中文版 | English
题名

RNA聚合酶动态及染色质结构调控拟南芥基因转录的机制研究

其他题名
THE REGULATORY MECHANISMS OF RNA POLYMERASE DYNAMICS AND CHROMATIN STRUCTURE DURING GENE TRANSCRIPTION IN ARABIDOPSIS
姓名
姓名拼音
ZHOU Sixian
学号
11849503
学位类型
博士
学位专业
0831 生物医学工程
学科门类/专业学位类别
08 工学
导师
吴柘
导师单位
生物系
论文答辩日期
2023-10-28
论文提交日期
2024-01-02
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

  真核生物中大部分蛋白质编码基因的转录过程由RNA聚合酶(Pol II)介导,转录本身是一个Pol II沿染色质移动的高度动态的过程,受到染色质结构等因素的精细调控。以Pol II为核心的转录机器在染色质开放区域识别并结合基因的启动子,起始转录,经过延伸和终止,并伴随RNA的加工产生成熟的mRNA。转录过程中,RNA聚合酶需要打开染色质结构,移除核小体障碍,才能进行转录起始和延伸,而核小体的移除和组装常常需要通过组蛋白分子伴侣来实现。此外,转录时Pol II的构象也在动态变化,且转录的不同阶段间、转录及不同的RNA加工过程间均存在协同作用,以保证转录的有序进行。因此,Pol II的动态和染色质结构是调控基因转录过程的两个重要因素。植物中关于转录调控的研究滞后于动物和酵母,并且由于演化上分歧久远,基于动物和酵母的知识常不能直接套用在植物里。因此,在植物中真正揭示转录调控的基本机制对于理解植物的生命过程十分重要。以此为出发点,本论文从Pol II的转录动态以及组蛋白分子伴侣介导的染色质结构调控两个方面综合探究了模式植物拟南芥基因转录调控的分子机制。

首先,本论文探究了拟南芥Pol II在基因上的动态分布规律及其调控机制。通过pNET-seq结合其它几种组学数据,本论文发现Pol II在基因3' 端的停顿是拟南芥基因转录的一个重要特征,而且Pol II在基因3' 端停顿的位置而非强度与转录终止效率相关,表明虽然Pol II在基因3' 端的停顿与转录终止密切偶联,但仍有其他因素决定3' 端停顿的强度。与此相符,在转录终止缺陷的xrn3及fca fpa突变体中,Pol II在基因3' 端停顿的水平没有受到强烈的影响。经过进一步分析,发现基因的内含子数目以及内含子整体的共转录剪接效率与Pol II在基因3' 端停顿的水平呈紧密的正相关,暗示内含子的共转录剪接可能是影响3' 端停顿水平的重要因素。利用剪接抑制剂GEX1A处理植物,抑制剪接复合体的组装进而抑制剪接,发现Pol II在基因3' 端停顿的水平剧烈降低,且基因的内含子数目和3' 端停顿水平间的相关性被打破;基因的内含子数目越多,其3' 端Pol II的停顿水平降低越多。因此,基因内含子数目与内含子的共转录剪接偶联并决定了Pol II在基因3' 端停顿的水平,剪接复合体的有效组装是Pol II在3' 端停顿的必要条件,而Pol II在3' 端停顿可能为多内含子基因高效的共转录剪接提供保障。综上,本论文明确了植物Pol II在基因3' 端停顿的意义及调控规律。

  此外,本论文进一步探究了染色质结构对基因转录的调控规律,通过文献调研选取了一类与基因转录密切关联的组蛋白分子伴侣DEK进行深入研究。DEK在染色质上丰度很高,但其分子功能尚不清晰。通过在体外和体内的相互作用分析,发现DEK和H3.3及H3.1都存在互作;并且DEK的C端结构域上存在多个和游离组蛋白结合所必需的氨基酸。利用CRISPR/Cas9技术对拟南芥中四个DEK同源基因进行突变,产生了多个dek单突变体和多突变体。表型分析发现DEK通过调控FLC和FT基因的表达参与调控开花,且四个DEK存在功能冗余。此外,dek1234 flc比flc开花更早,FT的表达水平也进一步升高,表明DEK对FT表达的调控不完全依赖FLC。经过进一步探究,将DEK蛋白上负责和组蛋白结合的C端结构域突变,再回补至dek1234四突变体中,发现C端结构域突变的DEK和完整的DEK都能回补dek1234的早花表型。因此,在调控植物开花过程中,DEK不依赖其C端结构域介导的结合组蛋白的功能,提示DEK可能具有除组蛋白分子伴侣以外的其他功能。

本论文进一步利用质谱分析了DEK的蛋白质互作网络,结合免疫共沉淀实验,发现DEK和已知的参与FT转录抑制的H3K27me3阅读器蛋白EBS/SHL存在体内互作。通过遗传分析,在ebs和ebs shl的背景下分别进一步突变DEK,发现dek1234 ebs和dek1234 ebs shl开花更早,且表现出了更严重的生长缺陷,比如花器官发育紊乱,表明DEK和EBS/SHL存在重要的协同作用参与植物生长发育。同时,转录组数据显示在进一步突变DEK之后,dek1234 ebs和dek1234 ebs shl的基因表达变化程度也更剧烈,包括很多已知的H3K27me3的靶基因。而H3K27me3的ChIP-seq数据也显示在ebs shl背景下DEK的缺失会引起H3K27me3水平进一步降低。因此,综合以上结果,DEK在拟南芥中协同H3K27me3的阅读器蛋白EBS/SHL对H3K27me3的维持及基因转录发挥重要调控作用。

  综上所述,本论文从Pol II的动态和组蛋白分子伴侣介导的染色质结构调控两个方面探究了植物中基因转录调控的机制,为Pol II的转录终止调控提供了新的线索,也为共转录剪接和转录终止调控之间的联系提供了新的证据;阐明了拟南芥中组蛋白分子伴侣DEK调控开花的遗传学路径,揭示了其通过调控染色质上组蛋白H3K27me3修饰从而对植物基因表达及生长发育发挥的重要作用。

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2024-01
参考文献列表

[1] FRANSZ P, DE JONG H. From nucleosome to chromosome: a dynamic organization of genetic information [J]. Plant J, 2011, 66(1): 4-17.
[2] VERGARA Z, GUTIERREZ C. Emerging roles of chromatin in the maintenance of genome organization and function in plants [J]. Genome Biol, 2017, 18(1): 96.
[3] HAMMOND C M, STROMME C B, HUANG H, et al. Histone chaperone networks shaping chromatin function [J]. Nat Rev Mol Cell Biol, 2017, 18(3): 141-158.
[4] ZENTNER G E, HENIKOFF S. Regulation of nucleosome dynamics by histone modifications [J]. Nat Struct Mol Biol, 2013, 20(3): 259-266.
[5] JIANG D, BERGER F. Histone variants in plant transcriptional regulation [J]. Biochim Biophys Acta Gene Regul Mech, 2017, 1860(1): 123-130.
[6] VENKATESH S, WORKMAN J L. Histone exchange, chromatin structure and the regulation of transcription [J]. Nat Rev Mol Cell Biol, 2015, 16(3): 178-189.
[7] JONKERS I, KWAK H, LIS J T. Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons [J]. Elife, 2014, 3: e02407.
