[1] J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1999).
[2] M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, Seventh (expanded) anniversary edition, 60th anniversary edition (Cambridge University Press, Cambridge, 2019).
[3] D. H. Goldstein, Polarized Light, 3rd ed. (CRC Press, Boca Raton, 2017).
[4] W. F. Magie, A Source Book in Physics (Harvard U. P., Cambridge, 1965).
[5] A. Rodger and B. Nordén, Circular Dichroism and Linear Dichroism (Oxford University Press, Oxford, 1997).
[6] E. Hecht, Optics, 5 ed (Pearson Education, Inc, Boston, 2017).
[7] D. Brewster, IX. On the Laws Which Regulate the Polarisation of Light by Reflexion from Transparent Bodies. By David Brewster, LL. D. F. R. S. Edin. and F. S. A. Edin. In a Letter Addressed to Right Hon. Sir Joseph Banks, Bart. K. B. P. R. S, Philos. Trans. R. Soc. Lond. 105, 125 (1997).
[8] L. Kristjánsson, Iceland Spar and Its Influence on the Development of Science and Technology in the Period 1780–1930, 3rd ed. (University of Iceland, Reykjavík, 2010).
[9] R. A. Chipman, G. Young, and W. S. T. Lam, Polarized Light and Optical Systems (Taylor & Francis, CRC Press, Boca Raton, 2018).
[10] G. Ma and P. Sheng, Acoustic Metamaterials: From Local Resonances to Broad Horizons, Sci. Adv. 2, e1501595 (2016).
[11] C. Shi, R. Zhao, Y. Long, S. Yang, Y. Wang, H. Chen, J. Ren, and X. Zhang, Observation of Acoustic Spin, Natl. Sci. Rev. 6, 707 (2019).
[12] M. R. Scheinfein, J. Unguris, M. H. Kelley, D. T. Pierce, and R. J. Celotta, Scanning Electron Microscopy with Polarization Analysis (SEMPA), Rev. Sci. Instrum. 61, 2501 (1990).
[13] S. Hénon and J. Meunier, Microscope at the Brewster Angle: Direct Observation of First‐order Phase Transitions in Monolayers, Rev. Sci. Instrum. 62, 936 (1991).
[14] S. G. Demos and R. R. Alfano, Optical Polarization Imaging, Appl. Opt. 36, 150 (1997).
[15] P. J. Winzer, D. T. Neilson, and A. R. Chraplyvy, Fiber-Optic Transmission and Networking: The Previous 20 and the next 20 Years [Invited], Opt. Express 26, 24190 (2018).
[16] D. J. Richardson, J. M. Fini, and L. E. Nelson, Space-Division Multiplexing in Optical Fibres, Nat. Photonics 7, 354 (2013).
[17] E. Komatsu, New Physics from the Polarized Light of the Cosmic Microwave Background, Nat. Rev. Phys. 4, 452 (2022).
[18] T. R. Seshadri and K. Subramanian, Cosmic Microwave Background Polarization Signals from Tangled Magnetic Fields, Phys. Rev. Lett. 87, 101301 (2001).
[19] M. J. Stephen and J. P. Straley, Physics of Liquid Crystals, Rev. Mod. Phys. 46, 617 (1974).
[20] T. K. Das and S. Prusty, Review on Conducting Polymers and Their Applications, Polym.-Plast. Technol. Eng. 51, 1487 (2012).
[21] L. A. Nguyen, H. He, and C. Pham-Huy, Chiral Drugs: An Overview, Int. J. Biomed. Sci. IJBS 2, 85 (2006).
[22] R. Naaman, Y. Paltiel, and D. H. Waldeck, Chiral Molecules and the Electron Spin, Nat. Rev. Chem. 3, 250 (2019).
[23] S. Crampin, Seismic-Wave Propagation through a Cracked Solid: Polarization as a Possible Dilatancy Diagnostic, Geophys. J. Int. 53, 467 (1978).
[24] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Quantum Computers, Nature 464, 7285 (2010).
[25] J. L. O’Brien, Optical Quantum Computing, Science 318, 1567 (2007).
[26] N. Gisin and R. Thew, Quantum Communication, Nat. Photonics 1, 165 (2007).
[27] P. W. Shor and J. Preskill, Simple Proof of Security of the BB84 Quantum Key Distribution Protocol, Phys. Rev. Lett. 85, 441 (2000).
[28] Y.-A. Chen et al., An Integrated Space-to-Ground Quantum Communication Network over 4,600 Kilometres, Nature 589, 7841 (2021).
