题名 | Strip-MLP: Efficient Token Interaction for Vision MLP |
作者 | |
通讯作者 | Xiangyuan Lan; Jianguo Zhang |
DOI | |
发表日期 | 2023-10-01
|
会议名称 | IEEE International Conference on Computer Vision 2023
|
ISSN | 1550-5499
|
ISBN | 979-8-3503-0719-1
|
会议录名称 | |
页码 | 1494-1504
|
会议日期 | 2023.10
|
会议地点 | Paris
|
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
|
出版者 | |
摘要 | Token interaction operation is one of the core modules in MLP-based models to exchange and aggregate information between different spatial locations. However, the power of token interaction on the spatial dimension is highly depen- (a) Down-sampled image. (b) Token mixing of MLP layer. dent on the spatial resolution of the feature maps, which limits the model's expressive ability, especially in deep layers where the feature are down-sampled to a small spatial size. To address this issue, we present a novel method called Strip-MLP to enrich the token interaction power in three ways. Firstly, we introduce a new MLP paradigm called Strip MLP layer that allows the token to interact with other tokens in a cross-strip manner, enabling the tokens in a row (or column) to contribute to the information aggregations in adjacent but different strips of rows (or columns). Secondly, a Cascade Group Strip Mixing Module (CGSMM) is proposed to overcome the performance degradation caused by small spatial feature size. The module allows tokens to interact more effectively in the manners of within-patch and cross-patch, which is independent to the feature spatial size. Finally, based on the Strip MLP layer, we propose a novel Local Strip Mixing Module (LSMM) to boost the token interaction power in the local region. Extensive experiments demonstrate that Strip-MLP significantly improves the performance of MLP-based models on small datasets and obtains comparable or even better results on ImageNet. In particular, Strip-MLP models achieve higher average Top-1 accuracy than existing MLP-based models by +2.44% on Caltech-101 and +2.16% on CIFAR-100. The source codes will be available at https://github.com/MedProcess/Strip MLP. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | National Key Research and Development Program of China[2021YFF1200800]
; Peng Cheng Laboratory Research Project[PCL2023AS6-1]
; Guangdong Basic and Applied Basic Research Foundation[2022A1515110573]
|
WOS研究方向 | Computer Science
; Imaging Science & Photographic Technology
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Imaging Science & Photographic Technology
|
WOS记录号 | WOS:001159644301070
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10376581 |
出版状态 | 正式出版
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/646886 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Southern University of Science and Technology, Shenzhen, China 2.Peng Cheng Laboratory, Shenzhen, China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Guiping Cao,Shengda Luo,Wenjian Huang,et al. Strip-MLP: Efficient Token Interaction for Vision MLP[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2023:1494-1504.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Cao_Strip-MLP_Effici(1976KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论