[1] GONG D, HE F, LIU J, et al. Understanding of hormonal regulation in rice seed germination[J]. Life, 2022, 12(7): 1021.
[2] REED R C, BRADFORD K J, KHANDAY I. Seed germination and vigor: ensuring crop sustainability in a changing climate[J]. Heredity, 2022, 128(6): 450-459.
[3] VISHAL B, KUMAR P P. Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid[J]. Front Plant Sci, 2018, 9: 838.
[4] BAILLY C, JURDAK R, CORBINEAU F. Chapter 4 - Ethylene in the regulation of seed dormancy and germination: molecular mechanisms [M]//Khan N A,Ferrante A,Munné-Bosch S. The Plant Hormone Ethylene. Academic Press. 2023: 41-60.
[5] JU C, YOON G M, SHEMANSKY J M, et al. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2012, 109(47): 19486-19491.
[6] QIAO H, SHEN Z, HUANG S S, et al. Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas[J]. Science, 2012, 338(6105): 390-393.
[7] WEN X, ZHANG C, JI Y, et al. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus[J]. Cell Res, 2012, 22(11): 1613-1616.
[8] LI W, MA M, FENG Y, et al. EIN2-directed translational regulation of ethylene signaling in Arabidopsis[J]. Cell, 2015, 163(3): 670-683.
[9] MERCHANTE C, BRUMOS J, YUN J, et al. Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2[J]. Cell, 2015, 163(3): 684-697.
[10] SU W, HOWELL S H. A single genetic locus, ckr1, defines Arabidopsis mutants in which root growth is resistant to low concentrations of cytokinin[J]. Plant Physiol, 1992, 99(4): 1569-1574.
[11] CARY A J, LIU W, HOWELL S H. Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings[J]. Plant Physiol, 1995, 107(4): 1075-1082.
[12] BEAUDOIN N, SERIZET C, GOSTI F, GIRAUDAT J. Interactions between abscisic acid and ethylene signaling cascades[J]. Plant Cell, 2000, 12(7): 1103-1115.
[13] GHASSEMIAN M, NAMBARA E, CUTLER S, et al. Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis[J]. Plant Cell, 2000, 12(7): 1117-1126.
[14] FUJITA H, SYONO K. Genetic analysis of the effects of polar auxin transport inhibitors on root growth in Arabidopsis thaliana[J]. Plant Cell Physiol, 1996, 37(8): 1094-1101.
[15] AEONG OH S, PARK J-H, IN LEE G, et al. Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana[J]. Plant J, 1997, 12(3): 527-535.
[16] FU L, LIU Y, QIN G, et al. The TOR–EIN2 axis mediates nuclear signalling to modulate plant growth[J]. Nature, 2021, 591(7849): 288-292.
[17] WEITBRECHT K, MÜLLER K, LEUBNER-METZGER G. First off the mark: early seed germination[J]. J Exp Bot, 2011, 62(10): 3289-3309.
[18] FINCH-SAVAGE W E, LEUBNER-METZGER G. Seed dormancy and the control of germination[J]. New Phytol, 2006, 171(3): 501-523.
[19] BRADOW J M, BAUER P J. Germination and seedling development [M]. Physiology of cotton. Springer. 2010: 48-56.
[20] REHMANI M S, AZIZ U, XIAN B, SHU K. Seed dormancy and longevity: a mutual dependence or a trade-off?[J]. Plant Cell Physiol, 2022, 63(8): 1029-1037.
[21] TAI L, WANG H J, XU X J, et al. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms[J]. J Exp Bot, 2021, 72(8): 2857-2876.
[22] IWASAKI M, PENFIELD S, LOPEZ-MOLINA L. Parental and environmental control of seed dormancy in Arabidopsis thaliana[J]. Annu Rev Plant Biol, 2022, 73: 355-378.
[23] TUAN P A, KUMAR R, REHAL P K, et al. Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals[J]. Front Plant Sci, 2018, 9: 668.