[29] C. Couteau, S. Barz, T. Durt, T. Gerrits, J. Huwer, R. Prevedel, J. Rarity, A. Shields, and G. Weihs, Applications of Single Photons to Quantum Communication and Computing, Nat. Rev. Phys. 5, 326 (2023).
[30] V. G. Veselago, Electrodynamics of Substances with Simultaneously Negative Values of ε and μ, Sov. Phys. Uspekhi 10, 509 (1968).
[31] J. B. Pendry, Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett. 85, 3966 (2000).
[32] C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, All-Angle Negative Refraction without Negative Effective Index, Phys. Rev. B 65, 201104 (2002).
[33] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Metamaterials and Negative Refractive Index, Science 305, 788 (2004).
[34] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Composite Medium with Simultaneously Negative Permeability and Permittivity, Phys. Rev. Lett. 84, 4184 (2000).
[35] R. A. Shelby, D. R. Smith, and S. Schultz, Experimental Verification of a Negative Index of Refraction, Science 292, 77 (2001).
[36] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Photonic Crystals: Putting a New Twist on Light, Nature 386, 6621 (1997).
[37] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Acoustic Band Structure of Periodic Elastic Composites, Phys. Rev. Lett. 71, 2022 (1993).
[38] S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Experimental Demonstration of Near-Infrared Negative-Index Metamaterials, Phys. Rev. Lett. 95, 137404 (2005).
[39] C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, Experimental Verification and Simulation of Negative Index of Refraction Using Snell’s Law, Phys. Rev. Lett. 90, 107401 (2003).
[40] A. A. Houck, J. B. Brock, and I. L. Chuang, Experimental Observations of a Left-Handed Material That Obeys Snell’s Law, Phys. Rev. Lett. 90, 137401 (2003).
[41] C. M. Soukoulis, S. Linden, and M. Wegener, Negative Refractive Index at Optical Wavelengths, Science 315, 47 (2007).
[42] V. M. Shalaev, Optical Negative-Index Metamaterials, Nat. Photonics 1, 41 (2007).
[43] C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, Low-Loss Multilayered Metamaterial Exhibiting a Negative Index of Refraction at Visible Wavelengths, Phys. Rev. Lett. 106, 067402 (2011).
[44] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, Locally Resonant Sonic Materials, Science 289, 1734 (2000).
[45] Y. Ding, Z. Liu, C. Qiu, and J. Shi, Metamaterial with Simultaneously Negative Bulk Modulus and Mass Density, Phys. Rev. Lett. 99, 093904 (2007).
[46] S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, Composite Acoustic Medium with Simultaneously Negative Density and Modulus, Phys. Rev. Lett. 104, 054301 (2010).
[47] T. Brunet, A. Merlin, B. Mascaro, K. Zimny, J. Leng, O. Poncelet, C. Aristégui, and O. Mondain-Monval, Soft 3D Acoustic Metamaterial with Negative Index, Nat. Mater. 14, 384 (2015).
[48] M. Yang, G. Ma, Z. Yang, and P. Sheng, Coupled Membranes with Doubly Negative Mass Density and Bulk Modulus, Phys. Rev. Lett. 110, 134301 (2013).
[49] Y. Wu, Y. Lai, and Z.-Q. Zhang, Elastic Metamaterials with Simultaneously Negative Effective Shear Modulus and Mass Density, Phys. Rev. Lett. 107, 105506 (2011).
[50] Y. Lai, Y. Wu, P. Sheng, and Z.-Q. Zhang, Hybrid Elastic Solids, Nat. Mater. 10, 620 (2011).
[51] X. N. Liu, G. K. Hu, G. L. Huang, and C. T. Sun, An Elastic Metamaterial with Simultaneously Negative Mass Density and Bulk Modulus, Appl. Phys. Lett. 98, 251907 (2011).
[52] M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener, 3D Metamaterials, Nat. Rev. Phys. 1, 198 (2019).
[53] P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, Realization of an All-Dielectric Zero-Index Optical Metamaterial, Nat. Photonics 7, 791 (2013).
[54] W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Optical Cloaking with Metamaterials, Nat. Photonics 1, 224 (2007).
[55] N. Fang, H. Lee, C. Sun, and X. Zhang, Sub-Diffraction-Limited Optical Imaging with a Silver Superlens, Science 308, 534 (2005).
[56] N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, Negative Refractive Index and Acoustic Superlens from Multiple Scattering in Single Negative Metamaterials, Nature 525, 7567 (2015).
