[1] PEDERSEN C J. Cyclic polyethers and their complexes with metal salts[J]. Journal of the American Chemical Society, 1967, 89: 7017-7036.
[2] HUANG F, ANSLYN E V. Introduction: supramolecular chemistry[J]. Chemical Reviews, 2015, 115: 6999-7000.
[3] PEDERSEN C J. The discovery of crown ethers[J]. Science, 1988, 241: 536-540.
[4] CRINI G. Review: a history of cyclodextrins[J]. Chemical Reviews, 2014, 114: 10940-10975.
[5] GUTSCHE C D, DHAWAN B, NO K H, et al. Calixarenes. 4. the synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol[J]. Journal of the American Chemical Society, 1981, 103: 3782-3792.
[6] ASSAF K I, NAU W M. Cucurbiturils: from synthesis to high-affinity binding and catalysis[J]. Chemical Society Reviews, 2015, 44: 394-418.
[7] TANG R, YE Y, ZHU S, et al. Pillar
[6]arenes: from preparation, host-guest property to self-assembly and applications[J]. Chinese Chemical Letters, 2023, 34: 107734.
[8] MAKO T L, RACICOT J M, LEVINE M. Supramolecular luminescent sensors[J]. Chemical Reviews, 2019, 119: 322-477.
[9] SACHDEVA G, VAYA D, SRIVASTAVA C M, et al. Calix[n]arenes and its derivatives as organocatalysts[J]. Coordination Chemistry Reviews, 2022, 472: 214791.
[10] MENGER F M. Supramolecular chemistry and self-assembly[J]. Proceedings of the National Academy of Sciences, 2002, 99: 4818-4822.
[11] WEBBER M J, LANGER R. Drug delivery by supramolecular design[J]. Chemical Society Reviews, 2017, 46: 6600-6620.
[12] ERBAS-CAKMAK S, LEIGH D A, MCTERNAN C T, et al. Artificial molecular machines[J]. Chemical Reviews, 2015, 115: 10081-10206.
[13] WU J-R, YANG Y-W. Synthetic macrocycle-based nonporous adaptive crystals for molecular separation[J]. Angewandte Chemie International Edition, 2021, 60: 1690-1701.
[14] SHI Q, WANG X, LIU B, et al. Macrocyclic host molecules with aromatic building blocks: the state of the art and progress[J]. Chemical Communications, 2021, 57: 12379-12405.
[15] YANG L P, WANG X, YAO H, et al. Naphthotubes: macrocyclic hosts with a biomimetic cavity feature[J]. Account of Chemical Research, 2020, 53: 198-208.
[16] BARON R, MCCAMMON J A. Molecular recognition and ligand association[J]. Annual Review of Physical Chemistry, 2013, 64: 151-175.
[17] MEDZHITOV R. Recognition of microorganisms and activation of the immune response[J]. Nature, 2007, 449: 819-826.
[18] SERGANOV A, PATEL D J. Amino acid recognition and gene regulation by riboswitches[J]. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2009, 1789: 592-611.
[19] VOLLMER J. Autophagy links pattern recognition receptors to tumor cell apoptosis[J]. Molecular Therapy, 2009, 17: 1839-1841.
[20] PERSCH E, DUMELE O, DIEDERICH F. Molecular recognition in chemical and biological systems[J]. Angewandte Chemie International Edition, 2015, 54: 3290-3327.
[21] ZüRCHER M, DIEDERICH F. Structure-based drug design: exploring the proper filling of apolar pockets at enzyme active sites[J]. The Journal of Organic Chemistry, 2008, 73: 4345-4361.
[22] NITANAI Y, KIKUCHI T, KAKOI K, et al. Crystal structures of the complexes between vancomycin and cell-wall precursor analogs[J]. Journal of Molecular Biology, 2009, 385: 1422-1432.
[23] ELIAS M, WELLNER A, GOLDIN-AZULAY K, et al. The molecular basis of phosphate discrimination in arsenate-rich environments[J]. Nature, 2012, 491: 134-137.