[24] ZHAO J, HE Y, HUANG S, WANG Z. Advances in the identification of quantitative trait loci and genes involved in seed vigor in rice[J]. Front Plant Sci, 2021, 12: 659307.
[25] BASKIN C C, BASKIN J M. Breaking seed dormancy during dry storage: a useful tool or major problem for successful restoration via direct seeding?[J]. Plants, 2020, 9(5): 636.
[26] PELLIZZARO A, NEVEU M, LALANNE D, et al. A role for auxin signaling in the acquisition of longevity during seed maturation[J]. New Phytol, 2020, 225(1): 284-296.
[27] ARC E, GALLAND M, CUEFF G, et al. Reboot the system thanks to protein post-translational modifications and proteome diversity: how quiescent seeds restart their metabolism to prepare seedling establishment[J]. Proteomics, 2011, 11(9): 1606-1618.
[28] DONG T, PARK Y, HWANG I. Abscisic acid: biosynthesis, inactivation, homoeostasis and signalling[J]. Essays Biochem, 2015, 58: 29-48.
[29] AGRAWAL G K, YAMAZAKI M, KOBAYASHI M, et al. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene[J]. Plant Physiol, 2001, 125(3): 1248-1257.
[30] REID J B. Phytohormone mutants in plant research[J]. J Plant Growth Regul, 1990, 9(1): 97-111.
[31] KUSHIRO T, OKAMOTO M, NAKABAYASHI K, et al. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism[J]. EMBO J, 2004, 23(7): 1647-1656.
[32] PRIEST D M, AMBROSE S J, VAISTIJ F E, et al. Use of the glucosyltransferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana[J]. Plant J, 2006, 46(3): 492-502.
[33] GAZZARRINI S, TSUCHIYA Y, LUMBA S, et al. The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid[J]. Dev Cell, 2004, 7(3): 373-385.
[34] OKAMOTO M, KUWAHARA A, SEO M, et al. CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis[J]. Plant Physiol, 2006, 141(1): 97-107.
[35] DONG T, XU Z-Y, PARK Y, et al. Abscisic acid uridine diphosphate glucosyltransferases play a crucial role in abscisic acid homeostasis in Arabidopsis[J]. Plant Physiol, 2014, 165(1): 277.
[36] CHIWOCHA S D, CUTLER A J, ABRAMS S R, et al. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination[J]. Plant J, 2005, 42(1): 35-48.
[37] ALI F, QANMBER G, LI F, WANG Z. Updated role of ABA in seed maturation, dormancy, and germination[J]. Journal of Advanced Research, 2022, 35: 199-214.
[38] SANO N, MARION-POLL A. ABA metabolism and homeostasis in seed dormancy and germination[J]. Int J Mol Sci, 2021, 22(10): 5069.
[39] LOPEZ-MOLINA L, MONGRAND S, MCLACHLIN D T, et al. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination[J]. Plant J, 2002, 32(3): 317-328.
[40] ZHAO H, NIE K, ZHOU H, et al. ABI5 modulates seed germination via feedback regulation of the expression of the PYR/PYL/RCAR ABA receptor genes[J]. New Phytol, 2020, 228(2): 596-608.
[41] SHU K, ZHOU W, YANG W. APETALA 2-domain-containing transcription factors: focusing on abscisic acid and gibberellins antagonism[J]. New Phytol, 2018, 217(3): 977-983.
[42] FAROOQ M A, MA W, SHEN S, GU A. Underlying biochemical and molecular mechanisms for seed germination[J]. Int J Mol Sci, 2022, 23(15): 8502.
[43] SUBBIAH V, REDDY K J. Interactions between ethylene, abscisic acid and cytokinin during germination and seedling establishment in Arabidopsis[J]. J Biosci, 2010, 35(3): 451-458.
[44] KEÇPCZYŃSKI J, KEÇPCZYŃSKA E. Ethylene in seed dormancy and germination[J]. Physiologia Plantarum, 1997, 101(4): 720-726.