[57] J. Christensen and F. J. G. de Abajo, Anisotropic Metamaterials for Full Control of Acoustic Waves, Phys. Rev. Lett. 108, 124301 (2012).
[58] J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, and F. J. Garcia-Vidal, A Holey-Structured Metamaterial for Acoustic Deep-Subwavelength Imaging, Nat. Phys. 7, 52 (2011).
[59] S. Zhang, C. Xia, and N. Fang, Broadband Acoustic Cloak for Ultrasound Waves, Phys. Rev. Lett. 106, 024301 (2011).
[60] G. W. Milton, M. Briane, and J. R. Willis, On Cloaking for Elasticity and Physical Equations with a Transformation Invariant Form, New J. Phys. 8, 248 (2006).
[61] J. Mei, G. Ma, M. Yang, Z. Yang, W. Wen, and P. Sheng, Dark Acoustic Metamaterials as Super Absorbers for Low-Frequency Sound, Nat. Commun. 3, 756 (2012).
[62] J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, Optical Metamaterial for Polarization Control, Phys. Rev. A 80, 023807 (2009).
[63] C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials, Phys. Rev. Lett. 104, 253902 (2010).
[64] C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, High Performance Bianisotropic Metasurfaces: Asymmetric Transmission of Light, Phys. Rev. Lett. 113, 023902 (2014).
[65] J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials, Phys. Rev. Lett. 99, 063908 (2007).
[66] E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, Metamaterials: Optical Activity without Chirality, Phys. Rev. Lett. 102, 113902 (2009).
[67] A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, Comparison of Birefringent Electric Split-Ring Resonator and Meanderline Structures as Quarter-Wave Plates at Terahertz Frequencies, Opt. Express 17, 136 (2009).
[68] N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction, Science 340, 1304 (2013).
[69] L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, Manipulating Polarization States of Terahertz Radiation Using Metamaterials, New J. Phys. 14, 115013 (2012).
[70] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, Gold Helix Photonic Metamaterial as Broadband Circular Polarizer, Science 325, 1513 (2009).
[71] J. Kaschke and M. Wegener, Gold Triple-Helix Mid-Infrared Metamaterial by STED-Inspired Laser Lithography, Opt. Lett. 40, 3986 (2015).
[72] C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, Metallic Helix Array as a Broadband Wave Plate, Phys. Rev. Lett. 107, 177401 (2011).
[73] C. Rockstuhl, C. Menzel, T. Paul, and F. Lederer, Optical Activity in Chiral Media Composed of Three-Dimensional Metallic Meta-Atoms, Phys. Rev. B 79, 035321 (2009).
[74] Y. Zhao, M. A. Belkin, and A. Alù, Twisted Optical Metamaterials for Planarized Ultrathin Broadband Circular Polarizers, Nat. Commun. 3, 870 (2012).
[75] Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, Chirality Detection of Enantiomers Using Twisted Optical Metamaterials, Nat. Commun. 8, 14180 (2017).
[76] V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure, Phys. Rev. Lett. 97, 167401 (2006).
[77] I. D. Toftul, K. Y. Bliokh, M. I. Petrov, and F. Nori, Acoustic Radiation Force and Torque on Small Particles as Measures of the Canonical Momentum and Spin Densities, Phys. Rev. Lett. 123, 183901 (2019).
[78] Y. Long, H. Ge, D. Zhang, X. Xu, J. Ren, M.-H. Lu, M. Bao, H. Chen, and Y.-F. Chen, Symmetry Selective Directionality in Near-Field Acoustics, Natl. Sci. Rev. 7, 1024 (2020).
[79] Y. Long, D. Zhang, C. Yang, J. Ge, H. Chen, and J. Ren, Realization of Acoustic Spin Transport in Metasurface Waveguides, Nat. Commun. 11, 4716 (2020).
[80] K. Y. Bliokh, H. Punzmann, H. Xia, F. Nori, and M. Shats, Field Theory Spin and Momentum in Water Waves, Sci. Adv. 8, eabm1295 (2022).
[81] L. D. Landau, E. M. Lifshitz, A. M. Kosevich, and L. P. Pitaevskii, Theory of Elasticity: Volume 7 (Elsevier, 1986).
[82] S. Brûlé, E. H. Javelaud, S. Enoch, and S. Guenneau, Experiments on Seismic Metamaterials: Molding Surface Waves, Phys. Rev. Lett. 112, 133901 (2014).
[83] G. Ma, C. Fu, G. Wang, P. Del Hougne, J. Christensen, Y. Lai, and P. Sheng, Polarization Bandgaps and Fluid-like Elasticity in Fully Solid Elastic Metamaterials, Nat. Commun. 7, 13536 (2016).