[24] CREMER P S, FLOOD A H, GIBB B C, et al. Collaborative routes to clarifying the murky waters of aqueous supramolecular chemistry[J]. Nature Chemistry, 2018, 10: 8-16.
[25] CRAM D J. Preorganization—from solvents to spherands[J]. Angewandte Chemie International Edition in English, 1986, 25: 1039-1057.
[26] BISSON A P, LYNCH V M, MONAHAN M-K C, et al. Recognition of anions through NH-π Hydrogen Bonds in a Bicyclic Cyclophane—Selectivity for Nitrate[J]. Angewandte Chemie International Edition in English, 1997, 36: 2340-2342.
[27] KOSHLAND D E. Application of a theory of enzyme specificity to protein synthesis*[J]. Proceedings of the National Academy of Sciences, 1958, 44: 98-104.
[28] LU S, JANG H, MURATCIOGLU S, et al. Ras conformational ensembles, allostery, and signaling[J]. Chemical Reviews, 2016, 116: 6607-6665.
[29] MONOD J, WYMAN J, CHANGEUX J-P. On the nature of allosteric transitions: A plausible model[J]. Journal of Molecular Biology, 1965, 12: 88-118.
[30] BOEHR D D, NUSSINOV R, WRIGHT P E. The role of dynamic conformational ensembles in biomolecular recognition[J]. Nature Chemical Biology, 2009, 5: 789-796.
[31] AJAMI D, LIU L, REBEK JR J. Soft templates in encapsulation complexes[J]. Chemical Society Reviews, 2015, 44: 490-499.
[32] HONG C M, KAPHAN D M, BERGMAN R G, et al. Conformational selection as the mechanism of guest binding in a flexible supramolecular host[J]. Journal of the American Chemical Society, 2017, 139: 8013-8021.
[33] YANG L-P, ZHANG L, QUAN M, et al. A supramolecular system that strictly follows the binding mechanism of conformational selection[J]. Nature Communications, 2020, 11: 2740.
[34] CHEN C-F, HAN Y. Triptycene-derived macrocyclic arenes: From calixarenes to helicarenes[J]. Accounts of Chemical Research, 2018, 51: 2093-2106.
[35] LIU Z, NALLURI S K M, STODDART J F. Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes[J]. Chemical Society Reviews, 2017, 46: 2459-2478.
[36] HAN X-N, HAN Y, CHEN C-F. Recent advances in the synthesis and applications of macrocyclic arenes[J]. Chemical Society Reviews, 2023, 52: 3265-3298.
[37] JIE K, ZHOU Y, YAO Y, et al. Macrocyclic amphiphiles[J]. Chemical Society Reviews, 2015, 44: 3568-3587.
[38] OGOSHI T, YAMAGISHI T-A, NAKAMOTO Y. Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry[J]. Chemical Reviews, 2016, 116: 7937-8002.
[39] SONG N, KAKUTA T, YAMAGISHI T-A, et al. Molecular-scale porous materials based on pillar[n]arenes[J]. Chem, 2018, 4: 2029-2053.
[40] CRAGG P J, SHARMA K. Pillar
[5]arenes: fascinating cyclophanes with a bright future[J]. Chemical Society Reviews, 2012, 41: 597-607.
[41] GUTSCHE C D, MUTHUKRISHNAN R. Calixarenes. 1. analysis of the product mixtures produced by the base-catalyzed condensation of formaldehyde with para-substituted phenols[J]. The Journal of Organic Chemistry, 1978, 43: 4905-4906.
[42] SHINKAI S. Calixarenes - the third generation of supramolecules[J]. Tetrahedron, 1993, 49: 8933-8968.
[43] GUTSCHE C D, DHAWAN B, LEVINE J A, et al. Calixarenes 9: Conformational isomers of the ethers and esters of calix
[4]arenes[J]. Tetrahedron, 1983, 39: 409-426.