[45] LINKIES A, MÜLLER K, MORRIS K, et al. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana[J]. Plant Cell, 2009, 21(12): 3803-3822.
[46] WILSON R L, BAKSHI A, BINDER B M. Loss of the ETR1 ethylene receptor reduces the inhibitory effect of far-red light and darkness on seed germination of Arabidopsis thaliana[J]. Front Plant Sci, 2014, 5: 433.
[47] WILSON R L, KIM H, BAKSHI A, BINDER B M. The ethylene receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 have contrasting roles in seed germination of Arabidopsis during salt stress[J]. Plant Physiol, 2014, 165(3): 1353-1366.
[48] BAKSHI A, PIY S, FERNANDEZ J C, et al. Ethylene receptors signal via a noncanonical pathway to regulate abscisic acid responses[J]. Plant Physiol, 2018, 176(1): 910-929.
[49] VISHWAKARMA K, UPADHYAY N, KUMAR N, et al. Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects[J]. Front Plant Sci, 2017, 8: 161.
[50] CHENG W H, CHIANG M H, HWANG S G, LIN P C. Antagonism between abscisic acid and ethylene in Arabidopsis acts in parallel with the reciprocal regulation of their metabolism and signaling pathways[J]. Plant Mol Biol, 2009, 71(1-2): 61-80.
[51] WANG Y, LIU C, LI K, et al. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway[J]. Plant Mol Biol, 2007, 64(6): 633-644.
[52] FAHNESTOCK G. Memoranda of the effects of carburetted hydrogen gas upon a collection of exotic plants [Z]. Proc Acad Nat Sci Phila. 1858: 118-134
[53] NELJUBOW D. Uber die horizontale nutation der stengel von pisum sativum und einiger anderen planzen[J]. Bot Centralbl Beih, 1901, 10: 128-139.
[54] BHARDWAJ S, SHARMA D, JAN S, et al. Crosstalk of ethylene and other phytohormones in the regulation of plant development [M]. Ethylene in Plant Biology. 2022: 17-31.
[55] BAKSHI A, SHEMANSKY J M, CHANG C, BINDER B M. History of research on the plant hormone ethylene[J]. J Plant Growth Regul, 2015, 34(4): 809-827.
[56] GUZMÁN P, ECKER J R. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants[J]. Plant Cell, 1990, 2(6): 513-523.
[57] SRIVASTAVA L M. Chapter 11 - Ethylene [M]. Plant Growth and Development. San Diego; Academic Press. 2002: 233-250.
[58] CHANG C, KWOK S F, BLEECKER A B, MEYEROWITZ E M. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators[J]. Science, 1993, 262(5133): 539-544.
[59] KIEBER J J, ROTHENBERG M, ROMAN G, et al. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases[J]. Cell, 1993, 72(3): 427-441.
[60] ALONSO J M, HIRAYAMA T, ROMAN G, et al. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis[J]. Science, 1999, 284(5423): 2148-2152.
[61] ZHANG F, QI B, WANG L, et al. EIN2-dependent regulation of acetylation of histone H3K14 and non-canonical histone H3K23 in ethylene signalling[J]. Nat Commun, 2016, 7: 13018.
[62] CHAO Q, ROTHENBERG M, SOLANO R, et al. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins[J]. Cell, 1997, 89(7): 1133-1144.
[63] ZHOU X, LIU Q, XIE F, WEN C K. RTE1 is a Golgi-associated and ETR1-dependent negative regulator of ethylene responses[J]. Plant Physiol, 2007, 145(1): 75-86.
[64] DONG C H, RIVAROLA M, RESNICK J S, et al. Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling[J]. Plant J, 2008, 53(2): 275-286.
[65] DONG C H, JANG M, SCHAREIN B, et al. Molecular association of the Arabidopsis ETR1 ethylene receptor and a regulator of ethylene signaling, RTE1[J]. J Biol Chem, 2010, 285(52): 40706-40713.
