中文版 | English
题名

An Explainable Feature Selection Approach for Fair Machine Learning

作者
通讯作者Changwu Huang
DOI
发表日期
2023
会议名称
32nd International Conference on Artificial Neural Networks (ICANN)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-44197-4
会议录名称
卷号
14261
会议日期
SEP 26-29, 2023
会议地点
null,Heraklion,GREECE
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
As machine learning (ML) algorithms are extensively adopted in various fields to make decisions of importance to human beings and our society, the fairness issue in algorithm decision-making has been widely studied. To mitigate unfairness in ML, many techniques have been proposed, including pre-processing, in-processing, and post-processing approaches. In this work, we propose an explainable feature selection (ExFS) method to improve the fairness of ML by recursively eliminating features that contribute to unfairness based on the feature attribution explanations of the model's predictions. To validate the effectiveness of our proposed ExFS method, we compare our approach with other fairness-aware feature selection methods on several commonly used datasets. The experimental results show that ExFS can effectively improve fairness by recursively dropping some features that contribute to unfairness. The ExFS method generally outperforms the compared filter-based feature selection methods in terms of fairness and achieves comparable results to the compared wrapper-based feature selection methods. In addition, our method can provide explanations for the rationale underlying this fairness-aware feature selection mechanism.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China[62250710682]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:001157297600007
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/646888
专题工学院_计算机科学与工程系
工学院_斯发基斯可信自主研究院
作者单位
1.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhi Yang,Ziming Wang,Changwu Huang,et al. An Explainable Feature Selection Approach for Fair Machine Learning[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
An Explainable Featu(520KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhi Yang]的文章
[Ziming Wang]的文章
[Changwu Huang]的文章
百度学术
百度学术中相似的文章
[Zhi Yang]的文章
[Ziming Wang]的文章
[Changwu Huang]的文章
必应学术
必应学术中相似的文章
[Zhi Yang]的文章
[Ziming Wang]的文章
[Changwu Huang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。