题名 | Transferable Decoding with Visual Entities for Zero-Shot Image Captioning |
作者 | |
通讯作者 | Feng Zheng |
共同第一作者 | Junjie Fei; Teng Wang |
DOI | |
发表日期 | 2023-10-02
|
会议名称 | 2023ICCV
|
ISSN | 1550-5499
|
ISBN | 979-8-3503-0719-1
|
会议录名称 | |
页码 | 3113-3123
|
会议日期 | 2023-10-2~10-6
|
会议地点 | 法国巴黎
|
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
|
出版者 | |
摘要 | Image-to-text generation aims to describe images using natural language. Recently, zero-shot image captioning based on pre-trained vision-language models (VLMs) and large language models (LLMs) has made significant progress. However, we have observed and empirically demonstrated that these methods are susceptible to modality bias induced by LLMs and tend to generate descriptions containing objects (entities) that do not actually exist in the image but frequently appear during training (i.e., object hallucination). In this paper, we propose ViECap, a transferable decoding model that leverages entity-aware decoding to generate descriptions in both seen and unseen scenarios. ViECap incorporates entity-aware hard prompts to guide LLMs' attention toward the visual entities present in the image, enabling coherent caption generation across diverse scenes. With entity-aware hard prompts, ViECap is capable of maintaining performance when transferring from in-domain to out-of-domain scenarios. Extensive experiments demonstrate that ViECap sets a new state-of-theart cross-domain (transferable) captioning and performs competitively in-domain captioning compared to previous VLMs-based zero- shot methods. Our code is available at: https://github.com/FeiElysia/ViECap |
关键词 | |
学校署名 | 第一
; 共同第一
; 通讯
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | National Key R&D Program of China[2022YFF1202903]
; National Natural Science Foundation of China[62122035]
|
WOS研究方向 | Computer Science
; Imaging Science & Photographic Technology
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Imaging Science & Photographic Technology
|
WOS记录号 | WOS:001159644303034
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10378259 |
引用统计 |
被引频次[WOS]:11
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/646948 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Southern University of Science and Technology 2.The University of Hong Kong 3.Harbin Institute of Technology (Shenzhen) 4.Tencent 5.Shanghai Jiao Tong University |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Junjie Fei,Teng Wang,Jinrui Zhang,et al. Transferable Decoding with Visual Entities for Zero-Shot Image Captioning[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2023:3113-3123.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Transferable Decodin(2161KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论