题名 | Adaptive and Background-Aware Vision Transformer for Real-Time UAV Tracking |
作者 | |
通讯作者 | Dan Zeng |
DOI | |
发表日期 | 2023-10-04
|
会议名称 | International Conference on Computer Vision
|
ISSN | 1550-5499
|
ISBN | 979-8-3503-0719-1
|
会议录名称 | |
页码 | 13943-13954
|
会议日期 | October 2 - 6, 2023
|
会议地点 | Paris, France
|
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
|
出版者 | |
摘要 | While discriminative correlation filters (DCF)-based trackers prevail in UAV tracking for their favorable efficiency, lightweight convolutional neural network (CNN)-based trackers using filter pruning have also demonstrated remarkable efficiency and precision. However, the use of pure vision transformer models (ViTs) for UAV tracking remains unexplored, which is a surprising finding given that ViTs have been shown to produce better performance and greater efficiency than CNNs in image classification. In this paper, we propose an efficient ViT-based tracking framework, Aba-ViTrack, for UAV tracking. In our framework, feature learning and template-search coupling are integrated into an efficient one-stream ViT to avoid an extra heavy relation modeling module. The proposed Aba-ViT exploits an adaptive and background-aware token computation method to reduce inference time. This approach adaptively discards tokens based on learned halting probabilities, which a priori are higher for background tokens than target ones. Extensive experiments on six UAV tracking benchmarks demonstrate that the proposed Aba-ViTrack achieves state-of-the-art performance in UAV tracking. Code is available at https://github.com/xyyang317/Aba-ViTrack. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | Guangxi Science and Technology Base and Talent Special Project[GKAD22035127]
; National Natural Science Foundation of China["62206123","62066042","62176170","61971005"]
; Sichuan Province Key Research and Development Project[2020YJ0282]
|
WOS研究方向 | Computer Science
; Imaging Science & Photographic Technology
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Imaging Science & Photographic Technology
|
WOS记录号 | WOS:001169499006038
|
来源库 | 人工提交
|
全文链接 | https://openaccess.thecvf.com/content/ICCV2023/papers/Li_Adaptive_and_Background-Aware_Vision_Transformer_for_Real-Time_UAV_Tracking_ICCV_2023_paper.pdf |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/646944 |
专题 | 南方科技大学 工学院 |
作者单位 | 1.College of Information Science and Engineering , Guilin University of Technology, China 2.Research Institue of Trustworthy Autonomous Systems, Southern University of Science and Technology, China |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Shuiwang Li,Yangxiang Yang,Dan Zeng,et al. Adaptive and Background-Aware Vision Transformer for Real-Time UAV Tracking[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2023:13943-13954.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论