题名 | Multi-objective Deep Reinforcement Learning for Mobile Edge Computing |
作者 | |
通讯作者 | Meng Zhang |
DOI | |
发表日期 | 2023-07-05
|
会议名称 | 2023 21st International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)
|
ISSN | 2690-3334
|
ISBN | 979-8-3503-4158-4
|
会议录名称 | |
页码 | 1-8
|
会议日期 | 2023年8月24日-27日
|
会议地点 | 新加坡
|
摘要 | Mobile edge computing (MEC) is essential for next-generation mobile network applications that prioritize various performance metrics, including delays and energy consumption. However, conventional single-objective scheduling solutions cannot be directly applied to practical systems in which the preferences of these applications (i.e., the weights of different objectives) are often unknown or challenging to specify in advance. In this study, we address this issue by formulating a multi-objective offloading problem for MEC with multiple edges to minimize expected long-term energy consumption and transmission delay while considering unknown preferences as parameters. To address the challenge of unknown preferences, we design a multi-objective (deep) reinforcement learning (MORL)-based resource scheduling scheme with proximal policy optimization (PPO). In addition, we introduce a well-designed state encoding method for constructing features for multiple edges in MEC systems, a sophisticated reward function for accurately computing the utilities of delay and energy consumption. Simulation results demonstrate that our proposed MORL scheme enhances the hypervolume of the Pareto front by up to 233.1% compared to benchmarks. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
EI入藏号 | 20240715542774
|
EI主题词 | Deep learning
; Energy utilization
; Green computing
; Mobile edge computing
|
EI分类号 | Environmental Engineering:454
; Ergonomics and Human Factors Engineering:461.4
; Energy Utilization:525.3
; Digital Computers and Systems:722.4
; Artificial Intelligence:723.4
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10349870 |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/647036 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Institute of Automation Chinese Academy of Sciences Beijing, China 2.ZJU-UIUC Institute Zhejiang University Zhejiang, China 3.Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen, China |
推荐引用方式 GB/T 7714 |
Ning Yang,Junrui Wen,Meng Zhang,et al. Multi-objective Deep Reinforcement Learning for Mobile Edge Computing[C],2023:1-8.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Multi-objective_Deep(499KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论