中文版 | English
题名

Set-level Guidance Attack: Boosting Adversarial Transferability of Vision-Language Pre-training Models

作者
通讯作者Feng Zheng
共同第一作者Dong Lu; Zhiqiang Wang
DOI
发表日期
2023-10-02
会议名称
2023ICCV
ISSN
1550-5499
ISBN
979-8-3503-0719-1
会议录名称
页码
102-111
会议日期
2023-10-2~10-6
会议地点
法国巴黎
出版地
10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
出版者
摘要
Vision-language pre-training (VLP) models have shown vulnerability to adversarial examples in multimodal tasks. Furthermore, malicious adversaries can be deliberately transferred to attack other black-box models. However, existing work has mainly focused on investigating white-box attacks. In this paper, we present the first study to investigate the adversarial transferability of recent VLP models. We observe that existing methods exhibit much lower transferability, compared to the strong attack performance in white-box settings. The transferability degradation is partly caused by the under-utilization of cross-modal interactions. Particularly, unlike unimodal learning, VLP models rely heavily on cross-modal interactions and the multimodal alignments are many-to-many, e.g., an image can be described in various natural languages. To this end, we propose a highly transferable Set-level Guidance Attack (SGA) that thoroughly leverages modality interactions and incorporates alignment-preserving augmentation with cross-modal guidance. Experimental results demonstrate that SGA could generate adversarial examples that can strongly transfer across different VLP models on multiple downstream vision-language tasks. On image-text retrieval, SGA significantly enhances the attack success rate for transfer attacks from ALBEF to TCL by a large margin (at least 9.78% and up to 30.21%), compared to the state-of-the-art. Our code is available at https://github.com/Zoky-2020/SGA.
关键词
学校署名
第一 ; 共同第一 ; 通讯
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Key R&D Program of China[2022YFF1202903] ; National Natural Science Foundation of China[62122035]
WOS研究方向
Computer Science ; Imaging Science & Photographic Technology
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Imaging Science & Photographic Technology
WOS记录号
WOS:001159644300010
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10376813
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/646947
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Southern University of Science and Technology
2.The University of Hong Kong
3.Monash University
4.Temple University
5.Peng Cheng Laboratory
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Dong Lu,Zhiqiang Wang,Teng Wang,et al. Set-level Guidance Attack: Boosting Adversarial Transferability of Vision-Language Pre-training Models[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2023:102-111.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Set-Level Guidance A(946KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Dong Lu]的文章
[Zhiqiang Wang]的文章
[Teng Wang]的文章
百度学术
百度学术中相似的文章
[Dong Lu]的文章
[Zhiqiang Wang]的文章
[Teng Wang]的文章
必应学术
必应学术中相似的文章
[Dong Lu]的文章
[Zhiqiang Wang]的文章
[Teng Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。