中文版 | English
题名

On the Importance of Feature Separability in Predicting Out-Of-Distribution Error

作者
通讯作者Hongxin Wei
DOI
发表日期
2023-12-10
会议名称
37th Conference on Neural Information Processing Systems (NeurIPS 2023).
会议日期
2023-12-10
会议地点
the New Orleans Ernest N. Morial Convention Center
摘要

Estimating the generalization performance is practically challenging on out-of-distribution (OOD) data without ground-truth labels. While previous methods emphasize the connection between distribution difference and OOD accuracy, we show that a large domain gap not necessarily leads to a low test accuracy. In this paper, we investigate this problem from the perspective of feature separability empirically and theoretically. Specifically, we propose a dataset-level score based upon feature dispersion to estimate the test accuracy under distribution shift. Our method is inspired by desirable properties of features in representation learning: high inter-class dispersion and high intra-class compactness. Our analysis shows that inter-class dispersion is strongly correlated with the model accuracy, while intra-class compactness does not reflect the generalization performance on OOD data. Extensive experiments demonstrate the superiority of our method in both prediction performance and computational efficiency.

学校署名
通讯
来源库
人工提交
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/646935
专题理学院_统计与数据科学系
作者单位
1.School of Computer Science and Engineering, Nanyang Technological University
2.Department of Statistics and Data Science, Southern University of Science and Technology
通讯作者单位统计与数据科学系
推荐引用方式
GB/T 7714
Renchunzi Xie,Hongxin Wei,Lei Feng,et al. On the Importance of Feature Separability in Predicting Out-Of-Distribution Error[C],2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
2303.15488.pdf(2873KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Renchunzi Xie]的文章
[Hongxin Wei]的文章
[Lei Feng]的文章
百度学术
百度学术中相似的文章
[Renchunzi Xie]的文章
[Hongxin Wei]的文章
[Lei Feng]的文章
必应学术
必应学术中相似的文章
[Renchunzi Xie]的文章
[Hongxin Wei]的文章
[Lei Feng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。