[44] GUTSCHE C D, BAUER L J. Calixarenes. 13. The conformational properties of calix
[4]arenes, calix
[6]arenes, calix
[8]arenes, and oxacalixarenes[J]. Journal of the American Chemical Society, 1985, 107: 6052-6059.
[45] ANDREETTI G D, UNGARO R, POCHINI A. Crystal and molecular structure of cyclo{quater[(5-t-butyl-2-hydroxy-1,3-phenylene)methylene]} toluene (1 : 1) clathrate[J]. Journal of the Chemical Society, Chemical Communications, 1979, 22: 1005-1007.
[46] ARENA G, CONTINO A, GULINO F G, et al. Complexation of small neutral organic molecules by water soluble calix
[4]arenes[J]. Tetrahedron Letters, 2000, 41: 9327-9330.
[47] IKI N, SUZUKI T, KOYAMA K, et al. Inclusion behavior of thiacalix
[4]arenetetrasulfonate toward water-miscible organic molecules studied by salting-out and X-ray crystallography[J]. Organic Letters, 2002, 4: 509-512.
[48] AROSIO D, FONTANELLA M, BALDINI L, et al. A synthetic divalent cholera toxin glycocalix
[4]arene ligand having higher affinity than natural GM1 oligosaccharide[J]. Journal of the American Chemical Society, 2005, 127: 3660-3661.
[49] CASNATI A, SANSONE F, UNGARO R. Peptido- and glycocalixarenes: playing with hydrogen bonds around hydrophobic cavities[J]. Accounts of Chemical Research, 2003, 36: 246-254.
[50] DUDIC M, COLOMBO A, SANSONE F, et al. A general synthesis of water soluble upper rim calix[n]arene guanidinium derivatives which bind to plasmid DNA[J]. Tetrahedron, 2004, 60: 11613-11618.
[51] PSYCHOGIOS N, REGNOUF-DE-VAINS J-B. A new water-soluble calix
[4]arene podand incorporating p-phosphonate groups and 2,2′-bipyridine units[J]. Tetrahedron Letters, 2002, 43: 7691-7693.
[52] ALMI M, ARDUINI A, CASNATI A, et al. Chloromethylation of calixarenes and synthesis of new water soluble macrocyclic hosts[J]. Tetrahedron, 1989, 45: 2177-2182.
[53] PAN Y-C, HU X-Y, GUO D-S. Biomedical applications of calixarenes: state of the art and perspectives[J]. Angewandte Chemie International Edition, 2021, 60: 2768-2794.
[54] PAN Y-C, BARBA-BON A, TIAN H-W, et al. An amphiphilic sulfonatocalix
[5]arene as an activator for membrane transport of lysine-rich peptides and proteins[J]. Angewandte Chemie International Edition, 2021, 60: 1875-1882.
[55] HOEGBERG A G S. Cyclooligomeric phenol-aldehyde condensation products. 2. Stereoselective synthesis and DNMR study of two 1,8,15,22-tetraphenyl
[14]metacyclophan-3,5,10,12,17,19,24,26-octols[J]. Journal of the American Chemical Society, 1980, 102: 6046-6050.
[56] YOUNG M C, DJERNES K E, PAYTON J L, et al. Resorcin
[4]arenes: a convenient scaffold to study supramolecular self-assembly and host:guest interactions for the undergraduate curriculum[J]. Journal of Chemical Education, 2019, 96: 781-785.
[57] TUNSTAD L M, TUCKER J A, DALCANALE E, et al. Host-guest complexation. 48. octol building blocks for cavitands and carcerands[J]. The Journal of Organic Chemistry, 1989, 54: 1305-1312.
[58] KUMARI H, ERRA L, WEBB A C, et al. Pyrogallol
[4]arenes as frustrated organic solids[J]. Journal of the American Chemical Society, 2013, 135: 16963-16967.
[59] YARIV-SHOUSHAN S, COHEN Y. Encapsulated or not encapsulated? ammonium salts can be encapsulated in hexameric capsules of pyrogallol
[4]arene[J]. Organic Letters, 2016, 18: 936-939.