[84] G. J. Chaplain, J. M. De Ponti, and R. V. Craster, Elastic Orbital Angular Momentum, Phys. Rev. Lett. 128, 064301 (2022).
[85] K. Y. Bliokh, Elastic Spin and Orbital Angular Momenta, Phys. Rev. Lett. 129, 204303 (2022).
[86] M. F. Groß, J. L. G. Schneider, Y. Wei, Y. Chen, S. Kalt, M. Kadic, X. Liu, G. Hu, and M. Wegener, Tetramode Metamaterials as Phonon Polarizers, Adv. Mater. 35, 2211801 (2023).
[87] T. Frenzel, M. Kadic, and M. Wegener, Three-Dimensional Mechanical Metamaterials with a Twist, Science 358, 1072 (2017).
[88] Y. Long, J. Ren, and H. Chen, Intrinsic Spin of Elastic Waves, Proc. Natl. Acad. Sci. 115, 9951 (2018).
[89] W. Yuan, C. Yang, D. Zhang, Y. Long, Y. Pan, Z. Zhong, H. Chen, J. Zhao, and J. Ren, Observation of Elastic Spin with Chiral Meta-Sources, Nat. Commun. 12, 6954 (2021).
[90] H.-T. Chen, A. J. Taylor, and N. Yu, A Review of Metasurfaces: Physics and Applications, Rep. Prog. Phys. 79, 076401 (2016).
[91] B. Assouar, B. Liang, Y. Wu, Y. Li, J.-C. Cheng, and Y. Jing, Acoustic Metasurfaces, Nat. Rev. Mater. 3, 12 (2018).
[92] J. Park, D. Lee, and J. Rho, Recent Advances in Non-Traditional Elastic Wave Manipulation by Macroscopic Artificial Structures, Appl. Sci. 10, 2 (2020).
[93] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, Metalenses at Visible Wavelengths: Diffraction-Limited Focusing and Subwavelength Resolution Imaging, Science 352, 1190 (2016).
[94] G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, Metasurface Holograms Reaching 80% Efficiency, Nat. Nanotechnol. 10, 308 (2015).
[95] S. Linden, F. B. P. Niesler, J. Förstner, Y. Grynko, T. Meier, and M. Wegener, Collective Effects in Second-Harmonic Generation from Split-Ring-Resonator Arrays, Phys. Rev. Lett. 109, 015502 (2012).
[96] Y. Tang, K. Li, X. Zhang, J. Deng, G. Li, and E. Brasselet, Harmonic Spin–Orbit Angular Momentum Cascade in Nonlinear Optical Crystals, Nat. Photonics 14, 658 (2020).
[97] T. Santiago-Cruz, S. D. Gennaro, O. Mitrofanov, S. Addamane, J. Reno, I. Brener, and M. V. Chekhova, Resonant Metasurfaces for Generating Complex Quantum States, Science 377, 991 (2022).
[98] J. Karst, M. Floess, M. Ubl, C. Dingler, C. Malacrida, T. Steinle, S. Ludwigs, M. Hentschel, and H. Giessen, Electrically Switchable Metallic Polymer Nanoantennas, Science 374, 612 (2021).
[99] A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, I. Staude, and D. N. Neshev, Electrically Tunable All-Dielectric Optical Metasurfaces Based on Liquid Crystals, Appl. Phys. Lett. 110, 071109 (2017).
[100] L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C.-W. Qiu, and S. Zhang, Electromagnetic Reprogrammable Coding-Metasurface Holograms, Nat. Commun. 8, 197 (2017).
[101] K. Wang, K. De Greve, L. A. Jauregui, A. Sushko, A. High, Y. Zhou, G. Scuri, T. Taniguchi, K. Watanabe, M. D. Lukin, H. Park, and P. Kim, Electrical Control of Charged Carriers and Excitons in Atomically Thin Materials, Nat. Nanotechnol. 13, 128 (2018).
[102] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction, Science 334, 333 (2011).
[103] X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, Ultra-Thin, Planar, Babinet-Inverted Plasmonic Metalenses, Light Sci. Appl. 2, e72 (2013).
[104] X. Ni, A. V. Kildishev, and V. M. Shalaev, Metasurface Holograms for Visible Light, Nat. Commun. 4, 2807 (2013).
[105] S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces, Nano Lett. 12, 6223 (2012).
[106] S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, Gradient-Index Meta-Surfaces as a Bridge Linking Propagating Waves and Surface Waves, Nat. Mater. 11, 426 (2012).
