[1] FRANSZ P, DE JONG H. From nucleosome to chromosome: a dynamic organization of genetic information [J]. Plant J, 2011, 66(1): 4-17.
[2] VERGARA Z, GUTIERREZ C. Emerging roles of chromatin in the maintenance of genome organization and function in plants [J]. Genome Biol, 2017, 18(1): 96.
[3] HAMMOND C M, STROMME C B, HUANG H, et al. Histone chaperone networks shaping chromatin function [J]. Nat Rev Mol Cell Biol, 2017, 18(3): 141-158.
[4] ZENTNER G E, HENIKOFF S. Regulation of nucleosome dynamics by histone modifications [J]. Nat Struct Mol Biol, 2013, 20(3): 259-266.
[5] JIANG D, BERGER F. Histone variants in plant transcriptional regulation [J]. Biochim Biophys Acta Gene Regul Mech, 2017, 1860(1): 123-130.
[6] VENKATESH S, WORKMAN J L. Histone exchange, chromatin structure and the regulation of transcription [J]. Nat Rev Mol Cell Biol, 2015, 16(3): 178-189.
[7] JONKERS I, KWAK H, LIS J T. Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons [J]. Elife, 2014, 3: e02407.
[8] ADELMAN K, LIS J T. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans [J]. Nat Rev Genet, 2012, 13(10): 720-731.
[9] HAJHEIDARI M, KONCZ C, EICK D. Emerging roles for RNA polymerase II CTD in Arabidopsis [J]. Trends Plant Sci, 2013, 18(11): 633-643.
[10] LYONS D E, MCMAHON S, OTT M. A combinatorial view of old and new RNA polymerase II modifications [J]. Transcription, 2020, 11(2): 66-82.
[11] ZHU J, LIU M, LIU X, et al. RNA polymerase II activity revealed by GRO-seq and pNET-seq in Arabidopsis [J]. Nat Plants, 2018, 4(12): 1112-1123.
[12] YU X, MARTIN P G P, MICHAELS S D. BORDER proteins protect expression of neighboring genes by promoting 3 ' Pol II pausing in plants [J]. Nat Commun, 2019, 10(1): 4359.
[13] HETZEL J, DUTTKE S H, BENNER C, et al. Nascent RNA sequencing reveals distinct features in plant transcription [J]. Proc Natl Acad Sci U S A, 2016, 113(43): 12316-12321.
[14] DENG X, CAO X. Roles of pre-mRNA splicing and polyadenylation in plant development [J]. Curr Opin Plant Biol, 2017, 35: 45-53.
[15] LI B, CAREY M, WORKMAN J L. The role of chromatin during transcription [J]. Cell, 2007, 128(4): 707-719.
[16] OTERO S, DESVOYES B, GUTIERREZ C. Histone H3 dynamics in plant cell cycle and development [J]. Cytogenet Genome Res, 2014, 143(1-3): 114-124.
[17] OTERO S, DESVOYES B, PEIRO R, et al. Histone H3 Dynamics Reveal Domains with Distinct Proliferation Potential in the Arabidopsis Root [J]. Plant Cell, 2016, 28(6): 1361-1371.
[18] SHI L, WANG J, HONG F, et al. Four amino acids guide the assembly or disassembly of Arabidopsis histone H3.3-containing nucleosomes [J]. Proc Natl Acad Sci U S A, 2011, 108(26): 10574-10578.
[19] JACOB Y, BERGAMIN E, DONOGHUE M T, et al. Selective methylation of histone H3 variant H3.1 regulates heterochromatin replication [J]. Science, 2014, 343(6176): 1249-1253.
[20] STROUD H, OTERO S, DESVOYES B, et al. Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana [J]. Proc Natl Acad Sci U S A, 2012, 109(14): 5370-5375.
[21] WOLLMANN H, HOLEC S, ALDEN K, et al. Dynamic deposition of histone variant H3.3 accompanies developmental remodeling of the Arabidopsis transcriptome [J]. PLoS Genet, 2012, 8(5): e1002658.
[22] HE K, CAO X, DENG X. Histone methylation in epigenetic regulation and temperature responses [J]. Curr Opin Plant Biol, 2021, 61: 102001.
[23] SAWATSUBASHI S, MURATA T, LIM J, et al. A histone chaperone, DEK, transcriptionally coactivates a nuclear receptor [J]. Genes Dev, 2010, 24(2): 159-170.
[24] WAIDMANN S, KUSENDA B, MAYERHOFER J, et al. A DEK domain-containing protein modulates chromatin structure and function in Arabidopsis [J]. Plant Cell, 2014, 26(11): 4328-4344.
[25] ZONG W, ZHAO B, XI Y, et al. DEK domain-containing proteins control flowering time in Arabidopsis [J]. New Phytol, 2021, 231(1): 182-192.
[26] HSIN J P, MANLEY J L. The RNA polymerase II CTD coordinates transcription and RNA processing [J]. Genes Dev, 2012, 26(19): 2119-2137.
[27] HARLEN K M, CHURCHMAN L S. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain [J]. Nat Rev Mol Cell Biol, 2017, 18(4): 263-273.
[28] VIGNALI M, HASSAN A H, NEELY K E, et al. ATP-dependent chromatin-remodeling complexes [J]. Mol Cell Biol, 2000, 20(6): 1899-1910.
[29] KIM T K, EBRIGHT R H, REINBERG D. Mechanism of ATP-dependent promoter melting by transcription factor IIH [J]. Science, 2000, 288(5470): 1418-1422.
[30] HAHN S. Structure and mechanism of the RNA polymerase II transcription machinery [J]. Nat Struct Mol Biol, 2004, 11(5): 394-403.
[31] AKHTAR M S, HEIDEMANN M, TIETJEN J R, et al. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II [J]. Mol Cell, 2009, 34(3): 387-393.
[32] GLOVER-CUTTER K, LAROCHELLE S, ERICKSON B, et al. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II [J]. Mol Cell Biol, 2009, 29(20): 5455-5464.
[33] NOCK A, ASCANO J M, BARRERO M J, et al. Mediator-regulated transcription through the +1 nucleosome [J]. Mol Cell, 2012, 48(6): 837-848.
[34] KRUMM A, HICKEY L B, GROUDINE M. Promoter-proximal pausing of RNA polymerase II defines a general rate-limiting step after transcription initiation [J]. Genes Dev, 1995, 9(5): 559-572.
[35] CHEN F X, SMITH E R, SHILATIFARD A. Born to run: control of transcription elongation by RNA polymerase II [J]. Nat Rev Mol Cell Biol, 2018, 19(7): 464-478.
