中文版 | English
题名

Strip-MLP: Efficient Token Interaction for Vision MLP

作者
通讯作者Xiangyuan Lan; Jianguo Zhang
DOI
发表日期
2023-10-01
会议名称
IEEE International Conference on Computer Vision 2023
ISSN
1550-5499
ISBN
979-8-3503-0719-1
会议录名称
页码
1494-1504
会议日期
2023.10
会议地点
Paris
出版地
10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
出版者
摘要
Token interaction operation is one of the core modules in MLP-based models to exchange and aggregate information between different spatial locations. However, the power of token interaction on the spatial dimension is highly depen- (a) Down-sampled image. (b) Token mixing of MLP layer. dent on the spatial resolution of the feature maps, which limits the model's expressive ability, especially in deep layers where the feature are down-sampled to a small spatial size. To address this issue, we present a novel method called Strip-MLP to enrich the token interaction power in three ways. Firstly, we introduce a new MLP paradigm called Strip MLP layer that allows the token to interact with other tokens in a cross-strip manner, enabling the tokens in a row (or column) to contribute to the information aggregations in adjacent but different strips of rows (or columns). Secondly, a Cascade Group Strip Mixing Module (CGSMM) is proposed to overcome the performance degradation caused by small spatial feature size. The module allows tokens to interact more effectively in the manners of within-patch and cross-patch, which is independent to the feature spatial size. Finally, based on the Strip MLP layer, we propose a novel Local Strip Mixing Module (LSMM) to boost the token interaction power in the local region. Extensive experiments demonstrate that Strip-MLP significantly improves the performance of MLP-based models on small datasets and obtains comparable or even better results on ImageNet. In particular, Strip-MLP models achieve higher average Top-1 accuracy than existing MLP-based models by +2.44% on Caltech-101 and +2.16% on CIFAR-100. The source codes will be available at https://github.com/MedProcess/Strip MLP.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Key Research and Development Program of China[2021YFF1200800] ; Peng Cheng Laboratory Research Project[PCL2023AS6-1] ; Guangdong Basic and Applied Basic Research Foundation[2022A1515110573]
WOS研究方向
Computer Science ; Imaging Science & Photographic Technology
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Imaging Science & Photographic Technology
WOS记录号
WOS:001159644301070
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10376581
出版状态
正式出版
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/646886
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Southern University of Science and Technology, Shenzhen, China
2.Peng Cheng Laboratory, Shenzhen, China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Guiping Cao,Shengda Luo,Wenjian Huang,et al. Strip-MLP: Efficient Token Interaction for Vision MLP[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2023:1494-1504.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Cao_Strip-MLP_Effici(1976KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Guiping Cao]的文章
[Shengda Luo]的文章
[Wenjian Huang]的文章
百度学术
百度学术中相似的文章
[Guiping Cao]的文章
[Shengda Luo]的文章
[Wenjian Huang]的文章
必应学术
必应学术中相似的文章
[Guiping Cao]的文章
[Shengda Luo]的文章
[Wenjian Huang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。