[8] ADELMAN K, LIS J T. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans [J]. Nat Rev Genet, 2012, 13(10): 720-731.
[9] HAJHEIDARI M, KONCZ C, EICK D. Emerging roles for RNA polymerase II CTD in Arabidopsis [J]. Trends Plant Sci, 2013, 18(11): 633-643.
[10] LYONS D E, MCMAHON S, OTT M. A combinatorial view of old and new RNA polymerase II modifications [J]. Transcription, 2020, 11(2): 66-82.
[11] ZHU J, LIU M, LIU X, et al. RNA polymerase II activity revealed by GRO-seq and pNET-seq in Arabidopsis [J]. Nat Plants, 2018, 4(12): 1112-1123.
[12] YU X, MARTIN P G P, MICHAELS S D. BORDER proteins protect expression of neighboring genes by promoting 3 ' Pol II pausing in plants [J]. Nat Commun, 2019, 10(1): 4359.
[13] HETZEL J, DUTTKE S H, BENNER C, et al. Nascent RNA sequencing reveals distinct features in plant transcription [J]. Proc Natl Acad Sci U S A, 2016, 113(43): 12316-12321.
[14] DENG X, CAO X. Roles of pre-mRNA splicing and polyadenylation in plant development [J]. Curr Opin Plant Biol, 2017, 35: 45-53.
[15] LI B, CAREY M, WORKMAN J L. The role of chromatin during transcription [J]. Cell, 2007, 128(4): 707-719.
[16] OTERO S, DESVOYES B, GUTIERREZ C. Histone H3 dynamics in plant cell cycle and development [J]. Cytogenet Genome Res, 2014, 143(1-3): 114-124.
[17] OTERO S, DESVOYES B, PEIRO R, et al. Histone H3 Dynamics Reveal Domains with Distinct Proliferation Potential in the Arabidopsis Root [J]. Plant Cell, 2016, 28(6): 1361-1371.
[18] SHI L, WANG J, HONG F, et al. Four amino acids guide the assembly or disassembly of Arabidopsis histone H3.3-containing nucleosomes [J]. Proc Natl Acad Sci U S A, 2011, 108(26): 10574-10578.
[19] JACOB Y, BERGAMIN E, DONOGHUE M T, et al. Selective methylation of histone H3 variant H3.1 regulates heterochromatin replication [J]. Science, 2014, 343(6176): 1249-1253.
[20] STROUD H, OTERO S, DESVOYES B, et al. Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana [J]. Proc Natl Acad Sci U S A, 2012, 109(14): 5370-5375.
[21] WOLLMANN H, HOLEC S, ALDEN K, et al. Dynamic deposition of histone variant H3.3 accompanies developmental remodeling of the Arabidopsis transcriptome [J]. PLoS Genet, 2012, 8(5): e1002658.
[22] HE K, CAO X, DENG X. Histone methylation in epigenetic regulation and temperature responses [J]. Curr Opin Plant Biol, 2021, 61: 102001.
[23] SAWATSUBASHI S, MURATA T, LIM J, et al. A histone chaperone, DEK, transcriptionally coactivates a nuclear receptor [J]. Genes Dev, 2010, 24(2): 159-170.
[24] WAIDMANN S, KUSENDA B, MAYERHOFER J, et al. A DEK domain-containing protein modulates chromatin structure and function in Arabidopsis [J]. Plant Cell, 2014, 26(11): 4328-4344.
[25] ZONG W, ZHAO B, XI Y, et al. DEK domain-containing proteins control flowering time in Arabidopsis [J]. New Phytol, 2021, 231(1): 182-192.
[26] HSIN J P, MANLEY J L. The RNA polymerase II CTD coordinates transcription and RNA processing [J]. Genes Dev, 2012, 26(19): 2119-2137.
[27] HARLEN K M, CHURCHMAN L S. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain [J]. Nat Rev Mol Cell Biol, 2017, 18(4): 263-273.
[28] VIGNALI M, HASSAN A H, NEELY K E, et al. ATP-dependent chromatin-remodeling complexes [J]. Mol Cell Biol, 2000, 20(6): 1899-1910.
[29] KIM T K, EBRIGHT R H, REINBERG D. Mechanism of ATP-dependent promoter melting by transcription factor IIH [J]. Science, 2000, 288(5470): 1418-1422.
[30] HAHN S. Structure and mechanism of the RNA polymerase II transcription machinery [J]. Nat Struct Mol Biol, 2004, 11(5): 394-403.
[31] AKHTAR M S, HEIDEMANN M, TIETJEN J R, et al. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II [J]. Mol Cell, 2009, 34(3): 387-393.
[32] GLOVER-CUTTER K, LAROCHELLE S, ERICKSON B, et al. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II [J]. Mol Cell Biol, 2009, 29(20): 5455-5464.
[33] NOCK A, ASCANO J M, BARRERO M J, et al. Mediator-regulated transcription through the +1 nucleosome [J]. Mol Cell, 2012, 48(6): 837-848.
[34] KRUMM A, HICKEY L B, GROUDINE M. Promoter-proximal pausing of RNA polymerase II defines a general rate-limiting step after transcription initiation [J]. Genes Dev, 1995, 9(5): 559-572.
[35] CHEN F X, SMITH E R, SHILATIFARD A. Born to run: control of transcription elongation by RNA polymerase II [J]. Nat Rev Mol Cell Biol, 2018, 19(7): 464-478.
[36] TETTEY T T, GAO X, SHAO W, et al. A Role for FACT in RNA Polymerase II Promoter-Proximal Pausing [J]. Cell Rep, 2019, 27(13): 3770-3779 e3777.
[37] GAERTNER B, ZEITLINGER J. RNA polymerase II pausing during development [J]. Development, 2014, 141(6): 1179-1183.
[38] CORE L, ADELMAN K. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation [J]. Genes Dev, 2019, 33(15-16): 960-982.
[39] NI Z, SAUNDERS A, FUDA N J, et al. P-TEFb is critical for the maturation of RNA polymerase II into productive elongation in vivo [J]. Mol Cell Biol, 2008, 28(3): 1161-1170.
[40] KIM J B, SHARP P A. Positive transcription elongation factor B phosphorylates hSPT5 and RNA polymerase II carboxyl-terminal domain independently of cyclin-dependent kinase-activating kinase [J]. J Biol Chem, 2001, 276(15): 12317-12323.
[41] SAUNDERS A, CORE L J, LIS J T. Breaking barriers to transcription elongation [J]. Nat Rev Mol Cell Biol, 2006, 7(8): 557-567.
[42] JONKERS I, LIS J T. Getting up to speed with transcription elongation by RNA polymerase II [J]. Nat Rev Mol Cell Biol, 2015, 16(3): 167-177.
[43] ROUGVIE A E, LIS J T. The RNA polymerase II molecule at the 5' end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged [J]. Cell, 1988, 54(6): 795-804.
[44] PROUDFOOT N J. Ending the message: poly(A) signals then and now [J]. Genes Dev, 2011, 25(17): 1770-1782.
[45] SHERSTNEV A, DUC C, COLE C, et al. Direct sequencing of Arabidopsis thaliana RNA reveals patterns of cleavage and polyadenylation [J]. Nat Struct Mol Biol, 2012, 19(8): 845-852.
