题名 | PRIOR: Prototype Representation Joint Learning from Medical Images and Reports |
作者 | |
通讯作者 | Tang, Xiaoying |
DOI | |
发表日期 | 2023-07
|
会议名称 | International Conference on Computer Vision (ICCV)
|
ISSN | 1550-5499
|
ISBN | 979-8-3503-0719-1
|
会议录名称 | |
页码 | 21304-21314
|
会议日期 | August 2023
|
会议地点 | Paris
|
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
|
出版者 | |
摘要 | Contrastive learning based vision-language joint pre-training has emerged as a successful representation learning strategy. In this paper, we present a prototype representation learning framework incorporating both global and local alignment between medical images and reports. In contrast to standard global multi-modality alignment methods, we employ a local alignment module for fine-grained representation. Furthermore, a cross-modality conditional reconstruction module is designed to interchange information across modalities in the training phase by reconstructing masked images and reports. For reconstructing long reports, a sentence-wise prototype memory bank is constructed, enabling the network to focus on low-level localized visual and high-level clinical linguistic features. Additionally, a non-auto-regressive generation paradigm is proposed for reconstructing non-sequential reports. Experimental results on five downstream tasks, including supervised classification, zero-shot classification, image-to-text retrieval, semantic segmentation, and object detection, show the proposed method outperforms other state-of-the-art methods across multiple datasets and under different dataset size settings. The code is available at https://github.com/QtacierP/PRIOR. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | Shenzhen Basic Research Program[JCYJ20200925153847004]
; National Natural Science Foundation of China[62071210]
; Shenzhen Science and Technology Program["RCYX20210609103056042","JSGG20220831093004008"]
; Shenzhen Science and Technology Innovation Committee[KCXFZ2020122117340001]
; Guangdong Basic and Applied Basic Research Foundation[2023A1515012839]
|
WOS研究方向 | Computer Science
; Imaging Science & Photographic Technology
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Imaging Science & Photographic Technology
|
WOS记录号 | WOS:001169500505086
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10377656 |
引用统计 |
被引频次[WOS]:16
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/641381 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Department of Electronic and Electrical Engineering, Southern University of Science and Technology 2.Jiaxing Research Institute, Southern University of Science and Technology 3.Department of Electrical and Electronic Engineering, The University of Hong Kong 4.Queensland Brain Institute, The University of Queensland 5.School of Biomedical Engineering, University of British Columbia 6.Shenzhen Campus of Sun Yat-sen University |
第一作者单位 | 电子与电气工程系; 南方科技大学 |
通讯作者单位 | 电子与电气工程系; 南方科技大学 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Cheng, Pujin,Lin, Li,Lyu, Junyan,et al. PRIOR: Prototype Representation Joint Learning from Medical Images and Reports[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2023:21304-21314.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Cheng et al_2023_PRI(2075KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论