中文版 | English
题名

Local-measurement-based quantum state tomography via neural networks

作者
通讯作者Li,Jun
发表日期
2019-12-01
DOI
发表期刊
ISSN
2056-6387
EISSN
2056-6387
卷号5期号:1
摘要

Quantum state tomography is a daunting challenge of experimental quantum computing, even in moderate system size. One way to boost the efficiency of state tomography is via local measurements on reduced density matrices, but the reconstruction of the full state thereafter is hard. Here, we present a machine-learning method to recover the ground states of k-local Hamiltonians from just the local information, where a fully connected neural network is built to fulfill the task with up to seven qubits. In particular, we test the neural network model with a practical dataset, that in a 4-qubit nuclear magnetic resonance system our method yields global states via the 2-local information with high accuracy. Our work paves the way towards scalable state tomography in large quantum systems.

相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Chinese Ministry of Education[20173080024]
WOS研究方向
Physics
WOS类目
Quantum Science & Technology ; Physics, Applied ; Physics, Atomic, Molecular & Chemical ; Physics, Condensed Matter
WOS记录号
WOS:000502996400001
出版者
EI入藏号
20201608456437
EI主题词
Tomography ; Statistical tests ; Learning systems ; Quantum optics ; Quantum computers ; Neural network models
EI分类号
Computer Systems and Equipment:722 ; Artificial Intelligence:723.4 ; Light/Optics:741.1 ; Imaging Techniques:746 ; Mathematical Statistics:922.2 ; Quantum Theory; Quantum Mechanics:931.4
Scopus记录号
2-s2.0-85075937955
来源库
Scopus
引用统计
被引频次[WOS]:54
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/64183
专题理学院_物理系
量子科学与工程研究院
作者单位
1.Shenzhen Institute for Quantum Science and Engineering and Department of Physics,Southern University of Science and Technology,Shenzhen,518055,China
2.State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics,Tsinghua University,Beijing,100084,China
3.Department of Mathematics & Statistics,University of Guelph,Guelph,N1G 2W1,Canada
4.Institute for Quantum Computing,University of Waterloo,Waterloo,N2L 3G1,Canada
5.Tsinghua National Laboratory of Information Science and Technology and The Innovative Center of Quantum Matter,Beijing,100084,China
6.Beijing Academy of Quantum Information Sciences,Beijing,100193,China
7.Department of Physics,The Hong Kong University of Science and Technology,Kowloon,Clear Water Bay,Hong Kong
第一作者单位物理系;  量子科学与工程研究院
通讯作者单位物理系;  量子科学与工程研究院
第一作者的第一单位物理系;  量子科学与工程研究院
推荐引用方式
GB/T 7714
Xin,Tao,Lu,Sirui,Cao,Ningping,et al. Local-measurement-based quantum state tomography via neural networks[J]. npj Quantum Information,2019,5(1).
APA
Xin,Tao.,Lu,Sirui.,Cao,Ningping.,Anikeeva,Galit.,Lu,Dawei.,...&Zeng,Bei.(2019).Local-measurement-based quantum state tomography via neural networks.npj Quantum Information,5(1).
MLA
Xin,Tao,et al."Local-measurement-based quantum state tomography via neural networks".npj Quantum Information 5.1(2019).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
s41534-019-0222-3.pd(1016KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xin,Tao]的文章
[Lu,Sirui]的文章
[Cao,Ningping]的文章
百度学术
百度学术中相似的文章
[Xin,Tao]的文章
[Lu,Sirui]的文章
[Cao,Ningping]的文章
必应学术
必应学术中相似的文章
[Xin,Tao]的文章
[Lu,Sirui]的文章
[Cao,Ningping]的文章
相关权益政策
暂无数据
收藏/分享
文件名: s41534-019-0222-3.pdf
格式: Adobe PDF
文件名: s41534-019-0222-3.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。