[36] TETTEY T T, GAO X, SHAO W, et al. A Role for FACT in RNA Polymerase II Promoter-Proximal Pausing [J]. Cell Rep, 2019, 27(13): 3770-3779 e3777.
[37] GAERTNER B, ZEITLINGER J. RNA polymerase II pausing during development [J]. Development, 2014, 141(6): 1179-1183.
[38] CORE L, ADELMAN K. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation [J]. Genes Dev, 2019, 33(15-16): 960-982.
[39] NI Z, SAUNDERS A, FUDA N J, et al. P-TEFb is critical for the maturation of RNA polymerase II into productive elongation in vivo [J]. Mol Cell Biol, 2008, 28(3): 1161-1170.
[40] KIM J B, SHARP P A. Positive transcription elongation factor B phosphorylates hSPT5 and RNA polymerase II carboxyl-terminal domain independently of cyclin-dependent kinase-activating kinase [J]. J Biol Chem, 2001, 276(15): 12317-12323.
[41] SAUNDERS A, CORE L J, LIS J T. Breaking barriers to transcription elongation [J]. Nat Rev Mol Cell Biol, 2006, 7(8): 557-567.
[42] JONKERS I, LIS J T. Getting up to speed with transcription elongation by RNA polymerase II [J]. Nat Rev Mol Cell Biol, 2015, 16(3): 167-177.
[43] ROUGVIE A E, LIS J T. The RNA polymerase II molecule at the 5' end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged [J]. Cell, 1988, 54(6): 795-804.
[44] PROUDFOOT N J. Ending the message: poly(A) signals then and now [J]. Genes Dev, 2011, 25(17): 1770-1782.
[45] SHERSTNEV A, DUC C, COLE C, et al. Direct sequencing of Arabidopsis thaliana RNA reveals patterns of cleavage and polyadenylation [J]. Nat Struct Mol Biol, 2012, 19(8): 845-852.
[46] DI GIAMMARTINO D C, MANLEY J L. New links between mRNA polyadenylation and diverse nuclear pathways [J]. Mol Cells, 2014, 37(9): 644-649.
[47] SCHONEMANN L, KUHN U, MARTIN G, et al. Reconstitution of CPSF active in polyadenylation: recognition of the polyadenylation signal by WDR33 [J]. Genes Dev, 2014, 28(21): 2381-2393.
[48] SHI Y, DI GIAMMARTINO D C, TAYLOR D, et al. Molecular architecture of the human pre-mRNA 3' processing complex [J]. Mol Cell, 2009, 33(3): 365-376.
[49] EATON J D, WEST S. Termination of Transcription by RNA Polymerase II: BOOM! [J]. Trends in Genetics, 2020, 36(9): 664-675.
[50] ZHANG H, RIGO F, MARTINSON H G. Poly(A) Signal-Dependent Transcription Termination Occurs through a Conformational Change Mechanism that Does Not Require Cleavage at the Poly(A) Site [J]. Mol Cell, 2015, 59(3): 437-448.
[51] WEST S, PROUDFOOT N J, DYE M J. Molecular dissection of mammalian RNA polymerase II transcriptional termination [J]. Mol Cell, 2008, 29(5): 600-610.
[52] WEST S, GROMAK N, PROUDFOOT N J. Human 5' --> 3' exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites [J]. Nature, 2004, 432(7016): 522-525.
[53] FONG N, BRANNAN K, ERICKSON B, et al. Effects of Transcription Elongation Rate and Xrn2 Exonuclease Activity on RNA Polymerase II Termination Suggest Widespread Kinetic Competition [J]. Mol Cell, 2015, 60(2): 256-267.
[54] KIM M, KROGAN N J, VASILJEVA L, et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II [J]. Nature, 2004, 432(7016): 517-522.
[55] MO W P, LIU B, ZHANG H, et al. Landscape of transcription termination in Arabidopsis revealed by single-molecule nascent RNA sequencing [J]. Genome Biology, 2021, 22(1).
[56] EATON J D, FRANCIS L, DAVIDSON L, et al. A unified allosteric/torpedo mechanism for transcriptional termination on human protein-coding genes [J]. Genes Dev, 2020, 34(1-2): 132-145.
[57] BAEJEN C, ANDREANI J, TORKLER P, et al. Genome-wide Analysis of RNA Polymerase II Termination at Protein-Coding Genes [J]. Mol Cell, 2017, 66(1): 38-49 e36.
[58] CORTAZAR M A, SHERIDAN R M, ERICKSON B, et al. Control of RNA Pol II Speed by PNUTS-PP1 and Spt5 Dephosphorylation Facilitates Termination by a "Sitting Duck Torpedo" Mechanism [J]. Mol Cell, 2019, 76(6): 896-908 e894.
[59] KASTENMAYER J P, GREEN P J. Novel features of the XRN-family in Arabidopsis: evidence that AtXRN4, one of several orthologs of nuclear Xrn2p/Rat1p, functions in the cytoplasm [J]. Proc Natl Acad Sci U S A, 2000, 97(25): 13985-13990.
[60] ZAKRZEWSKA-PLACZEK M, SOURET F F, SOBCZYK G J, et al. Arabidopsis thaliana XRN2 is required for primary cleavage in the pre-ribosomal RNA [J]. Nucleic Acids Res, 2010, 38(13): 4487-4502.
[61] SOURET F F, KASTENMAYER J P, GREEN P J. AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets [J]. Mol Cell, 2004, 15(2): 173-183.
[62] KRZYSZTON M, ZAKRZEWSKA-PLACZEK M, KWASNIK A, et al. Defective XRN3-mediated transcription termination in Arabidopsis affects the expression of protein-coding genes [J]. Plant J, 2018, 93(6): 1017-1031.
[63] HUNT A G. mRNA 3' end formation in plants: Novel connections to growth, development and environmental responses [J]. Wiley Interdiscip Rev RNA, 2020, 11(3): e1575.
[64] QIN Y, LONG Y, ZHAI J. Genome-wide characterization of nascent RNA processing in plants [J]. Curr Opin Plant Biol, 2022, 69: 102294.
[65] HORNYIK C, TERZI L C, SIMPSON G G. The spen family protein FPA controls alternative cleavage and polyadenylation of RNA [J]. Dev Cell, 2010, 18(2): 203-213.
[66] SONMEZ C, BAURLE I, MAGUSIN A, et al. RNA 3' processing functions of Arabidopsis FCA and FPA limit intergenic transcription [J]. Proc Natl Acad Sci U S A, 2011, 108(20): 8508-8513.