[46] DI GIAMMARTINO D C, MANLEY J L. New links between mRNA polyadenylation and diverse nuclear pathways [J]. Mol Cells, 2014, 37(9): 644-649.
[47] SCHONEMANN L, KUHN U, MARTIN G, et al. Reconstitution of CPSF active in polyadenylation: recognition of the polyadenylation signal by WDR33 [J]. Genes Dev, 2014, 28(21): 2381-2393.
[48] SHI Y, DI GIAMMARTINO D C, TAYLOR D, et al. Molecular architecture of the human pre-mRNA 3' processing complex [J]. Mol Cell, 2009, 33(3): 365-376.
[49] EATON J D, WEST S. Termination of Transcription by RNA Polymerase II: BOOM! [J]. Trends in Genetics, 2020, 36(9): 664-675.
[50] ZHANG H, RIGO F, MARTINSON H G. Poly(A) Signal-Dependent Transcription Termination Occurs through a Conformational Change Mechanism that Does Not Require Cleavage at the Poly(A) Site [J]. Mol Cell, 2015, 59(3): 437-448.
[51] WEST S, PROUDFOOT N J, DYE M J. Molecular dissection of mammalian RNA polymerase II transcriptional termination [J]. Mol Cell, 2008, 29(5): 600-610.
[52] WEST S, GROMAK N, PROUDFOOT N J. Human 5' --> 3' exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites [J]. Nature, 2004, 432(7016): 522-525.
[53] FONG N, BRANNAN K, ERICKSON B, et al. Effects of Transcription Elongation Rate and Xrn2 Exonuclease Activity on RNA Polymerase II Termination Suggest Widespread Kinetic Competition [J]. Mol Cell, 2015, 60(2): 256-267.
[54] KIM M, KROGAN N J, VASILJEVA L, et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II [J]. Nature, 2004, 432(7016): 517-522.
[55] MO W P, LIU B, ZHANG H, et al. Landscape of transcription termination in Arabidopsis revealed by single-molecule nascent RNA sequencing [J]. Genome Biology, 2021, 22(1).
[56] EATON J D, FRANCIS L, DAVIDSON L, et al. A unified allosteric/torpedo mechanism for transcriptional termination on human protein-coding genes [J]. Genes Dev, 2020, 34(1-2): 132-145.
[57] BAEJEN C, ANDREANI J, TORKLER P, et al. Genome-wide Analysis of RNA Polymerase II Termination at Protein-Coding Genes [J]. Mol Cell, 2017, 66(1): 38-49 e36.
[58] CORTAZAR M A, SHERIDAN R M, ERICKSON B, et al. Control of RNA Pol II Speed by PNUTS-PP1 and Spt5 Dephosphorylation Facilitates Termination by a "Sitting Duck Torpedo" Mechanism [J]. Mol Cell, 2019, 76(6): 896-908 e894.
[59] KASTENMAYER J P, GREEN P J. Novel features of the XRN-family in Arabidopsis: evidence that AtXRN4, one of several orthologs of nuclear Xrn2p/Rat1p, functions in the cytoplasm [J]. Proc Natl Acad Sci U S A, 2000, 97(25): 13985-13990.
[60] ZAKRZEWSKA-PLACZEK M, SOURET F F, SOBCZYK G J, et al. Arabidopsis thaliana XRN2 is required for primary cleavage in the pre-ribosomal RNA [J]. Nucleic Acids Res, 2010, 38(13): 4487-4502.
[61] SOURET F F, KASTENMAYER J P, GREEN P J. AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets [J]. Mol Cell, 2004, 15(2): 173-183.
[62] KRZYSZTON M, ZAKRZEWSKA-PLACZEK M, KWASNIK A, et al. Defective XRN3-mediated transcription termination in Arabidopsis affects the expression of protein-coding genes [J]. Plant J, 2018, 93(6): 1017-1031.
[63] HUNT A G. mRNA 3' end formation in plants: Novel connections to growth, development and environmental responses [J]. Wiley Interdiscip Rev RNA, 2020, 11(3): e1575.
[64] QIN Y, LONG Y, ZHAI J. Genome-wide characterization of nascent RNA processing in plants [J]. Curr Opin Plant Biol, 2022, 69: 102294.
[65] HORNYIK C, TERZI L C, SIMPSON G G. The spen family protein FPA controls alternative cleavage and polyadenylation of RNA [J]. Dev Cell, 2010, 18(2): 203-213.
[66] SONMEZ C, BAURLE I, MAGUSIN A, et al. RNA 3' processing functions of Arabidopsis FCA and FPA limit intergenic transcription [J]. Proc Natl Acad Sci U S A, 2011, 108(20): 8508-8513.
[67] PARKER M T, KNOP K, ZACHARAKI V, et al. Widespread premature transcription termination of Arabidopsis thaliana NLR genes by the spen protein FPA [J]. Elife, 2021, 10: e65537.
[68] SIMPSON G G, DIJKWEL P P, QUESADA V, et al. FY is an RNA 3' end-processing factor that interacts with FCA to control the Arabidopsis floral transition [J]. Cell, 2003, 113(6): 777-787.
[69] MANZANO D, MARQUARDT S, JONES A M, et al. Altered interactions within FY/AtCPSF complexes required for Arabidopsis FCA-mediated chromatin silencing [J]. Proc Natl Acad Sci U S A, 2009, 106(21): 8772-8777.
[70] YU Z, LIN J, LI Q Q. Transcriptome Analyses of FY Mutants Reveal Its Role in mRNA Alternative Polyadenylation [J]. Plant Cell, 2019, 31(10): 2332-2352.
[71] LIU F, MARQUARDT S, LISTER C, et al. Targeted 3' processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing [J]. Science, 2010, 327(5961): 94-97.
[72] KRZYSZTON M, KUFEL J. Analysis of mRNA-derived siRNAs in mutants of mRNA maturation and surveillance pathways in Arabidopsis thaliana [J]. Sci Rep, 2022, 12(1): 1474.
[73] HOU Y, SUN J, WU B, et al. CPSF30-L-mediated recognition of mRNA m(6)A modification controls alternative polyadenylation of nitrate signaling-related gene transcripts in Arabidopsis [J]. Mol Plant, 2021, 14(4): 688-699.
[74] SONG P, YANG J, WANG C, et al. Arabidopsis N(6)-methyladenosine reader CPSF30-L recognizes FUE signals to control polyadenylation site choice in liquid-like nuclear bodies [J]. Mol Plant, 2021, 14(4): 571-587.
[75] THOMAS P E, WU X, LIU M, et al. Genome-wide control of polyadenylation site choice by CPSF30 in Arabidopsis [J]. Plant Cell, 2012, 24(11): 4376-4388.
[76] ZHANG Y, GU L, HOU Y, et al. Integrative genome-wide analysis reveals HLP1, a novel RNA-binding protein, regulates plant flowering by targeting alternative polyadenylation [J]. Cell Res, 2015, 25(7): 864-876.
[77] BENTLEY D L. Coupling mRNA processing with transcription in time and space [J]. Nat Rev Genet, 2014, 15(3): 163-175.
[78] BEYER A L, OSHEIM Y N. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts [J]. Genes Dev, 1988, 2(6): 754-765.
[79] RASMUSSEN E B, LIS J T. In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes [J]. Proc Natl Acad Sci U S A, 1993, 90(17): 7923-7927.
