题名 | Mitigating Memorization of Noisy Labels by Clipping the Model Prediction |
作者 | |
通讯作者 | Hongxin Wei |
DOI | |
发表日期 | 2023-07-23
|
会议名称 | Proceedings of the 40th International Conference on Machine Learning
|
卷号 | 202
|
页码 | 36868-36886
|
会议日期 | 2023-07-23
|
会议地点 | Hawaiʻi Convention Center, 1801 Kalākaua Avenue Honolulu
|
摘要 | In the presence of noisy labels, designing robust loss functions is critical for securing the generalization performance of deep neural networks. Cross Entropy (CE) loss has been shown to be not robust to noisy labels due to its unboundedness. To alleviate this issue, existing works typically design specialized robust losses with the symmetric condition, which usually lead to the underfitting issue. In this paper, our key idea is to induce a loss bound at the logit level, thus universally enhancing the noise robustness of existing losses. Specifically, we propose logit clipping (LogitClip), which clamps the norm of the logit vector to ensure that it is upper bounded by a constant. In this manner, CE loss equipped with our LogitClip method is effectively bounded, mitigating the overfitting to examples with noisy labels. Moreover, we present theoretical analyses to certify the noise-tolerant ability of LogitClip. Extensive experiments show that LogitClip not only significantly improves the noise robustness of CE loss, but also broadly enhances the generalization performance of popular robust losses. |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
收录类别 | |
EI入藏号 | 20234314930620
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
|
来源库 | 人工提交
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/646938 |
专题 | 南方科技大学 理学院_统计与数据科学系 |
作者单位 | 1.Southern University of Science and Technology 2.South China University of Technology 3.Nanyang Technological University 4.RIKEN AIP 5.University of Wisconsin-Madison |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Hongxin Wei,Huiping Zhuang,Renchunzi Xie,et al. Mitigating Memorization of Noisy Labels by Clipping the Model Prediction[C],2023:36868-36886.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
wei23e.pdf(460KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论