[67] PARKER M T, KNOP K, ZACHARAKI V, et al. Widespread premature transcription termination of Arabidopsis thaliana NLR genes by the spen protein FPA [J]. Elife, 2021, 10: e65537.
[68] SIMPSON G G, DIJKWEL P P, QUESADA V, et al. FY is an RNA 3' end-processing factor that interacts with FCA to control the Arabidopsis floral transition [J]. Cell, 2003, 113(6): 777-787.
[69] MANZANO D, MARQUARDT S, JONES A M, et al. Altered interactions within FY/AtCPSF complexes required for Arabidopsis FCA-mediated chromatin silencing [J]. Proc Natl Acad Sci U S A, 2009, 106(21): 8772-8777.
[70] YU Z, LIN J, LI Q Q. Transcriptome Analyses of FY Mutants Reveal Its Role in mRNA Alternative Polyadenylation [J]. Plant Cell, 2019, 31(10): 2332-2352.
[71] LIU F, MARQUARDT S, LISTER C, et al. Targeted 3' processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing [J]. Science, 2010, 327(5961): 94-97.
[72] KRZYSZTON M, KUFEL J. Analysis of mRNA-derived siRNAs in mutants of mRNA maturation and surveillance pathways in Arabidopsis thaliana [J]. Sci Rep, 2022, 12(1): 1474.
[73] HOU Y, SUN J, WU B, et al. CPSF30-L-mediated recognition of mRNA m(6)A modification controls alternative polyadenylation of nitrate signaling-related gene transcripts in Arabidopsis [J]. Mol Plant, 2021, 14(4): 688-699.
[74] SONG P, YANG J, WANG C, et al. Arabidopsis N(6)-methyladenosine reader CPSF30-L recognizes FUE signals to control polyadenylation site choice in liquid-like nuclear bodies [J]. Mol Plant, 2021, 14(4): 571-587.
[75] THOMAS P E, WU X, LIU M, et al. Genome-wide control of polyadenylation site choice by CPSF30 in Arabidopsis [J]. Plant Cell, 2012, 24(11): 4376-4388.
[76] ZHANG Y, GU L, HOU Y, et al. Integrative genome-wide analysis reveals HLP1, a novel RNA-binding protein, regulates plant flowering by targeting alternative polyadenylation [J]. Cell Res, 2015, 25(7): 864-876.
[77] BENTLEY D L. Coupling mRNA processing with transcription in time and space [J]. Nat Rev Genet, 2014, 15(3): 163-175.
[78] BEYER A L, OSHEIM Y N. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts [J]. Genes Dev, 1988, 2(6): 754-765.
[79] RASMUSSEN E B, LIS J T. In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes [J]. Proc Natl Acad Sci U S A, 1993, 90(17): 7923-7927.
[80] PERALES R, BENTLEY D. "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions [J]. Mol Cell, 2009, 36(2): 178-191.
[81] EGLOFF S, DIENSTBIER M, MURPHY S. Updating the RNA polymerase CTD code: adding gene-specific layers [J]. Trends Genet, 2012, 28(7): 333-341.
[82] AEBI M, HORNIG H, PADGETT R A, et al. Sequence requirements for splicing of higher eukaryotic nuclear pre-mRNA [J]. Cell, 1986, 47(4): 555-565.
[83] DUJARDIN G, LAFAILLE C, PETRILLO E, et al. Transcriptional elongation and alternative splicing [J]. Biochim Biophys Acta, 2013, 1829(1): 134-140.
[84] ZHU D, MAO F, TIAN Y, et al. The Features and Regulation of Co-transcriptional Splicing in Arabidopsis [J]. Mol Plant, 2020, 13(2): 278-294.
[85] LI S, WANG Y, ZHAO Y, et al. Global Co-transcriptional Splicing in Arabidopsis and the Correlation with Splicing Regulation in Mature RNAs [J]. Mol Plant, 2020, 13(2): 266-277.
[86] CHOW L T, GELINAS R E, BROKER T R, et al. An amazing sequence arrangement at the 5' ends of adenovirus 2 messenger RNA [J]. Cell, 1977, 12(1): 1-8.
[87] BERGET S M, MOORE C, SHARP P A. Spliced segments at the 5' terminus of adenovirus 2 late mRNA [J]. Proc Natl Acad Sci U S A, 1977, 74(8): 3171-3175.
[88] WAN R, BAI R, ZHAN X, et al. How Is Precursor Messenger RNA Spliced by the Spliceosome? [J]. Annu Rev Biochem, 2020, 89: 333-358.
[89] YAN C, WAN R, SHI Y. Molecular Mechanisms of pre-mRNA Splicing through Structural Biology of the Spliceosome [J]. Cold Spring Harb Perspect Biol, 2019, 11(1).
[90] MOUNT S M, PETTERSSON I, HINTERBERGER M, et al. The U1 small nuclear RNA-protein complex selectively binds a 5' splice site in vitro [J]. Cell, 1983, 33(2): 509-518.
[91] MICHAUD S, REED R. A functional association between the 5' and 3' splice site is established in the earliest prespliceosome complex (E) in mammals [J]. Genes Dev, 1993, 7(6): 1008-1020.
[92] BERGLUND J A, CHUA K, ABOVICH N, et al. The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC [J]. Cell, 1997, 89(5): 781-787.
[93] ZORIO D A, BLUMENTHAL T. Both subunits of U2AF recognize the 3' splice site in Caenorhabditis elegans [J]. Nature, 1999, 402(6763): 835-838.
[94] SHEN H, ZHENG X, SHEN J, et al. Distinct activities of the DExD/H-box splicing factor hUAP56 facilitate stepwise assembly of the spliceosome [J]. Genes Dev, 2008, 22(13): 1796-1803.
[95] LIANG W W, CHENG S C. A novel mechanism for Prp5 function in prespliceosome formation and proofreading the branch site sequence [J]. Genes Dev, 2015, 29(1): 81-93.
[96] KELLER E B, NOON W A. Intron splicing: a conserved internal signal in introns of animal pre-mRNAs [J]. Proc Natl Acad Sci U S A, 1984, 81(23): 7417-7420.
[97] BOESLER C, RIGO N, ANOKHINA M M, et al. A spliceosome intermediate with loosely associated tri-snRNP accumulates in the absence of Prp28 ATPase activity [J]. Nat Commun, 2016, 7: 11997.