[66] RESNICK J S, RIVAROLA M, CHANG C. Involvement of RTE1 in conformational changes promoting ETR1 ethylene receptor signaling in Arabidopsis[J]. Plant J, 2008, 56(3): 423-431.
[67] RIVAROLA M, MCCLELLAN C A, RESNICK J S, CHANG C. ETR1-specific mutations distinguish ETR1 from other Arabidopsis ethylene receptors as revealed by genetic interaction with RTE1[J]. Plant Physiol, 2009, 150(2): 547-551.
[68] CHANG J, CLAY J M, CHANG C. Association of cytochrome b5 with ETR1 ethylene receptor signaling through RTE1 in Arabidopsis[J]. Plant J, 2014, 77(4): 558-567.
[69] SHI J, HABBEN J E, ARCHIBALD R L, et al. Overexpression of ARGOS genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both Arabidopsis and maize[J]. Plant Physiol, 2015, 169(1): 266-282.
[70] WANG H, SUN Y, CHANG J, et al. Regulatory function of Arabidopsis lipid transfer protein 1 (LTP1) in ethylene response and signaling[J]. Plant Mol Biol, 2016, 91(4-5): 471-484.
[71] HUANG Y, LI H, HUTCHISON C E, et al. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis[J]. Plant J, 2003, 33(2): 221-233.
[72] QIAO H, CHANG K N, YAZAKI J, ECKER J R. Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis[J]. Genes Dev, 2009, 23(4): 512-521.
[73] ZHAO H, YIN C C, MA B, et al. Ethylene signaling in rice and Arabidopsis: new regulators and mechanisms[J]. J Integr Plant Biol, 2021, 63(1): 102-125.
[74] BLEECKER A B, ESTELLE M A, SOMERVILLE C, KENDE H. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana[J]. Science, 1988, 241(4869): 1086-1089.
[75] ROMAN G, LUBARSKY B, KIEBER J J, et al. Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway[J]. Genetics, 1995, 139(3): 1393-1409.
[76] RODRÍGUEZ F I, ESCH J J, HALL A E, et al. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis[J]. Science, 1999, 283(5404): 996-998.
[77] SCHALLER G E, BLEECKER A B. Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene[J]. Science, 1995, 270(5243): 1809-1811.
[78] CHEN Y F, RANDLETT M D, FINDELL J L, SCHALLER G E. Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis[J]. J Biol Chem, 2002, 277(22): 19861-19866.
[79] SAKAI H, HUA J, CHEN Q G, et al. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis[J]. Proc Natl Acad Sci U S A, 1998, 95(10): 5812-5817.
[80] HUA J, CHANG C, SUN Q, MEYEROWITZ E M. Ethylene insensitivity conferred by Arabidopsis ERS gene[J]. Science, 1995, 269(5231): 1712-1714.
[81] HUA J, SAKAI H, NOURIZADEH S, et al. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis[J]. Plant Cell, 1998, 10(8): 1321-1332.
[82] GAMBLE R L, COONFIELD M L, SCHALLER G E. Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis[J]. Proc Natl Acad Sci U S A, 1998, 95(13): 7825-7829.
[83] MOUSSATCHE P, KLEE H J. Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family[J]. J Biol Chem, 2004, 279(47): 48734-48741.
[84] MCDANIEL B K, BINDER B M. Ethylene receptor 1 (ETR1) is sufficient and has the predominant role in mediating inhibition of ethylene responses by silver in Arabidopsis thaliana[J]. J Biol Chem, 2012, 287(31): 26094-26103.
[85] HAO D, SUN X, MA B, et al. Ethylene [M]. Hormone Metabolism and Signaling in Plants. 2017: 203-241.
[86] SOLANO R, STEPANOVA A, CHAO Q, ECKER J R. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1[J]. Genes Dev, 1998, 12(23): 3703-3714.