[80] PERALES R, BENTLEY D. "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions [J]. Mol Cell, 2009, 36(2): 178-191.
[81] EGLOFF S, DIENSTBIER M, MURPHY S. Updating the RNA polymerase CTD code: adding gene-specific layers [J]. Trends Genet, 2012, 28(7): 333-341.
[82] AEBI M, HORNIG H, PADGETT R A, et al. Sequence requirements for splicing of higher eukaryotic nuclear pre-mRNA [J]. Cell, 1986, 47(4): 555-565.
[83] DUJARDIN G, LAFAILLE C, PETRILLO E, et al. Transcriptional elongation and alternative splicing [J]. Biochim Biophys Acta, 2013, 1829(1): 134-140.
[84] ZHU D, MAO F, TIAN Y, et al. The Features and Regulation of Co-transcriptional Splicing in Arabidopsis [J]. Mol Plant, 2020, 13(2): 278-294.
[85] LI S, WANG Y, ZHAO Y, et al. Global Co-transcriptional Splicing in Arabidopsis and the Correlation with Splicing Regulation in Mature RNAs [J]. Mol Plant, 2020, 13(2): 266-277.
[86] CHOW L T, GELINAS R E, BROKER T R, et al. An amazing sequence arrangement at the 5' ends of adenovirus 2 messenger RNA [J]. Cell, 1977, 12(1): 1-8.
[87] BERGET S M, MOORE C, SHARP P A. Spliced segments at the 5' terminus of adenovirus 2 late mRNA [J]. Proc Natl Acad Sci U S A, 1977, 74(8): 3171-3175.
[88] WAN R, BAI R, ZHAN X, et al. How Is Precursor Messenger RNA Spliced by the Spliceosome? [J]. Annu Rev Biochem, 2020, 89: 333-358.
[89] YAN C, WAN R, SHI Y. Molecular Mechanisms of pre-mRNA Splicing through Structural Biology of the Spliceosome [J]. Cold Spring Harb Perspect Biol, 2019, 11(1).
[90] MOUNT S M, PETTERSSON I, HINTERBERGER M, et al. The U1 small nuclear RNA-protein complex selectively binds a 5' splice site in vitro [J]. Cell, 1983, 33(2): 509-518.
[91] MICHAUD S, REED R. A functional association between the 5' and 3' splice site is established in the earliest prespliceosome complex (E) in mammals [J]. Genes Dev, 1993, 7(6): 1008-1020.
[92] BERGLUND J A, CHUA K, ABOVICH N, et al. The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC [J]. Cell, 1997, 89(5): 781-787.
[93] ZORIO D A, BLUMENTHAL T. Both subunits of U2AF recognize the 3' splice site in Caenorhabditis elegans [J]. Nature, 1999, 402(6763): 835-838.
[94] SHEN H, ZHENG X, SHEN J, et al. Distinct activities of the DExD/H-box splicing factor hUAP56 facilitate stepwise assembly of the spliceosome [J]. Genes Dev, 2008, 22(13): 1796-1803.
[95] LIANG W W, CHENG S C. A novel mechanism for Prp5 function in prespliceosome formation and proofreading the branch site sequence [J]. Genes Dev, 2015, 29(1): 81-93.
[96] KELLER E B, NOON W A. Intron splicing: a conserved internal signal in introns of animal pre-mRNAs [J]. Proc Natl Acad Sci U S A, 1984, 81(23): 7417-7420.
[97] BOESLER C, RIGO N, ANOKHINA M M, et al. A spliceosome intermediate with loosely associated tri-snRNP accumulates in the absence of Prp28 ATPase activity [J]. Nat Commun, 2016, 7: 11997.
[98] BAI R, WAN R, YAN C, et al. Structures of the fully assembled Saccharomyces cerevisiae spliceosome before activation [J]. Science, 2018, 360(6396): 1423-1429.
[99] STALEY J P, GUTHRIE C. An RNA switch at the 5' splice site requires ATP and the DEAD box protein Prp28p [J]. Mol Cell, 1999, 3(1): 55-64.
[100] CHEN J Y, STANDS L, STALEY J P, et al. Specific alterations of U1-C protein or U1 small nuclear RNA can eliminate the requirement of Prp28p, an essential DEAD box splicing factor [J]. Mol Cell, 2001, 7(1): 227-232.
[101] TARN W Y, LEE K R, CHENG S C. Yeast precursor mRNA processing protein PRP19 associates with the spliceosome concomitant with or just after dissociation of U4 small nuclear RNA [J]. Proc Natl Acad Sci U S A, 1993, 90(22): 10821-10825.
[102] CHAN S P, CHENG S C. The Prp19-associated complex is required for specifying interactions of U5 and U6 with pre-mRNA during spliceosome activation [J]. J Biol Chem, 2005, 280(35): 31190-31199.
[103] YAN C, WAN R, BAI R, et al. Structure of a yeast activated spliceosome at 3.5 A resolution [J]. Science, 2016, 353(6302): 904-911.
[104] RAUHUT R, FABRIZIO P, DYBKOV O, et al. Molecular architecture of the Saccharomyces cerevisiae activated spliceosome [J]. Science, 2016, 353(6306): 1399-1405.
[105] LARDELLI R M, THOMPSON J X, YATES J R, 3RD, et al. Release of SF3 from the intron branchpoint activates the first step of pre-mRNA splicing [J]. RNA, 2010, 16(3): 516-528.
[106] WARKOCKI Z, ODENWALDER P, SCHMITZOVA J, et al. Reconstitution of both steps of Saccharomyces cerevisiae splicing with purified spliceosomal components [J]. Nat Struct Mol Biol, 2009, 16(12): 1237-1243.
[107] WAN R, BAI R, YAN C, et al. Structures of the Catalytically Activated Yeast Spliceosome Reveal the Mechanism of Branching [J]. Cell, 2019, 177(2): 339-351 e313.
[108] CHIU Y F, LIU Y C, CHIANG T W, et al. Cwc25 is a novel splicing factor required after Prp2 and Yju2 to facilitate the first catalytic reaction [J]. Mol Cell Biol, 2009, 29(21): 5671-5678.
[109] TSENG C K, LIU H L, CHENG S C. DEAH-box ATPase Prp16 has dual roles in remodeling of the spliceosome in catalytic steps [J]. RNA, 2011, 17(1): 145-154.
[110] OHRT T, ODENWALDER P, DANNENBERG J, et al. Molecular dissection of step 2 catalysis of yeast pre-mRNA splicing investigated in a purified system [J]. RNA, 2013, 19(7): 902-915.
[111] YAN C, WAN R, BAI R, et al. Structure of a yeast step II catalytically activated spliceosome [J]. Science, 2017, 355(6321): 149-155.
[112] JAMES S A, TURNER W, SCHWER B. How Slu7 and Prp18 cooperate in the second step of yeast pre-mRNA splicing [J]. RNA, 2002, 8(8): 1068-1077.
[113] BAI R, YAN C, WAN R, et al. Structure of the Post-catalytic Spliceosome from Saccharomyces cerevisiae [J]. Cell, 2017, 171(7): 1589-1598 e1588.
[114] LIU S, LI X, ZHANG L, et al. Structure of the yeast spliceosomal postcatalytic P complex [J]. Science, 2017, 358(6368): 1278-1283.