[98] BAI R, WAN R, YAN C, et al. Structures of the fully assembled Saccharomyces cerevisiae spliceosome before activation [J]. Science, 2018, 360(6396): 1423-1429.
[99] STALEY J P, GUTHRIE C. An RNA switch at the 5' splice site requires ATP and the DEAD box protein Prp28p [J]. Mol Cell, 1999, 3(1): 55-64.
[100] CHEN J Y, STANDS L, STALEY J P, et al. Specific alterations of U1-C protein or U1 small nuclear RNA can eliminate the requirement of Prp28p, an essential DEAD box splicing factor [J]. Mol Cell, 2001, 7(1): 227-232.
[101] TARN W Y, LEE K R, CHENG S C. Yeast precursor mRNA processing protein PRP19 associates with the spliceosome concomitant with or just after dissociation of U4 small nuclear RNA [J]. Proc Natl Acad Sci U S A, 1993, 90(22): 10821-10825.
[102] CHAN S P, CHENG S C. The Prp19-associated complex is required for specifying interactions of U5 and U6 with pre-mRNA during spliceosome activation [J]. J Biol Chem, 2005, 280(35): 31190-31199.
[103] YAN C, WAN R, BAI R, et al. Structure of a yeast activated spliceosome at 3.5 A resolution [J]. Science, 2016, 353(6302): 904-911.
[104] RAUHUT R, FABRIZIO P, DYBKOV O, et al. Molecular architecture of the Saccharomyces cerevisiae activated spliceosome [J]. Science, 2016, 353(6306): 1399-1405.
[105] LARDELLI R M, THOMPSON J X, YATES J R, 3RD, et al. Release of SF3 from the intron branchpoint activates the first step of pre-mRNA splicing [J]. RNA, 2010, 16(3): 516-528.
[106] WARKOCKI Z, ODENWALDER P, SCHMITZOVA J, et al. Reconstitution of both steps of Saccharomyces cerevisiae splicing with purified spliceosomal components [J]. Nat Struct Mol Biol, 2009, 16(12): 1237-1243.
[107] WAN R, BAI R, YAN C, et al. Structures of the Catalytically Activated Yeast Spliceosome Reveal the Mechanism of Branching [J]. Cell, 2019, 177(2): 339-351 e313.
[108] CHIU Y F, LIU Y C, CHIANG T W, et al. Cwc25 is a novel splicing factor required after Prp2 and Yju2 to facilitate the first catalytic reaction [J]. Mol Cell Biol, 2009, 29(21): 5671-5678.
[109] TSENG C K, LIU H L, CHENG S C. DEAH-box ATPase Prp16 has dual roles in remodeling of the spliceosome in catalytic steps [J]. RNA, 2011, 17(1): 145-154.
[110] OHRT T, ODENWALDER P, DANNENBERG J, et al. Molecular dissection of step 2 catalysis of yeast pre-mRNA splicing investigated in a purified system [J]. RNA, 2013, 19(7): 902-915.
[111] YAN C, WAN R, BAI R, et al. Structure of a yeast step II catalytically activated spliceosome [J]. Science, 2017, 355(6321): 149-155.
[112] JAMES S A, TURNER W, SCHWER B. How Slu7 and Prp18 cooperate in the second step of yeast pre-mRNA splicing [J]. RNA, 2002, 8(8): 1068-1077.
[113] BAI R, YAN C, WAN R, et al. Structure of the Post-catalytic Spliceosome from Saccharomyces cerevisiae [J]. Cell, 2017, 171(7): 1589-1598 e1588.
[114] LIU S, LI X, ZHANG L, et al. Structure of the yeast spliceosomal postcatalytic P complex [J]. Science, 2017, 358(6368): 1278-1283.
[115] WAGNER J D, JANKOWSKY E, COMPANY M, et al. The DEAH-box protein PRP22 is an ATPase that mediates ATP-dependent mRNA release from the spliceosome and unwinds RNA duplexes [J]. EMBO J, 1998, 17(10): 2926-2937.
[116] WAN R, YAN C, BAI R, et al. Structure of an Intron Lariat Spliceosome from Saccharomyces cerevisiae [J]. Cell, 2017, 171(1): 120-132 e112.
[117] TSAI R T, FU R H, YEH F L, et al. Spliceosome disassembly catalyzed by Prp43 and its associated components Ntr1 and Ntr2 [J]. Genes Dev, 2005, 19(24): 2991-3003.
[118] WAHL M C, WILL C L, LUHRMANN R. The spliceosome: design principles of a dynamic RNP machine [J]. Cell, 2009, 136(4): 701-718.
[119] COOKE C, HANS H, ALWINE J C. Utilization of splicing elements and polyadenylation signal elements in the coupling of polyadenylation and last-intron removal [J]. Mol Cell Biol, 1999, 19(7): 4971-4979.
[120] RIGO F, MARTINSON H G. Functional coupling of last-intron splicing and 3'-end processing to transcription in vitro: the poly(A) signal couples to splicing before committing to cleavage [J]. Mol Cell Biol, 2008, 28(2): 849-862.
[121] SO B R, DI C, CAI Z, et al. A Complex of U1 snRNP with Cleavage and Polyadenylation Factors Controls Telescripting, Regulating mRNA Transcription in Human Cells [J]. Mol Cell, 2019, 76(4): 590-599 e594.
[122] DENG Y, SHI J, RAN Y, et al. A potential mechanism underlying U1 snRNP inhibition of the cleavage step of mRNA 3' processing [J]. Biochem Biophys Res Commun, 2020, 530(1): 196-202.
[123] MARTINS S B, RINO J, CARVALHO T, et al. Spliceosome assembly is coupled to RNA polymerase II dynamics at the 3' end of human genes [J]. Nat Struct Mol Biol, 2011, 18(10): 1115-1123.
[124] REIMER K A, MIMOSO C A, ADELMAN K, et al. Co-transcriptional splicing regulates 3' end cleavage during mammalian erythropoiesis [J]. Mol Cell, 2021, 81(5): 998-1012 e1017.
[125] YANG C, STILLER J W. Evolutionary diversity and taxon-specific modifications of the RNA polymerase II C-terminal domain [J]. Proc Natl Acad Sci U S A, 2014, 111(16): 5920-5925.
[126] BURATOWSKI S. Progression through the RNA polymerase II CTD cycle [J]. Mol Cell, 2009, 36(4): 541-546.
[127] EICK D, GEYER M. The RNA polymerase II carboxy-terminal domain (CTD) code [J]. Chem Rev, 2013, 113(11): 8456-8490.