[107] K. Koshelev and Y. Kivshar, Dielectric Resonant Metaphotonics, ACS Photonics 8, 102 (2021).
[108] M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, High-Efficiency All-Dielectric Metasurfaces for Ultracompact Beam Manipulation in Transmission Mode, Nano Lett. 15, 6261 (2015).
[109] Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, High-Transmission Dielectric Metasurface with 2π Phase Control at Visible Wavelengths: High-Transmission Dielectric Metasurface with 2π Phase Control at Visible Wavelengths, Laser Photonics Rev. 9, 412 (2015).
[110] A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumdar, Low-Contrast Dielectric Metasurface Optics, ACS Photonics 3, 209 (2016).
[111] A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, Dielectric Metasurfaces for Complete Control of Phase and Polarization with Subwavelength Spatial Resolution and High Transmission, Nat. Nanotechnol. 10, 937 (2015).
[112] M. V. Berry, Quantal Phase Factors Accompanying Adiabatic Changes, Proc. R. Soc. Lond. Math. Phys. Sci. 392, 45 (1997).
[113] S. Pancharatnam, Generalized Theory of Interference, and Its Applications, Proc Indian Acad Sci Sect A 44, 247 (1956).
[114] Z. Bomzon, V. Kleiner, and E. Hasman, Pancharatnam–Berry Phase in Space-Variant Polarization-State Manipulations with Subwavelength Gratings, Opt. Lett. 26, 1424 (2001).
[115] F. Gori, Measuring Stokes Parameters by Means of a Polarization Grating, Opt. Lett. 24, 584 (1999).
[116] N. M. Litchinitser, Photonic Multitasking Enabled with Geometric Phase, Science 352, 1177 (2016).
[117] R. C. Jones, A New Calculus for the Treatment of Optical SystemsI Description and Discussion of the Calculus, J. Opt. Soc. Am. 31, 488 (1941).
[118] G. Li, S. Chen, N. Pholchai, B. Reineke, P. W. H. Wong, E. Y. B. Pun, K. W. Cheah, T. Zentgraf, and S. Zhang, Continuous Control of the Nonlinearity Phase for Harmonic Generations, Nat. Mater. 14, 607 (2015).
[119] F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, Vector Vortex Beam Generation with a Single Plasmonic Metasurface, ACS Photonics 3, 1558 (2016).
[120] X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, Dual-Polarity Plasmonic Metalens for Visible Light, Nat. Commun. 3, 1198 (2012).
[121] L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, Dispersionless Phase Discontinuities for Controlling Light Propagation, Nano Lett. 12, 5750 (2012).
[122] B. R. Brown and A. W. Lohmann, Complex Spatial Filtering with Binary Masks, Appl. Opt. 5, 967 (1966).
[123] C. Min, J. Liu, T. Lei, G. Si, Z. Xie, J. Lin, L. Du, and X. Yuan, Plasmonic Nano-Slits Assisted Polarization Selective Detour Phase Meta-Hologram: Plasmonic Nano-Slits Assisted Polarization Selective Detour Phase Meta-Hologram, Laser Photonics Rev. 10, 978 (2016).
[124] K. Zhang, Y. Wang, S. N. Burokur, and Q. Wu, Generating Dual-Polarized Vortex Beam by Detour Phase: From Phase Gradient Metasurfaces to Metagratings, IEEE Trans. Microw. Theory Tech. 70, 200 (2022).
[125] J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, Nanostructured Holograms for Broadband Manipulation of Vector Beams, Nano Lett. 13, 4269 (2013).
[126] B. Auguié and W. L. Barnes, Collective Resonances in Gold Nanoparticle Arrays, Phys. Rev. Lett. 101, 143902 (2008).
[127] Y. Zhao and A. Alù, Tailoring the Dispersion of Plasmonic Nanorods To Realize Broadband Optical Meta-Waveplates, Nano Lett. 13, 1086 (2013).
[128] Y. Zhao and A. Alù, Manipulating Light Polarization with Ultrathin Plasmonic Metasurfaces, Phys. Rev. B 84, 205428 (2011).
[129] S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, Invited Article: Broadband Highly Efficient Dielectric Metadevices for Polarization Control, APL Photonics 1, 030801 (2016).
[130] Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation, Nano Lett. 14, 1394 (2014).
[131] C. Chen, S. Gao, X. Xiao, X. Ye, S. Wu, W. Song, H. Li, S. Zhu, and T. Li, Highly Efficient Metasurface Quarter-Wave Plate with Wave Front Engineering, Adv. Photonics Res. 2, 2000154 (2021).
