. Energ. Mater. 2018, 8 (13), 1702485.224. Li, J.; Ren, Z.; Zhou, Y.; Wu, X.; Xu, X.; Qi, M.; Li, W.; Bai, J.; Wang, L., Scalable synthesis of pyrrolic N-doped graphene by atmospheric pressure chemical vapor deposition and its terahertz response. Carbon 2013, 62, 330-336.225. Li, J.; Zhang, Y.; Zhang, X.; Huang, J.; Han, J.; Zhang, Z.; Han, X.; Xu, P.; Song, B., S, N Dual-Doped Graphene-like Carbon Nanosheets as Efficient Oxygen Reduction Reaction Electrocatalysts. ACS Appl. Mater. Interfaces 2017, 9 (1), 398-405.226. Wilton-Ely, J. D. E. T.; Pogorzelec, P. J.; Honarkhah, S. J.; Reid, D. H.; Tocher, D. A., Mixed-Donor Ligands: Pyrrolecarbaldehyde and Pyrrolecarbothioaldehyde σ-Organyl Complexes of Ruthenium(II) and Osmium(II). Organometallics 2005, 24 (12), 2862-2874.227. Awual, M. R.; Yaita, T.; El-Safty, S. A.; Shiwaku, H.; Okamoto, Y.; Suzuki, S., Investigation of palladium(II) detection and recovery using ligand modified conjugate adsorbent. Chem. Eng. J. 2013, 222, 172-179.228. Ayers, P. W.; Parr, R. G.; Pearson, R. G., Elucidating the hard/soft acid/base principle: a perspective based on half-reactions. J. Chem. Phys. 2006, 124 (19), 194107.229. Landon, J.; Gao, X.; Omosebi, A.; Liu, K., Progress and outlook for capacitive deionization technology. Curr. Opin. Chem. Eng. 2019, 25, 1-8.230. Cai, W.; Dionysiou, D. D.; Fu, F.; Tang, B., CTAB-intercalated molybdenum disulfide nanosheets for enhanced simultaneous removal of Cr(VI) and Ni(II) from aqueous solutions. J. Hazard. Mater. 2020, 396, 122728.231. Battistel, A.; Palagonia, M. S.; Brogioli, D.; La Mantia, F.; Trocoli, R., Electrochemical Methods for Lithium Recovery: A Comprehensive and Critical Review. Adv. Mater. 2020, 32 (23), e1905440.232. Li, Z.; Li, C.; Liu, X.; Cao, L.; Li, P.; Wei, R.; Li, X.; Guo, D.; Huang, K.W.; Lai, Z., Continuous electrical pumping membrane process for seawater lithium mining. Energ. Environ. Sci. 2021, 14 (5), 3152-3159233. Zhang, H.; Lang, J.; Liu, K.; Jin, Y.; Wang, K.; Wu, Y.; Shi, S.; Wang, L.; Xu, H.; He, X.; Wu, H., High Ion‐Selectivity of Garnet Solid Electrolyte Enabling Separation of Metallic Lithium. Energ. Environ. Mater. 2022, 0, 12425. |
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/638856 |
专题 | 工学院_材料科学与工程系 |
推荐引用方式 GB/T 7714 |
Lu JM. High Performance Capacitive Deionization Electrode Materials for the Selective Recovery of Hazardous Metal Ions from Wastewater[D]. Leeds, UK. The University of Leeds,2023.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
11859004-卢吉明-材料科学与工程(10792KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[卢吉明]的文章 |
百度学术 |
百度学术中相似的文章 |
[卢吉明]的文章 |
必应学术 |
必应学术中相似的文章 |
[卢吉明]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论