[87] YAMASAKI K, KIGAWA T, INOUE M, et al. Solution structure of the major DNA-binding domain of Arabidopsis thaliana ethylene-insensitive3-like3[J]. J Mol Biol, 2005, 348(2): 253-264.
[88] AN F, ZHAO Q, JI Y, et al. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis[J]. Plant Cell, 2010, 22(7): 2384-2401.
[89] ZHAO Q, GUO H W. Paradigms and paradox in the ethylene signaling pathway and interaction network[J]. Mol Plant, 2011, 4(4): 626-634.
[90] POTUSCHAK T, LECHNER E, PARMENTIER Y, et al. EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2[J]. Cell, 2003, 115(6): 679-689.
[91] BINDER B M, WALKER J M, GAGNE J M, et al. The Arabidopsis EIN3 binding F-Box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling[J]. Plant Cell, 2007, 19(2): 509-523.
[92] KONISHI M, YANAGISAWA S. Ethylene signaling in Arabidopsis involves feedback regulation via the elaborate control of EBF2 expression by EIN3[J]. Plant J, 2008, 55(5): 821-831.
[93] GAGNE J M, SMALLE J, GINGERICH D J, et al. Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation[J]. Proc Natl Acad Sci U S A, 2004, 101(17): 6803-6808.
[94] ZHU Z, AN F, FENG Y, et al. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2011, 108(30): 12539-12544.
[95] SONG S, HUANG H, GAO H, et al. Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis[J]. Plant Cell, 2014, 26(1): 263-279.
[96] AN F, ZHANG X, ZHU Z, et al. Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings[J]. Cell Res, 2012, 22(5): 915-927.
[97] HUANG P, DONG Z, GUO P, et al. Salicylic acid suppresses apical hook formation via NPR1-mediated repression of EIN3 and EIL1 in Arabidopsis[J]. Plant Cell, 2020, 32(3): 612-629.
[98] SHIMADA S, YANAGAWA Y, MUNESADA T, et al. A collection of inducible transcription factor-glucocorticoid receptor fusion lines for functional analyses in Arabidopsis thaliana[J]. Plant J, 2022, 111(2): 595-607.
[99] LU K, ZHANG L, QIN L, et al. Importin β1 mediates nuclear entry of EIN2C to confer the phloem-based defense against aphids[J]. Int J Mol Sci, 2023, 24(10): 8545.
[100] LUO Y, WANG Z, JI H, et al. An Arabidopsis homolog of importin β1 is required for ABA response and drought tolerance[J]. Plant J, 2013, 75(3): 377-389.
[101] OH T R, YU S G, YANG H W, et al. AtKPNB1, an Arabidopsis importin-β protein, is downstream of the RING E3 ubiquitin ligase AtAIRP1 in the ABA-mediated drought stress response[J]. Planta, 2020, 252(5): 93.
[102] CASAS-MOLLANO J A, ZACARIAS E, ALMEIDA J. Chapter 26 - Evolution of epigenetic mechanisms in plants: insights from H3K4 and H3K27 methyltransferases [M]//Tollefsbol T O. Handbook of Epigenetics (Third Edition). Academic Press. 2023: 499-519.
[103] ZHANG F, WANG L, KO E E, et al. Histone deacetylases SRT1 and SRT2 interact with ENAP1 to mediate ethylene-induced transcriptional repression[J]. Plant Cell, 2018, 30(1): 153-166.
[104] WANG L, ZHANG Z, ZHANG F, et al. EIN2-directed histone acetylation requires EIN3-mediated positive feedback regulation in response to ethylene[J]. Plant Cell, 2020, 33(2): 322-337.
[105] SOURET F F, KASTENMAYER J P, GREEN P J. AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets[J]. Mol Cell, 2004, 15(2): 173-183.
[106] OLMEDO G, GUO H, GREGORY B D, et al. ETHYLENE-INSENSITIVE5 encodes a 5′→3′ exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2[J]. Proc Natl Acad Sci U S A, 2006, 103(36): 13286-13293.