[132] N. A. Rubin, A. Zaidi, M. Juhl, R. P. Li, J. P. B. Mueller, R. C. Devlin, K. Leósson, and F. Capasso, Polarization State Generation and Measurement with a Single Metasurface, Opt. Express 26, 21455 (2018).
[133] D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, Metasurface for Characterization of the Polarization State of Light, Opt. Express 23, 10272 (2015).
[134] M. Khorasaninejad and K. B. Crozier, Silicon Nanofin Grating as a Miniature Chirality-Distinguishing Beam-Splitter, Nat. Commun. 5, 5386 (2014).
[135] J. Bar-David and U. Levy, Nonlinear Diffraction in Asymmetric Dielectric Metasurfaces, Nano Lett. 19, 1044 (2019).
[136] B. Reineke, B. Sain, R. Zhao, L. Carletti, B. Liu, L. Huang, C. De Angelis, and T. Zentgraf, Silicon Metasurfaces for Third Harmonic Geometric Phase Manipulation and Multiplexed Holography, Nano Lett. 19, 6585 (2019).
[137] B. Liu, B. Sain, B. Reineke, R. Zhao, C. Meier, L. Huang, Y. Jiang, and T. Zentgraf, Nonlinear Wavefront Control by Geometric-Phase Dielectric Metasurfaces: Influence of Mode Field and Rotational Symmetry, Adv. Opt. Mater. 8, 1902050 (2020).
[138] M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, and F. Capasso, Broadband and Chiral Binary Dielectric Meta-Holograms, Sci. Adv. 2, e1501258 (2016).
[139] Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, Facile Metagrating Holograms with Broadband and Extreme Angle Tolerance, Light Sci. Appl. 7, 78 (2018).
[140] J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, Simultaneous Control of Light Polarization and Phase Distributions Using Plasmonic Metasurfaces, Adv. Funct. Mater. 25, 704 (2015).
[141] D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, Dielectric Gradient Metasurface Optical Elements, Science 345, 298 (2014).
[142] N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces, Nano Lett. 12, 6328 (2012).
[143] P. C. Wu, W.-Y. Tsai, W. T. Chen, Y.-W. Huang, T.-Y. Chen, J.-W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, Versatile Polarization Generation with an Aluminum Plasmonic Metasurface, Nano Lett. 17, 445 (2017).
[144] Z. Deng, M. Jin, X. Ye, S. Wang, T. Shi, J. Deng, N. Mao, Y. Cao, B. Guan, A. Alù, G. Li, and X. Li, Full‐Color Complex‐Amplitude Vectorial Holograms Based on Multi‐Freedom Metasurfaces, Adv. Funct. Mater. 30, 1910610 (2020).
[145] J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization, Phys. Rev. Lett. 118, 113901 (2017).
[146] Y. Bao, L. Wen, Q. Chen, C.-W. Qiu, and B. Li, Toward the Capacity Limit of 2D Planar Jones Matrix with a Single-Layer Metasurface, Sci. Adv. 7, eabh0365 (2021).
[147] Q. Song, M. Odeh, J. Zúñiga-Pérez, B. Kanté, and P. Genevet, Plasmonic Topological Metasurface by Encircling an Exceptional Point, Science 373, 1133 (2021).
[148] B. Xiong, Y. Liu, Y. Xu, L. Deng, C.-W. Chen, J.-N. Wang, R. Peng, Y. Lai, Y. Liu, and M. Wang, Breaking the Limitation of Polarization Multiplexing in Optical Metasurfaces with Engineered Noise, Science 379, 294 (2023).
[149] D. Wang, F. Liu, T. Liu, S. Sun, Q. He, and L. Zhou, Efficient Generation of Complex Vectorial Optical Fields with Metasurfaces, Light Sci. Appl. 10, 67 (2021).
[150] M. Khorasaninejad, W. Zhu, and K. B. Crozier, Efficient Polarization Beam Splitter Pixels Based on a Dielectric Metasurface, Optica 2, 376 (2015).
[151] Z. Shi, A. Y. Zhu, Z. Li, Y.-W. Huang, W. T. Chen, C.-W. Qiu, and F. Capasso, Continuous Angle-Tunable Birefringence with Freeform Metasurfaces for Arbitrary Polarization Conversion, Sci. Adv. 6, eaba3367 (2020).