[115] WAGNER J D, JANKOWSKY E, COMPANY M, et al. The DEAH-box protein PRP22 is an ATPase that mediates ATP-dependent mRNA release from the spliceosome and unwinds RNA duplexes [J]. EMBO J, 1998, 17(10): 2926-2937.
[116] WAN R, YAN C, BAI R, et al. Structure of an Intron Lariat Spliceosome from Saccharomyces cerevisiae [J]. Cell, 2017, 171(1): 120-132 e112.
[117] TSAI R T, FU R H, YEH F L, et al. Spliceosome disassembly catalyzed by Prp43 and its associated components Ntr1 and Ntr2 [J]. Genes Dev, 2005, 19(24): 2991-3003.
[118] WAHL M C, WILL C L, LUHRMANN R. The spliceosome: design principles of a dynamic RNP machine [J]. Cell, 2009, 136(4): 701-718.
[119] COOKE C, HANS H, ALWINE J C. Utilization of splicing elements and polyadenylation signal elements in the coupling of polyadenylation and last-intron removal [J]. Mol Cell Biol, 1999, 19(7): 4971-4979.
[120] RIGO F, MARTINSON H G. Functional coupling of last-intron splicing and 3'-end processing to transcription in vitro: the poly(A) signal couples to splicing before committing to cleavage [J]. Mol Cell Biol, 2008, 28(2): 849-862.
[121] SO B R, DI C, CAI Z, et al. A Complex of U1 snRNP with Cleavage and Polyadenylation Factors Controls Telescripting, Regulating mRNA Transcription in Human Cells [J]. Mol Cell, 2019, 76(4): 590-599 e594.
[122] DENG Y, SHI J, RAN Y, et al. A potential mechanism underlying U1 snRNP inhibition of the cleavage step of mRNA 3' processing [J]. Biochem Biophys Res Commun, 2020, 530(1): 196-202.
[123] MARTINS S B, RINO J, CARVALHO T, et al. Spliceosome assembly is coupled to RNA polymerase II dynamics at the 3' end of human genes [J]. Nat Struct Mol Biol, 2011, 18(10): 1115-1123.
[124] REIMER K A, MIMOSO C A, ADELMAN K, et al. Co-transcriptional splicing regulates 3' end cleavage during mammalian erythropoiesis [J]. Mol Cell, 2021, 81(5): 998-1012 e1017.
[125] YANG C, STILLER J W. Evolutionary diversity and taxon-specific modifications of the RNA polymerase II C-terminal domain [J]. Proc Natl Acad Sci U S A, 2014, 111(16): 5920-5925.
[126] BURATOWSKI S. Progression through the RNA polymerase II CTD cycle [J]. Mol Cell, 2009, 36(4): 541-546.
[127] EICK D, GEYER M. The RNA polymerase II carboxy-terminal domain (CTD) code [J]. Chem Rev, 2013, 113(11): 8456-8490.
[128] ALLISON L A, WONG J K, FITZPATRICK V D, et al. The C-terminal domain of the largest subunit of RNA polymerase II of Saccharomyces cerevisiae, Drosophila melanogaster, and mammals: a conserved structure with an essential function [J]. Mol Cell Biol, 1988, 8(1): 321-329.
[129] JERONIMO C, BATAILLE A R, ROBERT F. The writers, readers, and functions of the RNA polymerase II C-terminal domain code [J]. Chem Rev, 2013, 113(11): 8491-8522.
[130] NOJIMA T, GOMES T, GROSSO A R F, et al. Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing [J]. Cell, 2015, 161(3): 526-540.
[131] NOJIMA T, REBELO K, GOMES T, et al. RNA Polymerase II Phosphorylated on CTD Serine 5 Interacts with the Spliceosome during Co-transcriptional Splicing [J]. Molecular Cell, 2018, 72(2): 369-379.e364.
[132] MORALES V, GIAMARCHI C, CHAILLEUX C, et al. Chromatin structure and dynamics: functional implications [J]. Biochimie, 2001, 83(11-12): 1029-1039.
[133] ROUTH A, SANDIN S, RHODES D. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure [J]. Proc Natl Acad Sci U S A, 2008, 105(26): 8872-8877.
[134] GRIGORYEV S A, ARYA G, CORRELL S, et al. Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions [J]. Proc Natl Acad Sci U S A, 2009, 106(32): 13317-13322.
[135] ESCOBAR T M, OKSUZ O, SALDANA-MEYER R, et al. Active and Repressed Chromatin Domains Exhibit Distinct Nucleosome Segregation during DNA Replication [J]. Cell, 2019, 179(4): 953-963 e911.
[136] MULLER M M, FIERZ B, BITTOVA L, et al. A two-state activation mechanism controls the histone methyltransferase Suv39h1 [J]. Nat Chem Biol, 2016, 12(3): 188-193.
[137] LAPRELL F, FINKL K, MULLER J. Propagation of Polycomb-repressed chromatin requires sequence-specific recruitment to DNA [J]. Science, 2017, 356(6333): 85-88.
[138] ESCOBAR T M, LOYOLA A, REINBERG D. Parental nucleosome segregation and the inheritance of cellular identity [J]. Nat Rev Genet, 2021, 22(6): 379-392.
[139] MARGUERON R, REINBERG D. Chromatin structure and the inheritance of epigenetic information [J]. Nat Rev Genet, 2010, 11(4): 285-296.
[140] CHEN P, LI W, LI G. Structures and Functions of Chromatin Fibers [J]. Annu Rev Biophys, 2021, 50: 95-116.
[141] HEO K, KIM H J, CHOI S H, et al. FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of H2AX and ADP-ribosylation of Spt16 [J]. Molecular Cell, 2008, 30(1): 86-97.
[142] ZILBERMAN D, COLEMAN-DERR D, BALLINGER T, et al. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks [J]. Nature, 2008, 456(7218): 125-129.
[143] MIZUGUCHI G, SHEN X T, LANDRY J, et al. ATP-Driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex [J]. Science, 2004, 303(5656): 343-348.
[144] YELAGANDULA R, STROUD H, HOLEC S, et al. The histone variant H2A.W defines heterochromatin and promotes chromatin condensation in Arabidopsis [J]. Cell, 2014, 158(1): 98-109.
[145] BOURGUET P, PICARD C L, YELAGANDULA R, et al. The histone variant H2A.W and linker histone H1 co-regulate heterochromatin accessibility and DNA methylation [J]. Nat Commun, 2021, 12(1): 2683.
[146] OKADA T, ENDO M, SINGH M B, et al. Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3 [J]. Plant J, 2005, 44(4): 557-568.
[147] BORG M, BERGER F. Chromatin remodelling during male gametophyte development [J]. Plant J, 2015, 83(1): 177-188.
[148] RAVI M, SHIBATA F, RAMAHI J S, et al. Meiosis-Specific Loading of the Centromere-Specific Histone CENH3 in Arabidopsis thaliana [J]. Plos Genetics, 2011, 7(6).
[149] FUKAGAWA T, EARNSHAW W C. The Centromere: Chromatin Foundation for the Kinetochore Machinery [J]. Developmental Cell, 2014, 30(5): 497-509.
[150] DONG A, LIU Z, ZHU Y, et al. Interacting proteins and differences in nuclear transport reveal specific functions for the NAP1 family proteins in plants [J]. Plant Physiol, 2005, 138(3): 1446-1456.