[107] ZHAO J, QIN B, NIKOLAY R, et al. Translatomics: the global view of translation[J]. Int J Mol Sci, 2019, 20(1): 212.
[108] ANDREEV D E, SMIRNOVA V V, SHATSKY I N. Modifications of ribosome profiling that provide new data on the translation regulation[J]. Biochemistry, 2021, 86(9): 1095-1106.
[109] QIN H, HUANG R. Auxin controlled by ethylene steers root development[J]. Int J Mol Sci, 2018, 19(11): 3656.
[110] LIU G, GAO S, TIAN H, et al. Local transcriptional control of YUCCA regulates auxin promoted root-growth inhibition in response to aluminium stress in Arabidopsis[J]. PLoS Genet, 2016, 12(10): e1006360.
[111] HE W, BRUMOS J, LI H, et al. A small-molecule screen identifies L-Kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis [J]. Plant Cell, 2011, 23(11): 3944-3960.
[112] ZDARSKA M, CUYACOT A R, TARR P T, et al. ETR1 integrates response to ethylene and cytokinins into a single multistep phosphorelay pathway to control root growth[J]. Mol Plant, 2019, 12(10): 1338-1352.
[113] LI Z, PENG J, WEN X, GUO H. ETHYLENE-INSENSITIVE3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis [J]. Plant Cell, 2013, 25(9): 3311-3328.
[114] ZHANG J, CHEN Y, LU J, et al. Uncertainty of EIN2(Ser645/Ser924) inactivation by CTR1-mediated phosphorylation reveals the complexity of ethylene signaling[J]. Plant Commun, 2020, 1(3): 100046.
[115] CHEN R, BINDER B M, GARRETT W M, et al. Proteomic responses in Arabidopsis thaliana seedlings treated with ethylene[J]. Mol Biosyst, 2011, 7(9): 2637-2650.
[116] ZHANG F, WANG L, QI B, et al. EIN2 mediates direct regulation of histone acetylation in the ethylene response[J]. Proc Natl Acad Sci U S A, 2017, 114(38): 10274-10279.
[117] JANG G-J, YANG J-Y, HSIEH H-L, WU S-H. Processing bodies control the selective translation for optimal development of Arabidopsis young seedlings[J]. Proc Natl Acad Sci U S A, 2019, 116(13): 6451-6456.
[118] BRUNKARD J O. Exaptive evolution of target of rapamycin signaling in multicellular eukaryotes[J]. Dev Cell, 2020, 54(2): 142-155.
[119] LEHMAN A, BLACK R, ECKER J R. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl[J]. Cell, 1996, 85(2): 183-194.
[120] SHI H, LYU M, LUO Y, et al. Genome-wide regulation of light-controlled seedling morphogenesis by three families of transcription factors[J]. Proc Natl Acad Sci U S A, 2018, 115(25): 6482-6487.
[121] LYU M, SHI H, LI Y, et al. Oligomerization and photo-deoligomerization of HOOKLESS1 controls plant differential cell growth[J]. Dev Cell, 2019, 51(1): 78-88.e73.
[122] XIONG J, YANG F, WEI F, et al. Inhibition of SIZ1-mediated SUMOylation of HOOKLESS1 promotes light-induced apical hook opening in Arabidopsis[J]. Plant Cell, 2023, 35(6): 2027-2043.
[123] WANG Y, GUO H. On hormonal regulation of the dynamic apical hook development[J]. New Phytol, 2019, 222(3): 1230-1234.
[124] ZHANG X, ZHU Z, AN F, et al. Jasmonate-activated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylene-promoted apical hook formation in Arabidopsis[J]. Plant Cell, 2014, 26(3): 1105-1117.
[125] ZHANG X, JI Y, XUE C, et al. Integrated regulation of apical hook development by transcriptional coupling of EIN3/EIL1 and PIFs in Arabidopsis[J]. Plant Cell, 2018, 30(9): 1971-1988.