[152] N. Mao, G. Zhang, Y. Tang, Y. Li, Z. Hu, X. Zhang, K. Li, K. Cheah, and G. Li, Nonlinear Vectorial Holography with Quad-Atom Metasurfaces, Proc. Natl. Acad. Sci. 119, e2204418119 (2022).
[153] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, New High-Intensity Source of Polarization-Entangled Photon Pairs, Phys. Rev. Lett. 75, 4337 (1995).
[154] Y. Kozawa and S. Sato, Generation of a Radially Polarized Laser Beam by Use of a Conical Brewster Prism, Opt. Lett. 30, 3063 (2005).
[155] K. V. Chellappan, E. Erden, and H. Urey, Laser-Based Displays: A Review, Appl. Opt. 49, F79 (2010).
[156] M. De and L. Sévigny, Polarization Holography, J. Opt. Soc. Am. 57, 110_1 (1967).
[157] C. He, H. He, J. Chang, B. Chen, H. Ma, and M. J. Booth, Polarisation Optics for Biomedical and Clinical Applications: A Review, Light Sci. Appl. 10, 194 (2021).
[158] K. Sassen, The Polarization Lidar Technique for Cloud Research: A Review and Current Assessment, Bull. Am. Meteorol. Soc. 72, 1848 (1991).
[159] A. C. S. Readhead et al., Polarization Observations with the Cosmic Background Imager, Science 306, 836 (2004).
[160] R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, and F. Capasso, Arbitrary Spin-to–Orbital Angular Momentum Conversion of Light, Science 358, 896 (2017).
[161] Z. Shi, N. A. Rubin, J.-S. Park, and F. Capasso, Nonseparable Polarization Wavefront Transformation, Phys. Rev. Lett. 129, 167403 (2022).
[162] Y. Bao, F. Nan, J. Yan, X. Yang, C.-W. Qiu, and B. Li, Observation of Full-Parameter Jones Matrix in Bilayer Metasurface, Nat. Commun. 13, 7550 (2022).
[163] N. A. Rubin, A. Zaidi, A. H. Dorrah, Z. Shi, and F. Capasso, Jones Matrix Holography with Metasurfaces, Sci. Adv. 7, eabg7488 (2021).
[164] P.-N. Ni, P. Fu, P.-P. Chen, C. Xu, Y.-Y. Xie, and P. Genevet, Spin-Decoupling of Vertical Cavity Surface-Emitting Lasers with Complete Phase Modulation Using on-Chip Integrated Jones Matrix Metasurfaces, Nat. Commun. 13, 7795 (2022).
[165] S. Wang, Z.-L. Deng, Y. Wang, Q. Zhou, X. Wang, Y. Cao, B.-O. Guan, S. Xiao, and X. Li, Arbitrary Polarization Conversion Dichroism Metasurfaces for All-in-One Full Poincaré Sphere Polarizers, Light Sci. Appl. 10, 24 (2021).
[166] A. H. Dorrah, N. A. Rubin, A. Zaidi, M. Tamagnone, and F. Capasso, Metasurface Optics for On-Demand Polarization Transformations along the Optical Path, Nat. Photonics 15, 287 (2021).
[167] N. A. Rubin, G. D’Aversa, P. Chevalier, Z. Shi, W. T. Chen, and F. Capasso, Matrix Fourier Optics Enables a Compact Full-Stokes Polarization Camera, Science 365, eaax1839 (2019).
[168] S. Wang, S. Wen, Z.-L. Deng, X. Li, and Y. Yang, Metasurface-Based Solid Poincaré Sphere Polarizer, Phys. Rev. Lett. 130, 123801 (2023).
[169] A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam, Phys. Rev. Lett. 88, 053601 (2002).
[170] S. M. Kelly, T. J. Jess, and N. C. Price, How to Study Proteins by Circular Dichroism, Biochim. Biophys. Acta BBA - Proteins Proteomics 1751, 119 (2005).
[171] N. Berova, K. Nakanishi, and R. W. Woody, Circular Dichroism: Principles and Applications, 2nd ed. (John Wiley & Sons, 2000).
[172] H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, Linear-to-Circular Polarization Conversion Using Metasurface, IEEE Trans. Antennas Propag. 61, 4615 (2013).
[173] X. Zhang, Y. Liu, J. Han, Y. Kivshar, and Q. Song, Chiral Emission from Resonant Metasurfaces, Science 377, 1215 (2022).
[174] D. Gabor, A New Microscopic Principle, Nature 161, 4098 (1948).
[175] R. Collier, Optical Holography (Elsevier, 2013).
[176] Z.-L. Deng and G. Li, Metasurface Optical Holography, Mater. Today Phys. 3, 16 (2017).