[151] ZHU Y, DONG A, MEYER D, et al. Arabidopsis NRP1 and NRP2 encode histone chaperones and are required for maintaining postembryonic root growth [J]. Plant Cell, 2006, 18(11): 2879-2892.
[152] LOLAS I B, HIMANEN K, GRONLUND J T, et al. The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2 [J]. Plant J, 2010, 61(4): 686-697.
[153] MARCH-DIAZ R, GARCIA-DOMINGUEZ M, LOZANO-JUSTE J, et al. Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis [J]. Plant J, 2008, 53(3): 475-487.
[154] WU J, YANG Y, WANG J, et al. Histone chaperones AtChz1A and AtChz1B are required for H2A.Z deposition and interact with the SWR1 chromatin-remodeling complex in Arabidopsis thaliana [J]. New Phytol, 2023, 239(1): 189-207.
[155] ZHANG C, CAO L, RONG L, et al. The chromatin-remodeling factor AtINO80 plays crucial roles in genome stability maintenance and in plant development [J]. Plant J, 2015, 82(4): 655-668.
[156] PROBST A V, DESVOYES B, GUTIERREZ C. Similar yet critically different: the distribution, dynamics and function of histone variants [J]. J Exp Bot, 2020, 71(17): 5191-5204.
[157] SCHONROCK N, EXNER V, PROBST A, et al. Functional genomic analysis of CAF-1 mutants in Arabidopsis thaliana [J]. J Biol Chem, 2006, 281(14): 9560-9568.
[158] NIE X, WANG H, LI J, et al. The HIRA complex that deposits the histone H3.3 is conserved in Arabidopsis and facilitates transcriptional dynamics [J]. Biology Open, 2014, 3(9): 794-802.
[159] DUC C, BENOIT M, LE GOFF S, et al. The histone chaperone complex HIR maintains nucleosome occupancy and counterbalances impaired histone deposition in CAF-1 complex mutants [J]. Plant J, 2015, 81(5): 707-722.
[160] DUC C, BENOIT M, DETOURNE G, et al. Arabidopsis ATRX Modulates H3.3 Occupancy and Fine-Tunes Gene Expression [J]. Plant Cell, 2017, 29(7): 1773-1793.
[161] ZHONG Z, WANG Y, WANG M, et al. Histone chaperone ASF1 mediates H3.3-H4 deposition in Arabidopsis [J]. Nat Commun, 2022, 13(1): 6970.
[162] LE GOFF S, KECELI B N, JERABKOVA H, et al. The H3 histone chaperone NASP(SIM3) escorts CenH3 in Arabidopsis [J]. Plant J, 2020, 101(1): 71-86.
[163] SHIBAHARA K, STILLMAN B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin [J]. Cell, 1999, 96(4): 575-585.
[164] MOGGS J G, GRANDI P, QUIVY J P, et al. A CAF-1-PCNA-mediated chromatin assembly pathway triggered by sensing DNA damage [J]. Molecular and Cellular Biology, 2000, 20(4): 1206-1218.
[165] RANJAN A, MIZUGUCHI G, FITZGERALD P C, et al. Nucleosome-free region dominates histone acetylation in targeting SWR1 to promoters for H2A.Z replacement [J]. Cell, 2013, 154(6): 1232-1245.
[166] YEN K Y, VINAYACHANDRAN V, PUGH B F. SWR-C and INO80 Chromatin Remodelers Recognize Nucleosome-free Regions Near+1 Nucleosomes [J]. Cell, 2013, 154(6): 1246-1256.
[167] BANASZYNSKI L A, WEN D C, DEWELL S, et al. Hira-Dependent Histone H3.3 Deposition Facilitates PRC2 Recruitment at Developmental Loci in ES Cells [J]. Cell, 2013, 155(1): 107-120.
[168] PCHELINTSEV N A, MCBRYAN T, RAI T S, et al. Placing the HIRA Histone Chaperone Complex in the Chromatin Landscape [J]. Cell Reports, 2013, 3(4): 1012-1019.
[169] NOURANI A, ROBERT F, WINSTON F. Evidence that Spt2/Sin1, an HMG-like factor, plays roles in transcription elongation, chromatin structure, and genome stability in Saccharomyces cerevisiae [J]. Molecular and Cellular Biology, 2006, 26(4): 1496-1509.
[170] VENKATESH S, WORKMAN J L. Histone exchange, chromatin structure and the regulation of transcription [J]. Nature Reviews Molecular Cell Biology, 2015, 16(3): 178-189.
[171] BOWMAN A, WARD R, WIECHENS N, et al. The Histone Chaperones Nap1 and Vps75 Bind Histones H3 and H4 in a Tetrameric Conformation [J]. Molecular Cell, 2011, 41(4): 398-408.
[172] TSUNAKA Y, FUJIWARA Y, OYAMA T, et al. Integrated molecular mechanism directing nucleosome reorganization by human FACT [J]. Genes & Development, 2016, 30(6): 673-686.
[173] DHAYALAN A, TAMAS R, BOCK I, et al. The ATRX-ADD domain binds to H3 tail peptides and reads the combined methylation state of K4 and K9 [J]. Hum Mol Genet, 2011, 20(11): 2195-2203.
[174] IWASE S, XIANG B, GHOSH S, et al. ATRX ADD domain links an atypical histone methylation recognition mechanism to human mental-retardation syndrome [J]. Nature Structural & Molecular Biology, 2011, 18(7): 769-776.
[175] DUNLEAVY E M, ROCHE D, TAGAMI H, et al. HJURP Is a Cell-Cycle-Dependent Maintenance and Deposition Factor of CENP-A at Centromeres [J]. Cell, 2009, 137(3): 485-497.
[176] FOLTZ D R, JANSEN L E T, BAILEY A O, et al. Centromere-Specific Assembly of CENP-A Nucleosomes Is Mediated by HJURP [J]. Cell, 2009, 137(3): 472-484.
[177] VON LINDERN M, FORNEROD M, VAN BAAL S, et al. The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA [J]. Mol Cell Biol, 1992, 12(4): 1687-1697.
[178] SMITH E A, KRUMPELBECK E F, JEGGA A G, et al. The nuclear DEK interactome supports multi-functionality [J]. Proteins, 2018, 86(1): 88-97.
[179] WALDMANN T, SCHOLTEN I, KAPPES F, et al. The DEK protein--an abundant and ubiquitous constituent of mammalian chromatin [J]. Gene, 2004, 343(1): 1-9.
[180] ZHANG H, YAN M, DENG R, et al. The silencing of DEK reduced disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 based on virus-induced gene silencing analysis in tomato [J]. Gene, 2020, 727: 144245.
[181] ARAVIND L, KOONIN E V. SAP - a putative DNA-binding motif involved in chromosomal organization [J]. Trends Biochem Sci, 2000, 25(3): 112-114.
[182] KIPP M, GOHRING F, OSTENDORP T, et al. SAF-Box, a conserved protein domain that specifically recognizes scaffold attachment region DNA [J]. Mol Cell Biol, 2000, 20(20): 7480-7489.
[183] KAPPES F, SCHOLTEN I, RICHTER N, et al. Functional domains of the ubiquitous chromatin protein DEK [J]. Mol Cell Biol, 2004, 24(13): 6000-6010.
