中文版 | English
题名

PRIOR: Prototype Representation Joint Learning from Medical Images and Reports

作者
通讯作者Tang, Xiaoying
DOI
发表日期
2023-07
会议名称
International Conference on Computer Vision (ICCV)
ISSN
1550-5499
ISBN
979-8-3503-0719-1
会议录名称
页码
21304-21314
会议日期
August 2023
会议地点
Paris
出版地
10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
出版者
摘要

Contrastive learning based vision-language joint pre-training has emerged as a successful representation learning strategy. In this paper, we present a prototype representation learning framework incorporating both global and local alignment between medical images and reports. In contrast to standard global multi-modality alignment methods, we employ a local alignment module for fine-grained representation. Furthermore, a cross-modality conditional reconstruction module is designed to interchange information across modalities in the training phase by reconstructing masked images and reports. For reconstructing long reports, a sentence-wise prototype memory bank is constructed, enabling the network to focus on low-level localized visual and high-level clinical linguistic features. Additionally, a non-auto-regressive generation paradigm is proposed for reconstructing non-sequential reports. Experimental results on five downstream tasks, including supervised classification, zero-shot classification, image-to-text retrieval, semantic segmentation, and object detection, show the proposed method outperforms other state-of-the-art methods across multiple datasets and under different dataset size settings. The code is available at https://github.com/QtacierP/PRIOR.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
Shenzhen Basic Research Program[JCYJ20200925153847004] ; National Natural Science Foundation of China[62071210] ; Shenzhen Science and Technology Program["RCYX20210609103056042","JSGG20220831093004008"] ; Shenzhen Science and Technology Innovation Committee[KCXFZ2020122117340001] ; Guangdong Basic and Applied Basic Research Foundation[2023A1515012839]
WOS研究方向
Computer Science ; Imaging Science & Photographic Technology
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Imaging Science & Photographic Technology
WOS记录号
WOS:001169500505086
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10377656
引用统计
被引频次[WOS]:16
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/641381
专题工学院_电子与电气工程系
作者单位
1.Department of Electronic and Electrical Engineering, Southern University of Science and Technology
2.Jiaxing Research Institute, Southern University of Science and Technology
3.Department of Electrical and Electronic Engineering, The University of Hong Kong
4.Queensland Brain Institute, The University of Queensland
5.School of Biomedical Engineering, University of British Columbia
6.Shenzhen Campus of Sun Yat-sen University
第一作者单位电子与电气工程系;  南方科技大学
通讯作者单位电子与电气工程系;  南方科技大学
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Cheng, Pujin,Lin, Li,Lyu, Junyan,et al. PRIOR: Prototype Representation Joint Learning from Medical Images and Reports[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2023:21304-21314.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Cheng et al_2023_PRI(2075KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cheng, Pujin]的文章
[Lin, Li]的文章
[Lyu, Junyan]的文章
百度学术
百度学术中相似的文章
[Cheng, Pujin]的文章
[Lin, Li]的文章
[Lyu, Junyan]的文章
必应学术
必应学术中相似的文章
[Cheng, Pujin]的文章
[Lin, Li]的文章
[Lyu, Junyan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。