题名 | Local-measurement-based quantum state tomography via neural networks |
作者 | |
通讯作者 | Li,Jun |
发表日期 | 2019-12-01
|
DOI | |
发表期刊 | |
ISSN | 2056-6387
|
EISSN | 2056-6387
|
卷号 | 5期号:1 |
摘要 | Quantum state tomography is a daunting challenge of experimental quantum computing, even in moderate system size. One way to boost the efficiency of state tomography is via local measurements on reduced density matrices, but the reconstruction of the full state thereafter is hard. Here, we present a machine-learning method to recover the ground states of k-local Hamiltonians from just the local information, where a fully connected neural network is built to fulfill the task with up to seven qubits. In particular, we test the neural network model with a practical dataset, that in a 4-qubit nuclear magnetic resonance system our method yields global states via the 2-local information with high accuracy. Our work paves the way towards scalable state tomography in large quantum systems. |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Chinese Ministry of Education[20173080024]
|
WOS研究方向 | Physics
|
WOS类目 | Quantum Science & Technology
; Physics, Applied
; Physics, Atomic, Molecular & Chemical
; Physics, Condensed Matter
|
WOS记录号 | WOS:000502996400001
|
出版者 | |
EI入藏号 | 20201608456437
|
EI主题词 | Tomography
; Statistical tests
; Learning systems
; Quantum optics
; Quantum computers
; Neural network models
|
EI分类号 | Computer Systems and Equipment:722
; Artificial Intelligence:723.4
; Light/Optics:741.1
; Imaging Techniques:746
; Mathematical Statistics:922.2
; Quantum Theory; Quantum Mechanics:931.4
|
Scopus记录号 | 2-s2.0-85075937955
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:54
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/64183 |
专题 | 理学院_物理系 量子科学与工程研究院 |
作者单位 | 1.Shenzhen Institute for Quantum Science and Engineering and Department of Physics,Southern University of Science and Technology,Shenzhen,518055,China 2.State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics,Tsinghua University,Beijing,100084,China 3.Department of Mathematics & Statistics,University of Guelph,Guelph,N1G 2W1,Canada 4.Institute for Quantum Computing,University of Waterloo,Waterloo,N2L 3G1,Canada 5.Tsinghua National Laboratory of Information Science and Technology and The Innovative Center of Quantum Matter,Beijing,100084,China 6.Beijing Academy of Quantum Information Sciences,Beijing,100193,China 7.Department of Physics,The Hong Kong University of Science and Technology,Kowloon,Clear Water Bay,Hong Kong |
第一作者单位 | 物理系; 量子科学与工程研究院 |
通讯作者单位 | 物理系; 量子科学与工程研究院 |
第一作者的第一单位 | 物理系; 量子科学与工程研究院 |
推荐引用方式 GB/T 7714 |
Xin,Tao,Lu,Sirui,Cao,Ningping,et al. Local-measurement-based quantum state tomography via neural networks[J]. npj Quantum Information,2019,5(1).
|
APA |
Xin,Tao.,Lu,Sirui.,Cao,Ningping.,Anikeeva,Galit.,Lu,Dawei.,...&Zeng,Bei.(2019).Local-measurement-based quantum state tomography via neural networks.npj Quantum Information,5(1).
|
MLA |
Xin,Tao,et al."Local-measurement-based quantum state tomography via neural networks".npj Quantum Information 5.1(2019).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
s41534-019-0222-3.pd(1016KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论