[184] WALDMANN T, BAACK M, RICHTER N, et al. Structure-specific binding of the proto-oncogene protein DEK to DNA [J]. Nucleic Acids Res, 2003, 31(23): 7003-7010.
[185] MCGARVEY T, ROSONINA E, MCCRACKEN S, et al. The acute myeloid leukemia-associated protein, DEK, forms a splicing-dependent interaction with exon-product complexes [J]. J Cell Biol, 2000, 150(2): 309-320.
[186] SOARES L M, ZANIER K, MACKERETH C, et al. Intron removal requires proofreading of U2AF/3' splice site recognition by DEK [J]. Science, 2006, 312(5782): 1961-1965.
[187] GAMBLE M J, FISHER R P. SET and PARP1 remove DEK from chromatin to permit access by the transcription machinery [J]. Nat Struct Mol Biol, 2007, 14(6): 548-555.
[188] KAVANAUGH G M, WISE-DRAPER T M, MORREALE R J, et al. The human DEK oncogene regulates DNA damage response signaling and repair [J]. Nucleic Acids Res, 2011, 39(17): 7465-7476.
[189] SMITH E A, GOLE B, WILLIS N A, et al. DEK is required for homologous recombination repair of DNA breaks [J]. Sci Rep, 2017, 7: 44662.
[190] WANG J, SUN L, YANG M, et al. DEK depletion negatively regulates Rho/ROCK/MLC pathway in non-small cell lung cancer [J]. J Histochem Cytochem, 2013, 61(7): 510-521.
[191] SANDEN C, JARVSTRAT L, LENNARTSSON A, et al. The DEK oncoprotein binds to highly and ubiquitously expressed genes with a dual role in their transcriptional regulation [J]. Mol Cancer, 2014, 13: 215.
[192] WAIDMANN S, PETUTSCHNIG E, ROZHON W, et al. GSK3-mediated phosphorylation of DEK3 regulates chromatin accessibility and stress tolerance in Arabidopsis [J]. FEBS J, 2022, 289(2): 473-493.
[193] KUMAR S V, WIGGE P A. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis [J]. Cell, 2010, 140(1): 136-147.
[194] BRESTOVITSKY A, EZER D, WAIDMANN S, et al. DEK influences the trade-off between growth and arrest via H2A.Z-nucleosomes in Arabidopsis [J]. BioRxiv, 2019, 829226.
[195] UEDA M, SEKI M. Histone Modifications Form Epigenetic Regulatory Networks to Regulate Abiotic Stress Response [J]. Plant Physiol, 2020, 182(1): 15-26.
[196] LIU C, LU F, CUI X, et al. Histone methylation in higher plants [J]. Annu Rev Plant Biol, 2010, 61: 395-420.
[197] LAURIA M, ROSSI V. Epigenetic control of gene regulation in plants [J]. Biochim Biophys Acta, 2011, 1809(8): 369-378.
[198] ZHANG X, CLARENZ O, COKUS S, et al. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis [J]. PLoS Biol, 2007, 5(5): e129.
[199] ZHOU J, WANG X, HE K, et al. Genome-wide profiling of histone H3 lysine 9 acetylation and dimethylation in Arabidopsis reveals correlation between multiple histone marks and gene expression [J]. Plant Mol Biol, 2010, 72(6): 585-595.
[200] ZHANG X, BERNATAVICHUTE Y V, COKUS S, et al. Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana [J]. Genome Biol, 2009, 10(6): R62.
[201] LIU B, LIU Y H, WANG B H, et al. The transcription factor OsSUF4 interacts with SDG725 in promoting H3K36me3 establishment [J]. Nat Commun, 2019, 10(1): 2999.
[202] SHIM S, LEE H G, LEE H, et al. H3K36me2 is highly correlated with m(6) A modifications in plants [J]. J Integr Plant Biol, 2020, 62(10): 1455-1460.
[203] HU H, DU J. Structure and mechanism of histone methylation dynamics in Arabidopsis [J]. Curr Opin Plant Biol, 2022, 67: 102211.
[204] EXNER V, AICHINGER E, SHU H, et al. The chromodomain of LIKE HETEROCHROMATIN PROTEIN 1 is essential for H3K27me3 binding and function during Arabidopsis development [J]. PLoS One, 2009, 4(4): e5335.
[205] DE LA PAZ SANCHEZ M, GUTIERREZ C. Arabidopsis ORC1 is a PHD-containing H3K4me3 effector that regulates transcription [J]. Proc Natl Acad Sci U S A, 2009, 106(6): 2065-2070.
[206] LEE W Y, LEE D, CHUNG W I, et al. Arabidopsis ING and Alfin1-like protein families localize to the nucleus and bind to H3K4me3/2 via plant homeodomain fingers [J]. Plant J, 2009, 58(3): 511-524.
[207] MOLITOR A M, BU Z, YU Y, et al. Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes [J]. PLoS Genet, 2014, 10(1): e1004091.
[208] JIANG D, GU X, HE Y. Establishment of the winter-annual growth habit via FRIGIDA-mediated histone methylation at FLOWERING LOCUS C in Arabidopsis [J]. Plant Cell, 2009, 21(6): 1733-1746.
[209] YANG Z, QIAN S, SCHEID R N, et al. EBS is a bivalent histone reader that regulates floral phase transition in Arabidopsis [J]. Nat Genet, 2018, 50(9): 1247-1253.
[210] QIAN S, LV X, SCHEID R N, et al. Dual recognition of H3K4me3 and H3K27me3 by a plant histone reader SHL [J]. Nat Commun, 2018, 9(1): 2425.
[211] MYLNE J S, BARRETT L, TESSADORI F, et al. LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC [J]. Proc Natl Acad Sci U S A, 2006, 103(13): 5012-5017.
[212] BORG M, JIANG D, BERGER F. Histone variants take center stage in shaping the epigenome [J]. Curr Opin Plant Biol, 2021, 61: 101991.
[213] BERGAMIN E, SARVAN S, MALETTE J, et al. Molecular basis for the methylation specificity of ATXR5 for histone H3 [J]. Nucleic Acids Res, 2017, 45(11): 6375-6387.
[214] ZHENG B, CHEN X. Dynamics of histone H3 lysine 27 trimethylation in plant development [J]. Curr Opin Plant Biol, 2011, 14(2): 123-129.
[215] LI Z, FU X, WANG Y, et al. Polycomb-mediated gene silencing by the BAH-EMF1 complex in plants [J]. Nat Genet, 2018, 50(9): 1254-1261.
[216] GAO Z, LI Y, OU Y, et al. A pair of readers of bivalent chromatin mediate formation of Polycomb-based "memory of cold" in plants [J]. Mol Cell, 2023, 83(7): 1109-1124 e1104.
[217] WANG Z P, XING H L, DONG L, et al. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation [J]. Genome Biol, 2015, 16(1): 144.
[218] GE Z, BERGONCI T, ZHAO Y, et al. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling [J]. Science, 2017, 358(6370): 1596-1600.
[219] ZHANG Q, ZHAO F, WU Z, et al. A simple and robust method for isolating and analyzing chromatin-bound RNAs in Arabidopsis [J]. Plant Methods, 2022, 18(1): 135.
[220] ZHU D, WEN Y, YAO W, et al. Distinct chromatin signatures in the Arabidopsis male gametophyte [J]. Nat Genet, 2023, 55(4): 706-720.
