题名 | An Explainable Feature Selection Approach for Fair Machine Learning |
作者 | |
通讯作者 | Changwu Huang |
DOI | |
发表日期 | 2023
|
会议名称 | 32nd International Conference on Artificial Neural Networks (ICANN)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-44197-4
|
会议录名称 | |
卷号 | 14261
|
会议日期 | SEP 26-29, 2023
|
会议地点 | null,Heraklion,GREECE
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | As machine learning (ML) algorithms are extensively adopted in various fields to make decisions of importance to human beings and our society, the fairness issue in algorithm decision-making has been widely studied. To mitigate unfairness in ML, many techniques have been proposed, including pre-processing, in-processing, and post-processing approaches. In this work, we propose an explainable feature selection (ExFS) method to improve the fairness of ML by recursively eliminating features that contribute to unfairness based on the feature attribution explanations of the model's predictions. To validate the effectiveness of our proposed ExFS method, we compare our approach with other fairness-aware feature selection methods on several commonly used datasets. The experimental results show that ExFS can effectively improve fairness by recursively dropping some features that contribute to unfairness. The ExFS method generally outperforms the compared filter-based feature selection methods in terms of fairness and achieves comparable results to the compared wrapper-based feature selection methods. In addition, our method can provide explanations for the rationale underlying this fairness-aware feature selection mechanism. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[62250710682]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:001157297600007
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/646888 |
专题 | 工学院_计算机科学与工程系 工学院_斯发基斯可信自主研究院 |
作者单位 | 1.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China 2.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhi Yang,Ziming Wang,Changwu Huang,et al. An Explainable Feature Selection Approach for Fair Machine Learning[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2023.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
An Explainable Featu(520KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论