[128] ALLISON L A, WONG J K, FITZPATRICK V D, et al. The C-terminal domain of the largest subunit of RNA polymerase II of Saccharomyces cerevisiae, Drosophila melanogaster, and mammals: a conserved structure with an essential function [J]. Mol Cell Biol, 1988, 8(1): 321-329.
[129] JERONIMO C, BATAILLE A R, ROBERT F. The writers, readers, and functions of the RNA polymerase II C-terminal domain code [J]. Chem Rev, 2013, 113(11): 8491-8522.
[130] NOJIMA T, GOMES T, GROSSO A R F, et al. Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing [J]. Cell, 2015, 161(3): 526-540.
[131] NOJIMA T, REBELO K, GOMES T, et al. RNA Polymerase II Phosphorylated on CTD Serine 5 Interacts with the Spliceosome during Co-transcriptional Splicing [J]. Molecular Cell, 2018, 72(2): 369-379.e364.
[132] MORALES V, GIAMARCHI C, CHAILLEUX C, et al. Chromatin structure and dynamics: functional implications [J]. Biochimie, 2001, 83(11-12): 1029-1039.
[133] ROUTH A, SANDIN S, RHODES D. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure [J]. Proc Natl Acad Sci U S A, 2008, 105(26): 8872-8877.
[134] GRIGORYEV S A, ARYA G, CORRELL S, et al. Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions [J]. Proc Natl Acad Sci U S A, 2009, 106(32): 13317-13322.
[135] ESCOBAR T M, OKSUZ O, SALDANA-MEYER R, et al. Active and Repressed Chromatin Domains Exhibit Distinct Nucleosome Segregation during DNA Replication [J]. Cell, 2019, 179(4): 953-963 e911.
[136] MULLER M M, FIERZ B, BITTOVA L, et al. A two-state activation mechanism controls the histone methyltransferase Suv39h1 [J]. Nat Chem Biol, 2016, 12(3): 188-193.
[137] LAPRELL F, FINKL K, MULLER J. Propagation of Polycomb-repressed chromatin requires sequence-specific recruitment to DNA [J]. Science, 2017, 356(6333): 85-88.
[138] ESCOBAR T M, LOYOLA A, REINBERG D. Parental nucleosome segregation and the inheritance of cellular identity [J]. Nat Rev Genet, 2021, 22(6): 379-392.
[139] MARGUERON R, REINBERG D. Chromatin structure and the inheritance of epigenetic information [J]. Nat Rev Genet, 2010, 11(4): 285-296.
[140] CHEN P, LI W, LI G. Structures and Functions of Chromatin Fibers [J]. Annu Rev Biophys, 2021, 50: 95-116.
[141] HEO K, KIM H J, CHOI S H, et al. FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of H2AX and ADP-ribosylation of Spt16 [J]. Molecular Cell, 2008, 30(1): 86-97.
[142] ZILBERMAN D, COLEMAN-DERR D, BALLINGER T, et al. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks [J]. Nature, 2008, 456(7218): 125-129.
[143] MIZUGUCHI G, SHEN X T, LANDRY J, et al. ATP-Driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex [J]. Science, 2004, 303(5656): 343-348.
[144] YELAGANDULA R, STROUD H, HOLEC S, et al. The histone variant H2A.W defines heterochromatin and promotes chromatin condensation in Arabidopsis [J]. Cell, 2014, 158(1): 98-109.
[145] BOURGUET P, PICARD C L, YELAGANDULA R, et al. The histone variant H2A.W and linker histone H1 co-regulate heterochromatin accessibility and DNA methylation [J]. Nat Commun, 2021, 12(1): 2683.
[146] OKADA T, ENDO M, SINGH M B, et al. Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3 [J]. Plant J, 2005, 44(4): 557-568.
[147] BORG M, BERGER F. Chromatin remodelling during male gametophyte development [J]. Plant J, 2015, 83(1): 177-188.
[148] RAVI M, SHIBATA F, RAMAHI J S, et al. Meiosis-Specific Loading of the Centromere-Specific Histone CENH3 in Arabidopsis thaliana [J]. Plos Genetics, 2011, 7(6).
[149] FUKAGAWA T, EARNSHAW W C. The Centromere: Chromatin Foundation for the Kinetochore Machinery [J]. Developmental Cell, 2014, 30(5): 497-509.
[150] DONG A, LIU Z, ZHU Y, et al. Interacting proteins and differences in nuclear transport reveal specific functions for the NAP1 family proteins in plants [J]. Plant Physiol, 2005, 138(3): 1446-1456.
[151] ZHU Y, DONG A, MEYER D, et al. Arabidopsis NRP1 and NRP2 encode histone chaperones and are required for maintaining postembryonic root growth [J]. Plant Cell, 2006, 18(11): 2879-2892.
[152] LOLAS I B, HIMANEN K, GRONLUND J T, et al. The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2 [J]. Plant J, 2010, 61(4): 686-697.
[153] MARCH-DIAZ R, GARCIA-DOMINGUEZ M, LOZANO-JUSTE J, et al. Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis [J]. Plant J, 2008, 53(3): 475-487.
[154] WU J, YANG Y, WANG J, et al. Histone chaperones AtChz1A and AtChz1B are required for H2A.Z deposition and interact with the SWR1 chromatin-remodeling complex in Arabidopsis thaliana [J]. New Phytol, 2023, 239(1): 189-207.
[155] ZHANG C, CAO L, RONG L, et al. The chromatin-remodeling factor AtINO80 plays crucial roles in genome stability maintenance and in plant development [J]. Plant J, 2015, 82(4): 655-668.
[156] PROBST A V, DESVOYES B, GUTIERREZ C. Similar yet critically different: the distribution, dynamics and function of histone variants [J]. J Exp Bot, 2020, 71(17): 5191-5204.
[157] SCHONROCK N, EXNER V, PROBST A, et al. Functional genomic analysis of CAF-1 mutants in Arabidopsis thaliana [J]. J Biol Chem, 2006, 281(14): 9560-9568.
[158] NIE X, WANG H, LI J, et al. The HIRA complex that deposits the histone H3.3 is conserved in Arabidopsis and facilitates transcriptional dynamics [J]. Biology Open, 2014, 3(9): 794-802.
[159] DUC C, BENOIT M, LE GOFF S, et al. The histone chaperone complex HIR maintains nucleosome occupancy and counterbalances impaired histone deposition in CAF-1 complex mutants [J]. Plant J, 2015, 81(5): 707-722.
