题名 | Cyclic phase transformation behavior of nanocrystalline NiTi at microscale |
作者 | |
通讯作者 | Sun,Qingping |
发表日期 | 2020-02-15
|
DOI | |
发表期刊 | |
ISSN | 1359-6454
|
EISSN | 1873-2453
|
卷号 | 185页码:507-517 |
摘要 | Cuboidal micropillars of nanocrystalline superelastic NiTi shape memory alloys with an average grain size of 65 nm were fabricated by focused ion beam and then subjected to cyclic compression. It is found that the micropillars have maintained superelasticity for over 10 full-transformation cycles under a maximum compressive stress of 1.2 GPa. Functional degradation of the micropillars mainly occurs in the first 10 cycles where hysteresis loop area and forward transformation stress rapidly decrease from initial 11 MPa (MJ/m) and 586 MPa to 6 MPa and 271 MPa. In the 10 ~ 10 cycles, stress-strain responses of the micropillars show asymptotic stabilization. Residual strain is accumulated to 3.3% and multiple ~50 nm wide extrusions are found at the surface of the micropillars after 10 cycles. SEM and TEM studies indicate that cyclic phase transformation results in formation and glide of transformation-induced dislocations that create surface steps and the extrusions. The dislocations inhibit reverse transformation and result in residual martensite and residual stresses. The dislocations and the residual martensite lead to the functional degradation. The role of the residual martensite in the functional degradation is further verified by 21% recovery of the residual strain and an increase of 278 MPa in the forward transformation stress after heating up the cyclically deformed micropillars to 100 °C. The recorded over 10 phase transformation cycles under a maximum stress of 1.2 GPa of the NiTi shape memory alloys at microscale open up new avenues for applications of the material in microscale devices and engineering. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | Science, Technology, and Innovation Commission of Shenzhen Municipality[SGDX2019081623360564]
; Science, Technology, and Innovation Commission of Shenzhen Municipality[JCYJ20170412153039309]
|
WOS研究方向 | Materials Science
; Metallurgy & Metallurgical Engineering
|
WOS类目 | Materials Science, Multidisciplinary
; Metallurgy & Metallurgical Engineering
|
WOS记录号 | WOS:000514747400044
|
出版者 | |
EI入藏号 | 20200408076253
|
EI主题词 | Binary alloys
; Compressive stress
; Dislocations (crystals)
; Extrusion
; Ion beams
; Martensite
; Nanocrystalline alloys
; Nanocrystals
; Shape-memory alloy
; Titanium alloys
|
EI分类号 | Metallography:531.2
; Titanium and Alloys:542.3
; Nanotechnology:761
; High Energy Physics:932.1
|
ESI学科分类 | MATERIALS SCIENCE
|
Scopus记录号 | 2-s2.0-85078080963
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:78
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/64675 |
专题 | 工学院_材料科学与工程系 |
作者单位 | 1.Department of Mechanical and Aerospace Engineering,The Hong Kong University of Science and Technology,Hong Kong,Clear Water Bay,Hong Kong 2.Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China |
推荐引用方式 GB/T 7714 |
Hua,Peng,Chu,Kangjie,Ren,Fuzeng,et al. Cyclic phase transformation behavior of nanocrystalline NiTi at microscale[J]. ACTA MATERIALIA,2020,185:507-517.
|
APA |
Hua,Peng,Chu,Kangjie,Ren,Fuzeng,&Sun,Qingping.(2020).Cyclic phase transformation behavior of nanocrystalline NiTi at microscale.ACTA MATERIALIA,185,507-517.
|
MLA |
Hua,Peng,et al."Cyclic phase transformation behavior of nanocrystalline NiTi at microscale".ACTA MATERIALIA 185(2020):507-517.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论