[177] F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin-Orbit Interactions, Adv. Funct. Mater. 27, 1704295 (2017).
[178] Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, Reflective Chiral Meta-Holography: Multiplexing Holograms for Circularly Polarized Waves, Light Sci. Appl. 7, 25 (2018).
[179] M. Wang, Y. Li, Y. Tang, J. Chen, R. Rong, G. Li, T. Cao, and S. Chen, Nonlinear Chiroptical Holography with Pancharatnam–Berry Phase Controlled Plasmonic Metasurface, Laser Photonics Rev. 16, 2200350 (2022).
[180] L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University Press, 2009).
[181] Y. Tang, Y. Intaravanne, J. Deng, K. F. Li, X. Chen, and G. Li, Nonlinear Vectorial Metasurface for Optical Encryption, Phys. Rev. Appl. 12, 024028 (2019).
[182] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Orbital Angular Momentum of Light and the Transformation of Laguerre-Gaussian Laser Modes, Phys. Rev. A 45, 8185 (1992).
[183] J. Petersen, J. Volz, and A. Rauschenbeutel, Chiral Nanophotonic Waveguide Interface Based on Spin-Orbit Interaction of Light, Science 346, 67 (2014).
[184] S. B. Wang and C. T. Chan, Lateral Optical Force on Chiral Particles near a Surface, Nat. Commun. 5, 3307 (2014).
[185] K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, Spin-Orbit Interactions of Light, Nat. Photonics 9, 796 (2015).
[186] M. Onoda, S. Murakami, and N. Nagaosa, Hall Effect of Light, Phys. Rev. Lett. 93, 083901 (2004).
[187] O. Hosten and P. Kwiat, Observation of the Spin Hall Effect of Light via Weak Measurements, Science 319, 787 (2008).
[188] L. Marrucci, C. Manzo, and D. Paparo, Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media, Phys. Rev. Lett. 96, 163905 (2006).
[189] G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, Free-Space Information Transfer Using Light Beams Carrying Orbital Angular Momentum, Opt. Express 12, 5448 (2004).
[190] A. Anhäuser, R. Wunenburger, and E. Brasselet, Acoustic Rotational Manipulation Using Orbital Angular Momentum Transfer, Phys. Rev. Lett. 109, 034301 (2012).
[191] K. Y. Bliokh and F. Nori, Spin and Orbital Angular Momenta of Acoustic Beams, Phys. Rev. B 99, 174310 (2019).
[192] T. Frenzel, J. Köpfler, E. Jung, M. Kadic, and M. Wegener, Ultrasound Experiments on Acoustical Activity in Chiral Mechanical Metamaterials, Nat. Commun. 10, 3384 (2019).
[193] Y. Chen, M. Kadic, S. Guenneau, and M. Wegener, Isotropic Chiral Acoustic Phonons in 3D Quasicrystalline Metamaterials, Phys. Rev. Lett. 124, 235502 (2020).
[194] S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, Waves and Energy in Chiral Nihility, J. Electromagn. Waves Appl. 17, 695 (2003).
[195] J. B. Pendry, A Chiral Route to Negative Refraction, Science 306, 1353 (2004).
[196] S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, Negative Refractive Index in Chiral Metamaterials, Phys. Rev. Lett. 102, 023901 (2009).
[197] B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, 1973).
[198] A. C. Eringen, Microcontinuum Field Theories (Springer, New York, 1999).
[199] R. S. Lakes and R. L. Benedict, Noncentrosymmetry in Micropolar Elasticity, Int. J. Eng. Sci. 20, 1161 (1982).
[200] S. Duan, W. Wen, and D. Fang, A Predictive Micropolar Continuum Model for a Novel Three-Dimensional Chiral Lattice with Size Effect and Tension-Twist Coupling Behavior, J. Mech. Phys. Solids 121, 23 (2018).
[201] Y. Chen, T. Frenzel, S. Guenneau, M. Kadic, and M. Wegener, Mapping Acoustical Activity in 3D Chiral Mechanical Metamaterials onto Micropolar Continuum Elasticity, J. Mech. Phys. Solids 137, 103877 (2020).
[202] S. A. Cummer, J. Christensen, and A. Alù, Controlling Sound with Acoustic Metamaterials, Nat. Rev. Mater. 1, 16001 (2016).
[203] Q. Tong, J. Li, and S. Wang, Acoustic Circular Dichroism in a Three-Dimensional Chiral Metamaterial, Phys. Rev. B 107, 134103 (2023).
修改评论