[160] DUC C, BENOIT M, DETOURNE G, et al. Arabidopsis ATRX Modulates H3.3 Occupancy and Fine-Tunes Gene Expression [J]. Plant Cell, 2017, 29(7): 1773-1793.
[161] ZHONG Z, WANG Y, WANG M, et al. Histone chaperone ASF1 mediates H3.3-H4 deposition in Arabidopsis [J]. Nat Commun, 2022, 13(1): 6970.
[162] LE GOFF S, KECELI B N, JERABKOVA H, et al. The H3 histone chaperone NASP(SIM3) escorts CenH3 in Arabidopsis [J]. Plant J, 2020, 101(1): 71-86.
[163] SHIBAHARA K, STILLMAN B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin [J]. Cell, 1999, 96(4): 575-585.
[164] MOGGS J G, GRANDI P, QUIVY J P, et al. A CAF-1-PCNA-mediated chromatin assembly pathway triggered by sensing DNA damage [J]. Molecular and Cellular Biology, 2000, 20(4): 1206-1218.
[165] RANJAN A, MIZUGUCHI G, FITZGERALD P C, et al. Nucleosome-free region dominates histone acetylation in targeting SWR1 to promoters for H2A.Z replacement [J]. Cell, 2013, 154(6): 1232-1245.
[166] YEN K Y, VINAYACHANDRAN V, PUGH B F. SWR-C and INO80 Chromatin Remodelers Recognize Nucleosome-free Regions Near+1 Nucleosomes [J]. Cell, 2013, 154(6): 1246-1256.
[167] BANASZYNSKI L A, WEN D C, DEWELL S, et al. Hira-Dependent Histone H3.3 Deposition Facilitates PRC2 Recruitment at Developmental Loci in ES Cells [J]. Cell, 2013, 155(1): 107-120.
[168] PCHELINTSEV N A, MCBRYAN T, RAI T S, et al. Placing the HIRA Histone Chaperone Complex in the Chromatin Landscape [J]. Cell Reports, 2013, 3(4): 1012-1019.
[169] NOURANI A, ROBERT F, WINSTON F. Evidence that Spt2/Sin1, an HMG-like factor, plays roles in transcription elongation, chromatin structure, and genome stability in Saccharomyces cerevisiae [J]. Molecular and Cellular Biology, 2006, 26(4): 1496-1509.
[170] VENKATESH S, WORKMAN J L. Histone exchange, chromatin structure and the regulation of transcription [J]. Nature Reviews Molecular Cell Biology, 2015, 16(3): 178-189.
[171] BOWMAN A, WARD R, WIECHENS N, et al. The Histone Chaperones Nap1 and Vps75 Bind Histones H3 and H4 in a Tetrameric Conformation [J]. Molecular Cell, 2011, 41(4): 398-408.
[172] TSUNAKA Y, FUJIWARA Y, OYAMA T, et al. Integrated molecular mechanism directing nucleosome reorganization by human FACT [J]. Genes & Development, 2016, 30(6): 673-686.
[173] DHAYALAN A, TAMAS R, BOCK I, et al. The ATRX-ADD domain binds to H3 tail peptides and reads the combined methylation state of K4 and K9 [J]. Hum Mol Genet, 2011, 20(11): 2195-2203.
[174] IWASE S, XIANG B, GHOSH S, et al. ATRX ADD domain links an atypical histone methylation recognition mechanism to human mental-retardation syndrome [J]. Nature Structural & Molecular Biology, 2011, 18(7): 769-776.
[175] DUNLEAVY E M, ROCHE D, TAGAMI H, et al. HJURP Is a Cell-Cycle-Dependent Maintenance and Deposition Factor of CENP-A at Centromeres [J]. Cell, 2009, 137(3): 485-497.
[176] FOLTZ D R, JANSEN L E T, BAILEY A O, et al. Centromere-Specific Assembly of CENP-A Nucleosomes Is Mediated by HJURP [J]. Cell, 2009, 137(3): 472-484.
[177] VON LINDERN M, FORNEROD M, VAN BAAL S, et al. The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA [J]. Mol Cell Biol, 1992, 12(4): 1687-1697.
[178] SMITH E A, KRUMPELBECK E F, JEGGA A G, et al. The nuclear DEK interactome supports multi-functionality [J]. Proteins, 2018, 86(1): 88-97.
[179] WALDMANN T, SCHOLTEN I, KAPPES F, et al. The DEK protein--an abundant and ubiquitous constituent of mammalian chromatin [J]. Gene, 2004, 343(1): 1-9.
[180] ZHANG H, YAN M, DENG R, et al. The silencing of DEK reduced disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 based on virus-induced gene silencing analysis in tomato [J]. Gene, 2020, 727: 144245.
[181] ARAVIND L, KOONIN E V. SAP - a putative DNA-binding motif involved in chromosomal organization [J]. Trends Biochem Sci, 2000, 25(3): 112-114.
[182] KIPP M, GOHRING F, OSTENDORP T, et al. SAF-Box, a conserved protein domain that specifically recognizes scaffold attachment region DNA [J]. Mol Cell Biol, 2000, 20(20): 7480-7489.
[183] KAPPES F, SCHOLTEN I, RICHTER N, et al. Functional domains of the ubiquitous chromatin protein DEK [J]. Mol Cell Biol, 2004, 24(13): 6000-6010.
[184] WALDMANN T, BAACK M, RICHTER N, et al. Structure-specific binding of the proto-oncogene protein DEK to DNA [J]. Nucleic Acids Res, 2003, 31(23): 7003-7010.
[185] MCGARVEY T, ROSONINA E, MCCRACKEN S, et al. The acute myeloid leukemia-associated protein, DEK, forms a splicing-dependent interaction with exon-product complexes [J]. J Cell Biol, 2000, 150(2): 309-320.
[186] SOARES L M, ZANIER K, MACKERETH C, et al. Intron removal requires proofreading of U2AF/3' splice site recognition by DEK [J]. Science, 2006, 312(5782): 1961-1965.
[187] GAMBLE M J, FISHER R P. SET and PARP1 remove DEK from chromatin to permit access by the transcription machinery [J]. Nat Struct Mol Biol, 2007, 14(6): 548-555.
[188] KAVANAUGH G M, WISE-DRAPER T M, MORREALE R J, et al. The human DEK oncogene regulates DNA damage response signaling and repair [J]. Nucleic Acids Res, 2011, 39(17): 7465-7476.
[189] SMITH E A, GOLE B, WILLIS N A, et al. DEK is required for homologous recombination repair of DNA breaks [J]. Sci Rep, 2017, 7: 44662.
