中文版 | English
题名

DGI: An Easy and Efficient Framework for GNN Model Evaluation

作者
通讯作者Xiao Yan
DOI
发表日期
2023
会议名称
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)
会议录名称
会议日期
AUG 06-10, 2023
会议地点
null,Long Beach,CA
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要
["While many systems have been developed to train graph neural networks (GNNs), efficient model evaluation, which computes node embedding according to a given model, remains to be addressed. For instance, using the widely adopted node-wise approach, model evaluation can account for over 90% of the time in the end-to-end training process due to neighbor explosion, which means that a node accesses its multi-hop neighbors. The layer-wise approach avoids neighbor explosion by conducting computation layer by layer in GNN models. However, layer-wise model evaluation takes considerable implementation efforts because users need to manually decompose the GNN model into layers, and different implementations are required for GNN models with different structures.","In this paper, we present DGI-a framework for easy and efficient GNN model evaluation, which automatically translates the training code of a GNN model for layer-wise evaluation to minimize user effort. DGI is general for different GNN models and evaluation requests (e.g., computing embedding for all or some of the nodes), and supports out-of-core execution on large graphs that cannot fit in CPU memory. Under the hood, DGI traces the computation graph of GNN model, partitions the computation graph into layers that are suitable for layer-wise evaluation according to tailored rules, and executes each layer efficiently by reordering the computation tasks and managing device memory consumption. Experiment results show that DGI matches hand-written implementations of layer-wise evaluation in efficiency and consistently outperforms node-wise evaluation across different datasets and hardware settings, and the speedup can be over 1,000x."]
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
CUHK direct grant[4055146] ; Guangdong Basic and Applied Basic Research Foundation[2021A1515110067] ; Shenzhen Fundamental Research Program[20220815112848002]
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods
WOS记录号
WOS:001118896305043
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/646921
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.AWS Shanghai AI Lab
2.Southern University of Science and Technology
3.TensorChord
4.George Washington University
5.The Chinese University of Hong Kong
推荐引用方式
GB/T 7714
Peiqi Yin,Xiao Yan,Jinjing Zhou,et al. DGI: An Easy and Efficient Framework for GNN Model Evaluation[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Peiqi Yin]的文章
[Xiao Yan]的文章
[Jinjing Zhou]的文章
百度学术
百度学术中相似的文章
[Peiqi Yin]的文章
[Xiao Yan]的文章
[Jinjing Zhou]的文章
必应学术
必应学术中相似的文章
[Peiqi Yin]的文章
[Xiao Yan]的文章
[Jinjing Zhou]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。