[126] AIZEZI Y, SHU H, ZHANG L, et al. Cytokinin regulates apical hook development via the coordinated actions of EIN3/EIL1 and PIF transcription factors in Arabidopsis[J]. J Exp Bot, 2022, 73(1): 213-227.
[127] LI J, LI G, WANG H, WANG DENG X. Phytochrome signaling mechanisms[J]. Arabidopsis Book, 2011, 9: e0148.
[128] HANSEN M, CHAE H S, KIEBER J J. Regulation of ACS protein stability by cytokinin and brassinosteroid[J]. Plant J, 2009, 57(4): 606-614.
[129] ZHAO N, ZHAO M, TIAN Y, et al. Interaction between BZR1 and EIN3 mediates signalling crosstalk between brassinosteroids and ethylene[J]. New Phytol, 2021, 232(6): 2308-2323.
[130] WANG J, SUN N, ZHENG L, et al. Brassinosteroids promote etiolated apical structures in darkness by amplifying the ethylene response via the EBF-EIN3/PIF3 circuit[J]. Plant Cell, 2023, 35(1): 390-408.
[131] LIAO C J, LAI Z, LEE S, et al. Arabidopsis HOOKLESS1 regulates responses to pathogens and Abscisic acid through interaction with MED18 and acetylation of WRKY33 and ABI5 chromatin[J]. Plant Cell, 2016, 28(7): 1662-1681.
[132] LI X, GUO W, LI J, et al. Histone acetylation at the promoter for the transcription factor PuWRKY31 affects sucrose accumulation in pear fruit[J]. Plant Physiol, 2020, 182(4): 2035-2046.
[133] ALONSO J M, STEPANOVA A N, SOLANO R, et al. Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2003, 100(5): 2992-2997.
[134] HUA J, MEYEROWITZ E M. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana[J]. Cell, 1998, 94(2): 261-271.
[135] LAEMMLI U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature, 1970, 227(5259): 680-685.
[136] XIA Y, LI K, LI J, et al. T5 exonuclease-dependent assembly offers a low-cost method for efficient cloning and site-directed mutagenesis[J]. Nucleic Acids Res, 2018.
[137] PRIEST D M, JACKSON R G, ASHFORD D A, et al. The use of abscisic acid analogues to analyse the substrate selectivity of UGT71B6, a UDP-glycosyltransferase of Arabidopsis thaliana[J]. FEBS Lett, 2005, 579(20): 4454-4458.
[138] BINDER B M. Ethylene signaling in plants[J]. J Biol Chem, 2020, 295(22): 7710-7725.
[139] BROOKBANK B P, PATEL J, GAZZARRINI S, NAMBARA E. Role of basal ABA in plant growth and development[J]. Genes, 2021, 12(12).
[140] SHARMA E, MAJEE M. Seed germination variability: why do genetically identical seeds not germinate at the same time?[J]. J Exp Bot, 2023, 74(12): 3462-3475.
[141] NONOGAKI H. A repressor complex silencing ABA signaling in seeds?[J]. J Exp Bot, 2020, 71(10): 2847-2853.
[142] RIVERO L, SCHOLL R, HOLOMUZKI N, et al. Handling Arabidopsis plants: growth, preservation of seeds, transformation, and genetic crosses [M]. Arabidopsis Protocols. Totowa, NJ; Humana Press. 2014: 3-25.
[143] MÜLLER K, TINTELNOT S, LEUBNER-METZGER G. Endosperm-limited Brassicaceae seed germination: abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana[J]. Plant Cell Physiol, 2006, 47(7): 864-877.
[144] DASZKOWSKA-GOLEC A. Arabidopsis seed germination under abiotic stress as a concert of action of phytohormones[J]. Omics, 2011, 15(11): 763-774.
[145] NELSON D C, FLEMATTI G R, GHISALBERTI E L, et al. Regulation of seed germination and seedling growth by chemical signals from burning vegetation[J]. Annu Rev Plant Biol, 2012, 63: 107-130.