[221] CHEN S, ZHOU Y, CHEN Y, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor [J]. Bioinformatics, 2018, 34(17): i884-i890.
[222] CHEN S, ZHOU Y, CHEN Y, et al. Gencore: an efficient tool to generate consensus reads for error suppressing and duplicate removing of NGS data [J]. BMC Bioinformatics, 2019, 20(Suppl 23): 606.
[223] RAMIREZ F, RYAN D P, GRUNING B, et al. deepTools2: a next generation web server for deep-sequencing data analysis [J]. Nucleic Acids Res, 2016, 44(W1): W160-165.
[224] BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data [J]. Bioinformatics, 2014, 30(15): 2114-2120.
[225] KIM D, PAGGI J M, PARK C, et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype [J]. Nat Biotechnol, 2019, 37(8): 907-915.
[226] LI H, HANDSAKER B, WYSOKER A, et al. The Sequence Alignment/Map format and SAMtools [J]. Bioinformatics, 2009, 25(16): 2078-2079.
[227] VERA ALVAREZ R, PONGOR L S, MARINO-RAMIREZ L, et al. TPMCalculator: one-step software to quantify mRNA abundance of genomic features [J]. Bioinformatics, 2019, 35(11): 1960-1962.
[228] DOBIN A, DAVIS C A, SCHLESINGER F, et al. STAR: ultrafast universal RNA-seq aligner [J]. Bioinformatics, 2013, 29(1): 15-21.
[229] LIAO Y, SMYTH G K, SHI W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features [J]. Bioinformatics, 2014, 30(7): 923-930.
[230] ROBINSON M D, MCCARTHY D J, SMYTH G K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data [J]. Bioinformatics, 2010, 26(1): 139-140.
[231] LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie 2 [J]. Nat Methods, 2012, 9(4): 357-359.
[232] RAMIREZ F, DUNDAR F, DIEHL S, et al. deepTools: a flexible platform for exploring deep-sequencing data [J]. Nucleic Acids Res, 2014, 42(Web Server issue): W187-191.
[233] GROSSO A R, DE ALMEIDA S F, BRAGA J, et al. Dynamic transitions in RNA polymerase II density profiles during transcription termination [J]. Genome Res, 2012, 22(8): 1447-1456.
[234] DAVIDSON L, MUNIZ L, WEST S. 3' end formation of pre-mRNA and phosphorylation of Ser2 on the RNA polymerase II CTD are reciprocally coupled in human cells [J]. Genes Dev, 2014, 28(4): 342-356.
[235] WU Z, IETSWAART R, LIU F, et al. Quantitative regulation of FLC via coordinated transcriptional initiation and elongation [J]. Proc Natl Acad Sci U S A, 2016, 113(1): 218-223.
[236] STASEVICH T J, HAYASHI-TAKANAKA Y, SATO Y, et al. Regulation of RNA polymerase II activation by histone acetylation in single living cells [J]. Nature, 2014, 516(7530): 272-275.
[237] EHRENSBERGER A H, KELLY G P, SVEJSTRUP J Q. Mechanistic interpretation of promoter-proximal peaks and RNAPII density maps [J]. Cell, 2013, 154(4): 713-715.
[238] KURIHARA Y, SCHMITZ R J, NERY J R, et al. Surveillance of 3' Noncoding Transcripts Requires FIERY1 and XRN3 in Arabidopsis [J]. G3 (Bethesda), 2012, 2(4): 487-498.
[239] CRISP P A, SMITH A B, GANGULY D R, et al. RNA Polymerase II Read-Through Promotes Expression of Neighboring Genes in SAL1-PAP-XRN Retrograde Signaling [J]. Plant Physiol, 2018, 178(4): 1614-1630.
[240] DUC C, SHERSTNEV A, COLE C, et al. Transcription termination and chimeric RNA formation controlled by Arabidopsis thaliana FPA [J]. PLoS Genet, 2013, 9(10): e1003867.
[241] EFFENBERGER K A, URABE V K, JURICA M S. Modulating splicing with small molecular inhibitors of the spliceosome [J]. Wiley Interdiscip Rev RNA, 2017, 8(2).
[242] DOLATA J, GUO Y, KOLOWERZO A, et al. NTR1 is required for transcription elongation checkpoints at alternative exons in Arabidopsis [J]. EMBO J, 2015, 34(4): 544-558.
[243] MUNIZ L, NICOLAS E, TROUCHE D. RNA polymerase II speed: a key player in controlling and adapting transcriptome composition [J]. EMBO J, 2021, 40(15): e105740.
[244] EITOKU M, SATO L, SENDA T, et al. Histone chaperones: 30 years from isolation to elucidation of the mechanisms of nucleosome assembly and disassembly [J]. Cell Mol Life Sci, 2008, 65(3): 414-444.
[245] QUEITSCH C, HONG S W, VIERLING E, et al. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis [J]. Plant Cell, 2000, 12(4): 479-492.
[246] HE Y. Chromatin regulation of flowering [J]. Trends Plant Sci, 2012, 17(9): 556-562.
[247] HELLIWELL C A, WOOD C C, ROBERTSON M, et al. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex [J]. Plant J, 2006, 46(2): 183-192.
[248] REDDY A S. Alternative splicing of pre-messenger RNAs in plants in the genomic era [J]. Annu Rev Plant Biol, 2007, 58: 267-294.
[249] MUFARREGE E F, GONZALEZ D H, CURI G C. Functional interconnections of Arabidopsis exon junction complex proteins and genes at multiple steps of gene expression [J]. J Exp Bot, 2011, 62(14): 5025-5036.
[250] REDDY A S, SHAD ALI G. Plant serine/arginine-rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses [J]. Wiley Interdiscip Rev RNA, 2011, 2(6): 875-889.
[251] SHEPARD P J, HERTEL K J. The SR protein family [J]. Genome Biol, 2009, 10(10): 242.
[252] KOROLEVA O A, CALDER G, PENDLE A F, et al. Dynamic behavior of Arabidopsis eIF4A-III, putative core protein of exon junction complex: fast relocation to nucleolus and splicing speckles under hypoxia [J]. Plant Cell, 2009, 21(5): 1592-1606.
[253] LE HIR H, IZAURRALDE E, MAQUAT L E, et al. The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions [J]. EMBO J, 2000, 19(24): 6860-6869.
[254] JIANG D, WANG Y, WANG Y, et al. Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb repressive complex 2 components [J]. PLoS One, 2008, 3(10): e3404.
[255] WANG Y, GU X, YUAN W, et al. Photoperiodic control of the floral transition through a distinct polycomb repressive complex [J]. Dev Cell, 2014, 28(6): 727-736.
[256] SONG Y H, SHIM J S, KINMONTH-SCHULTZ H A, et al. Photoperiodic flowering: time measurement mechanisms in leaves [J]. Annu Rev Plant Biol, 2015, 66: 441-464.

所在学位评定分委会
生物学
国内图书分类号
Q37
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/647057
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
周思娴. RNA聚合酶动态及染色质结构调控拟南芥基因转录的机制研究[D]. 哈尔滨. 哈尔滨工业大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849503-周思娴-生物系.pdf(13286KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[周思娴]的文章
百度学术
百度学术中相似的文章
[周思娴]的文章
必应学术
必应学术中相似的文章
[周思娴]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。