中文版 | English
题名

Capacity Constrained Influence Maximization in Social Networks

作者
通讯作者Wenqing Lin; Bo Tang
DOI
发表日期
2023
会议名称
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)
会议录名称
会议日期
AUG 06-10, 2023
会议地点
null,Long Beach,CA
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要
Influence maximization (IM) aims to identify a small number of influential individuals to maximize the information spread and finds applications in various fields. It was first introduced in the context of viral marketing, where a company pays a few influencers to promote the product. However, apart from the cost factor, the capacity of individuals to consume content poses challenges for implementing IM in real-world scenarios. For example, players on online gaming platforms can only interact with a limited number of friends. In addition, we observe that in these scenarios, (i) the initial adopters of promotion are likely to be the friends of influencers rather than the influencers themselves, and (ii) existing IM solutions produce sub-par results with high computational demands. Motivated by these observations, we propose a new IM variant called capacity constrained influence maximization (CIM), which aims to select a limited number of influential friends for each initial adopter such that the promotion can reach more users. To solve CIM effectively, we design two greedy algorithms, MG-Greedy and RR-Greedy, ensuring the 1/2-approximation ratio. To improve the efficiency, we devise the scalable implementation named RR-OPIM+ with (1/2 - epsilon)-approximation and near-linear running time. We extensively evaluate the performance of 9 approaches on 6 real-world networks, and our solutions outperform all competitors in terms of result quality and running time. Additionally, we deploy RR-OPIM+ to online game scenarios, which improves the baseline considerably.
关键词
学校署名
通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
Singapore Ministry of Education Academic Research Fund Tier 3[MOE2017-T3-1-007] ; Proxima Beta[A-8000177-00-00] ; Shenzhen Fundamental Research Program[20220815112848002]
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods
WOS记录号
WOS:001118896303038
来源库
Web of Science
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/646920
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.National University of Singapore
2.Southern University of Science and Technology
3.Tencent
第一作者单位南方科技大学
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Shiqi Zhang,Yiqian Huang,Jiachen Sun,et al. Capacity Constrained Influence Maximization in Social Networks[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shiqi Zhang]的文章
[Yiqian Huang]的文章
[Jiachen Sun]的文章
百度学术
百度学术中相似的文章
[Shiqi Zhang]的文章
[Yiqian Huang]的文章
[Jiachen Sun]的文章
必应学术
必应学术中相似的文章
[Shiqi Zhang]的文章
[Yiqian Huang]的文章
[Jiachen Sun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。