[190] WANG J, SUN L, YANG M, et al. DEK depletion negatively regulates Rho/ROCK/MLC pathway in non-small cell lung cancer [J]. J Histochem Cytochem, 2013, 61(7): 510-521.
[191] SANDEN C, JARVSTRAT L, LENNARTSSON A, et al. The DEK oncoprotein binds to highly and ubiquitously expressed genes with a dual role in their transcriptional regulation [J]. Mol Cancer, 2014, 13: 215.
[192] WAIDMANN S, PETUTSCHNIG E, ROZHON W, et al. GSK3-mediated phosphorylation of DEK3 regulates chromatin accessibility and stress tolerance in Arabidopsis [J]. FEBS J, 2022, 289(2): 473-493.
[193] KUMAR S V, WIGGE P A. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis [J]. Cell, 2010, 140(1): 136-147.
[194] BRESTOVITSKY A, EZER D, WAIDMANN S, et al. DEK influences the trade-off between growth and arrest via H2A.Z-nucleosomes in Arabidopsis [J]. BioRxiv, 2019, 829226.
[195] UEDA M, SEKI M. Histone Modifications Form Epigenetic Regulatory Networks to Regulate Abiotic Stress Response [J]. Plant Physiol, 2020, 182(1): 15-26.
[196] LIU C, LU F, CUI X, et al. Histone methylation in higher plants [J]. Annu Rev Plant Biol, 2010, 61: 395-420.
[197] LAURIA M, ROSSI V. Epigenetic control of gene regulation in plants [J]. Biochim Biophys Acta, 2011, 1809(8): 369-378.
[198] ZHANG X, CLARENZ O, COKUS S, et al. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis [J]. PLoS Biol, 2007, 5(5): e129.
[199] ZHOU J, WANG X, HE K, et al. Genome-wide profiling of histone H3 lysine 9 acetylation and dimethylation in Arabidopsis reveals correlation between multiple histone marks and gene expression [J]. Plant Mol Biol, 2010, 72(6): 585-595.
[200] ZHANG X, BERNATAVICHUTE Y V, COKUS S, et al. Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana [J]. Genome Biol, 2009, 10(6): R62.
[201] LIU B, LIU Y H, WANG B H, et al. The transcription factor OsSUF4 interacts with SDG725 in promoting H3K36me3 establishment [J]. Nat Commun, 2019, 10(1): 2999.
[202] SHIM S, LEE H G, LEE H, et al. H3K36me2 is highly correlated with m(6) A modifications in plants [J]. J Integr Plant Biol, 2020, 62(10): 1455-1460.
[203] HU H, DU J. Structure and mechanism of histone methylation dynamics in Arabidopsis [J]. Curr Opin Plant Biol, 2022, 67: 102211.
[204] EXNER V, AICHINGER E, SHU H, et al. The chromodomain of LIKE HETEROCHROMATIN PROTEIN 1 is essential for H3K27me3 binding and function during Arabidopsis development [J]. PLoS One, 2009, 4(4): e5335.
[205] DE LA PAZ SANCHEZ M, GUTIERREZ C. Arabidopsis ORC1 is a PHD-containing H3K4me3 effector that regulates transcription [J]. Proc Natl Acad Sci U S A, 2009, 106(6): 2065-2070.
[206] LEE W Y, LEE D, CHUNG W I, et al. Arabidopsis ING and Alfin1-like protein families localize to the nucleus and bind to H3K4me3/2 via plant homeodomain fingers [J]. Plant J, 2009, 58(3): 511-524.
[207] MOLITOR A M, BU Z, YU Y, et al. Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes [J]. PLoS Genet, 2014, 10(1): e1004091.
[208] JIANG D, GU X, HE Y. Establishment of the winter-annual growth habit via FRIGIDA-mediated histone methylation at FLOWERING LOCUS C in Arabidopsis [J]. Plant Cell, 2009, 21(6): 1733-1746.
[209] YANG Z, QIAN S, SCHEID R N, et al. EBS is a bivalent histone reader that regulates floral phase transition in Arabidopsis [J]. Nat Genet, 2018, 50(9): 1247-1253.
[210] QIAN S, LV X, SCHEID R N, et al. Dual recognition of H3K4me3 and H3K27me3 by a plant histone reader SHL [J]. Nat Commun, 2018, 9(1): 2425.
[211] MYLNE J S, BARRETT L, TESSADORI F, et al. LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC [J]. Proc Natl Acad Sci U S A, 2006, 103(13): 5012-5017.
[212] BORG M, JIANG D, BERGER F. Histone variants take center stage in shaping the epigenome [J]. Curr Opin Plant Biol, 2021, 61: 101991.
[213] BERGAMIN E, SARVAN S, MALETTE J, et al. Molecular basis for the methylation specificity of ATXR5 for histone H3 [J]. Nucleic Acids Res, 2017, 45(11): 6375-6387.
[214] ZHENG B, CHEN X. Dynamics of histone H3 lysine 27 trimethylation in plant development [J]. Curr Opin Plant Biol, 2011, 14(2): 123-129.
[215] LI Z, FU X, WANG Y, et al. Polycomb-mediated gene silencing by the BAH-EMF1 complex in plants [J]. Nat Genet, 2018, 50(9): 1254-1261.
[216] GAO Z, LI Y, OU Y, et al. A pair of readers of bivalent chromatin mediate formation of Polycomb-based "memory of cold" in plants [J]. Mol Cell, 2023, 83(7): 1109-1124 e1104.
[217] WANG Z P, XING H L, DONG L, et al. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation [J]. Genome Biol, 2015, 16(1): 144.
[218] GE Z, BERGONCI T, ZHAO Y, et al. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling [J]. Science, 2017, 358(6370): 1596-1600.
[219] ZHANG Q, ZHAO F, WU Z, et al. A simple and robust method for isolating and analyzing chromatin-bound RNAs in Arabidopsis [J]. Plant Methods, 2022, 18(1): 135.
[220] ZHU D, WEN Y, YAO W, et al. Distinct chromatin signatures in the Arabidopsis male gametophyte [J]. Nat Genet, 2023, 55(4): 706-720.
[221] CHEN S, ZHOU Y, CHEN Y, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor [J]. Bioinformatics, 2018, 34(17): i884-i890.
[222] CHEN S, ZHOU Y, CHEN Y, et al. Gencore: an efficient tool to generate consensus reads for error suppressing and duplicate removing of NGS data [J]. BMC Bioinformatics, 2019, 20(Suppl 23): 606.