[146] RAJJOU L, DUVAL M, GALLARDO K, et al. Seed germination and vigor[J]. Annu Rev Plant Biol, 2012, 63: 507-533.
[147] AHAMMED G J, GANTAIT S, MITRA M, et al. Role of ethylene crosstalk in seed germination and early seedling development: a review[J]. Plant Physiol Biochem, 2020, 151: 124-131.
[148] WANG Y, DIAO P, KONG L, et al. Ethylene enhances seed germination and seedling growth under salinity by reducing oxidative stress and promoting chlorophyll content via ETR2 pathway[J]. Front Plant Sci, 2020, 11: 1066.
[149] NIE K, ZHAO H, WANG X, et al. The MIEL1-ABI5/MYB30 regulatory module fine tunes abscisic acid signaling during seed germination[J]. J Integr Plant Biol, 2022, 64(4): 930-941.
[150] QU L, SUN M, LI X, et al. The Arabidopsis F-box protein FOF2 regulates ABA-mediated seed germination and drought tolerance[J]. Plant Science, 2020, 301: 110643.
[151] YANG M, HAN X, YANG J, et al. The Arabidopsis circadian clock protein PRR5 interacts with and stimulates ABI5 to modulate abscisic acid signaling during seed germination[J]. Plant Cell, 2021, 33(9): 3022-3041.
[152] XIA Q, SAUX M, PONNAIAH M, et al. One way to achieve germination: common molecular mechanism induced by ethylene and after-ripening in sunflower seeds[J]. Int J Mol Sci, 2018, 19(8): 2464.
[153] LI Z, LI S, JIN D, et al. U-box E3 ubiquitin ligase PUB8 attenuates abscisic acid responses during early seedling growth[J]. Plant Physiol, 2023, 191(4): 2519-2533.
[154] HUSSAIN S, CHENG Y, LI Y, et al. AtbZIP62 acts as a transcription repressor to positively regulate ABA responses in Arabidopsis[J]. Plants, 2022, 11(22): 30-37.
[155] YANG B, SONG Z, LI C, et al. RSM1, an Arabidopsis MYB protein, interacts with HY5/HYH to modulate seed germination and seedling development in response to abscisic acid and salinity[J]. PLoS Genet, 2018, 14(12): e1007839.
[156] ZHAO H, ZHANG Y, ZHENG Y. Integration of ABA, GA, and light signaling in seed germination through the regulation of ABI5[J]. Front Plant Sci, 2022, 13: 1000803.
[157] CHANG H-C, TSAI M-C, WU S-S, CHANG I-F. Regulation of ABI5 expression by ABF3 during salt stress responses in Arabidopsis thaliana[J]. Botanical Studies, 2019, 60(1): 1-14.
[158] NELSON S K, KANNO Y, SEO M, STEBER C M. Seed dormancy loss from dry after-ripening is associated with increasing gibberellin hormone levels in Arabidopsis thaliana[J]. Front Plant Sci, 2023, 14: 1145414.
[159] ZHANG H, ZHANG F, YU Y, et al. A comprehensive online database for exploring ∼20,000 public Arabidopsis RNA-seq libraries[J]. Mol Plant, 2020, 13(9): 1231-1233.
[160] YU Y, ZHANG H, LONG Y, et al. Plant public RNA-seq database: a comprehensive online database for expression analysis of ~45 000 plant public RNA-seq libraries[J]. Plant Biotechnol J, 2022, 20(5): 806-808.
[161] DEKKERS B J W, WILLEMS L, BASSEL G W, et al. Identification of reference genes for RT–qPCR expression analysis in Arabidopsis and tomato seeds[J]. Plant Cell Physiol, 2012, 53(1): 28-37.
[162] SCIETTI L, CHIAPPARINO A, DE GIORGI F, et al. Molecular architecture of the multifunctional collagen lysyl hydroxylase and glycosyltransferase LH3[J]. Nat Commun, 2018, 9(1): 3163.
修改评论