中文版 | English
题名

Identifying local associations in biological time series: algorithms, statistical significance, and applications

作者
通讯作者Li Charlie Xia
发表日期
2023-09-14
DOI
发表期刊
ISSN
1467-5463
EISSN
1477-4054
卷号24期号:6
摘要

Local associations refer to spatial-temporal correlations that emerge from the biological realm, such as time-dependent gene co-expression or seasonal interactions between microbes. One can reveal the intricate dynamics and inherent interactions of biological systems by examining the biological time series data for these associations. To accomplish this goal, local similarity analysis algorithms and statistical methods that facilitate the local alignment of time series and assess the significance of the resulting alignments have been developed. Although these algorithms were initially devised for gene expression analysis from microarrays, they have been adapted and accelerated for multi-omics next generation sequencing datasets, achieving high scientific impact. In this review, we present an overview of the historical developments and recent advances for local similarity analysis algorithms, their statistical properties, and real applications in analyzing biological time series data. The benchmark data and analysis scripts used in this review are freely available at http://github.com/labxscut/lsareview.

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[61873027] ; Open Project of the National Engineering Laboratory for Agri-product Quality Traceability[AQT-2020-YB6] ; Guangdong Basic and Applied Basic Research Foundation[2022A1515011426]
WOS研究方向
Biochemistry & Molecular Biology ; Mathematical & Computational Biology
WOS类目
Biochemical Research Methods ; Mathematical & Computational Biology
WOS记录号
WOS:001136371500056
出版者
ESI学科分类
COMPUTER SCIENCE
来源库
人工提交
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/646860
专题工学院_海洋科学与工程系
作者单位
1.School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
2.Department of Statistics and Financial Mathematics, School of Mathematics, South China University of Technology, Guangzhou 510641, China
3.Shenwan Hongyuan Securities Co. Ltd., Shanghai 200031, China
4.School of Mathematics, Shandong University, Jinan 250100, China
5.Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
6.Department of Quantitative and Computational Biology, University of Southern California, California, 90007, USA
推荐引用方式
GB/T 7714
Dongmei Ai,Lulu Chen,Jiemin Xie,et al. Identifying local associations in biological time series: algorithms, statistical significance, and applications[J]. Brief Bioinform,2023,24(6).
APA
Dongmei Ai.,Lulu Chen.,Jiemin Xie.,Longwei Cheng.,Fang Zhang.,...&Li Charlie Xia.(2023).Identifying local associations in biological time series: algorithms, statistical significance, and applications.Brief Bioinform,24(6).
MLA
Dongmei Ai,et al."Identifying local associations in biological time series: algorithms, statistical significance, and applications".Brief Bioinform 24.6(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Identifying local as(978KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Dongmei Ai]的文章
[Lulu Chen]的文章
[Jiemin Xie]的文章
百度学术
百度学术中相似的文章
[Dongmei Ai]的文章
[Lulu Chen]的文章
[Jiemin Xie]的文章
必应学术
必应学术中相似的文章
[Dongmei Ai]的文章
[Lulu Chen]的文章
[Jiemin Xie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。