[223] RAMIREZ F, RYAN D P, GRUNING B, et al. deepTools2: a next generation web server for deep-sequencing data analysis [J]. Nucleic Acids Res, 2016, 44(W1): W160-165.
[224] BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data [J]. Bioinformatics, 2014, 30(15): 2114-2120.
[225] KIM D, PAGGI J M, PARK C, et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype [J]. Nat Biotechnol, 2019, 37(8): 907-915.
[226] LI H, HANDSAKER B, WYSOKER A, et al. The Sequence Alignment/Map format and SAMtools [J]. Bioinformatics, 2009, 25(16): 2078-2079.
[227] VERA ALVAREZ R, PONGOR L S, MARINO-RAMIREZ L, et al. TPMCalculator: one-step software to quantify mRNA abundance of genomic features [J]. Bioinformatics, 2019, 35(11): 1960-1962.
[228] DOBIN A, DAVIS C A, SCHLESINGER F, et al. STAR: ultrafast universal RNA-seq aligner [J]. Bioinformatics, 2013, 29(1): 15-21.
[229] LIAO Y, SMYTH G K, SHI W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features [J]. Bioinformatics, 2014, 30(7): 923-930.
[230] ROBINSON M D, MCCARTHY D J, SMYTH G K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data [J]. Bioinformatics, 2010, 26(1): 139-140.
[231] LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie 2 [J]. Nat Methods, 2012, 9(4): 357-359.
[232] RAMIREZ F, DUNDAR F, DIEHL S, et al. deepTools: a flexible platform for exploring deep-sequencing data [J]. Nucleic Acids Res, 2014, 42(Web Server issue): W187-191.
[233] GROSSO A R, DE ALMEIDA S F, BRAGA J, et al. Dynamic transitions in RNA polymerase II density profiles during transcription termination [J]. Genome Res, 2012, 22(8): 1447-1456.
[234] DAVIDSON L, MUNIZ L, WEST S. 3' end formation of pre-mRNA and phosphorylation of Ser2 on the RNA polymerase II CTD are reciprocally coupled in human cells [J]. Genes Dev, 2014, 28(4): 342-356.
[235] WU Z, IETSWAART R, LIU F, et al. Quantitative regulation of FLC via coordinated transcriptional initiation and elongation [J]. Proc Natl Acad Sci U S A, 2016, 113(1): 218-223.
[236] STASEVICH T J, HAYASHI-TAKANAKA Y, SATO Y, et al. Regulation of RNA polymerase II activation by histone acetylation in single living cells [J]. Nature, 2014, 516(7530): 272-275.
[237] EHRENSBERGER A H, KELLY G P, SVEJSTRUP J Q. Mechanistic interpretation of promoter-proximal peaks and RNAPII density maps [J]. Cell, 2013, 154(4): 713-715.
[238] KURIHARA Y, SCHMITZ R J, NERY J R, et al. Surveillance of 3' Noncoding Transcripts Requires FIERY1 and XRN3 in Arabidopsis [J]. G3 (Bethesda), 2012, 2(4): 487-498.
[239] CRISP P A, SMITH A B, GANGULY D R, et al. RNA Polymerase II Read-Through Promotes Expression of Neighboring Genes in SAL1-PAP-XRN Retrograde Signaling [J]. Plant Physiol, 2018, 178(4): 1614-1630.
[240] DUC C, SHERSTNEV A, COLE C, et al. Transcription termination and chimeric RNA formation controlled by Arabidopsis thaliana FPA [J]. PLoS Genet, 2013, 9(10): e1003867.
[241] EFFENBERGER K A, URABE V K, JURICA M S. Modulating splicing with small molecular inhibitors of the spliceosome [J]. Wiley Interdiscip Rev RNA, 2017, 8(2).
[242] DOLATA J, GUO Y, KOLOWERZO A, et al. NTR1 is required for transcription elongation checkpoints at alternative exons in Arabidopsis [J]. EMBO J, 2015, 34(4): 544-558.
[243] MUNIZ L, NICOLAS E, TROUCHE D. RNA polymerase II speed: a key player in controlling and adapting transcriptome composition [J]. EMBO J, 2021, 40(15): e105740.
[244] EITOKU M, SATO L, SENDA T, et al. Histone chaperones: 30 years from isolation to elucidation of the mechanisms of nucleosome assembly and disassembly [J]. Cell Mol Life Sci, 2008, 65(3): 414-444.
[245] QUEITSCH C, HONG S W, VIERLING E, et al. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis [J]. Plant Cell, 2000, 12(4): 479-492.
[246] HE Y. Chromatin regulation of flowering [J]. Trends Plant Sci, 2012, 17(9): 556-562.
[247] HELLIWELL C A, WOOD C C, ROBERTSON M, et al. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex [J]. Plant J, 2006, 46(2): 183-192.
[248] REDDY A S. Alternative splicing of pre-messenger RNAs in plants in the genomic era [J]. Annu Rev Plant Biol, 2007, 58: 267-294.
[249] MUFARREGE E F, GONZALEZ D H, CURI G C. Functional interconnections of Arabidopsis exon junction complex proteins and genes at multiple steps of gene expression [J]. J Exp Bot, 2011, 62(14): 5025-5036.
[250] REDDY A S, SHAD ALI G. Plant serine/arginine-rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses [J]. Wiley Interdiscip Rev RNA, 2011, 2(6): 875-889.
[251] SHEPARD P J, HERTEL K J. The SR protein family [J]. Genome Biol, 2009, 10(10): 242.
[252] KOROLEVA O A, CALDER G, PENDLE A F, et al. Dynamic behavior of Arabidopsis eIF4A-III, putative core protein of exon junction complex: fast relocation to nucleolus and splicing speckles under hypoxia [J]. Plant Cell, 2009, 21(5): 1592-1606.
[253] LE HIR H, IZAURRALDE E, MAQUAT L E, et al. The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions [J]. EMBO J, 2000, 19(24): 6860-6869.
[254] JIANG D, WANG Y, WANG Y, et al. Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb repressive complex 2 components [J]. PLoS One, 2008, 3(10): e3404.
[255] WANG Y, GU X, YUAN W, et al. Photoperiodic control of the floral transition through a distinct polycomb repressive complex [J]. Dev Cell, 2014, 28(6): 727-736.
[256] SONG Y H, SHIM J S, KINMONTH-SCHULTZ H A, et al. Photoperiodic flowering: time measurement mechanisms in leaves [J]. Annu Rev Plant Biol, 2015, 66: 441-464.
修改评论