[60] JOURNEY SARA N, TEPPANG K L, GARCIA C A, et al. Mechanically induced pyrogallol
[4]arene hexamer assembly in the solid state extends the scope of molecular encapsulation[J]. Chemical Science, 2017, 8: 7737-7745.
[61] GERKENSMEIER T, IWANEK W, AGENA C, et al. Self-assembly of 2,8,14,20-tetraisobutyl-5,11,17,23-tetrahydroxyresorc
[4]arene[J]. European Journal of Organic Chemistry, 1999, 9: 2257-2262.
[62] HOF F, CRAIG S L, NUCKOLLS C, et al. Molecular encapsulation[J]. Angewandte Chemie International Edition, 2002, 41: 1488-1508.
[63] AJAMI D, TOLSTOY P M, DUBE H, et al. Encapsulated carboxylic acid dimers with compressed hydrogen bonds[J]. Angewandte Chemie International Edition, 2011, 50: 528-531.
[64] ASADI A, AJAMI D, REBEK J, JR. Bent alkanes in a new thiourea-containing capsule[J]. Journal of the American Chemical Society, 2011, 133: 10682-10684.
[65] COLLET A. Cyclotriveratrylenes and cryptophanes[J]. Tetrahedron, 1987, 43: 5725-5759.
[66] SCOTT J L, MACFARLANE D R, RASTON C L, et al. Clean, efficient syntheses of cyclotriveratrylene (CTV) and tris-(-allyl)CTV in an ionic liquid[J]. Green Chemistry, 2000, 2: 123-126.
[67] STEED J W, JUNK P C, ATWOOD J L, et al. Ball and socket nanostructures: new supramolecular chemistry based on cyclotriveratrylene[J]. Journal of the American Chemical Society, 1994, 116: 10346-10347.
[68] ZAFRANI Y, COHEN Y. Calix
[4, 5]tetrolarenes: a new family of macrocycles[J]. Organic Letters, 2017, 19: 3719-3722.
[69] BAEYER A. Ueber ein condensationsproduct von pyrrol mit aceton[J]. Berichte der deutschen chemischen Gesellschaft, 1886, 19: 2184-2185.
[70] SESSLER J L, GROSS D E, CHO W-S, et al. Calix
[4]pyrrole as a chloride anion receptor: solvent and countercation effects[J]. Journal of the American Chemical Society, 2006, 128: 12281-12288.
[71] KIM D S, SESSLER J L. Calix
[4]pyrroles: versatile molecular containers with ion transport, recognition, and molecular switching functions[J]. Chemical Society Reviews, 2015, 44: 532-546.
[72] CHUN Y, JITEN SINGH N, HWANG I-C, et al. Calix[n]imidazolium as a new class of positively charged homo-calix compounds[J]. Nature Communications, 2013, 4: 1797.
[73] KIM I, KO K C, LEE W R, et al. Calix[n]triazoles and related conformational studies[J]. Organic Letters, 2017, 19: 5509-5512.
[74] YANG P, JIAN Y, ZHOU X, et al. Calix
[3]carbazole: one-step synthesis and host–guest binding[J]. The Journal of Organic Chemistry, 2016, 81: 2974-2980.
[75] LIU C, LI Z, YU H, et al. Host-guest co-assembly triggered turn-on and ratiometric sensing of berberine and its detoxicating[J]. Chinese Chemical Letters, 2021, 32: 1385-1389.
[76] ZHANG F, DU X S, ZHANG D W, et al. A green fluorescent nitrogen-doped aromatic belt containing a
[6]cycloparaphenylene skeleton[J]. Angewandte Chemie International Edition, 2021, 60: 15291-15295.
[77] OGOSHI T, KANAI S, FUJINAMI S, et al. para-Bridged symmetrical pillar
[5]arenes: their lewis Acid catalyzed synthesis and host–guest property[J]. Journal of the American Chemical Society, 2008, 130: 5022-5023.
[78] XUE M, YANG Y, CHI X, et al. Pillararenes, a new class of macrocycles for supramolecular chemistry[J]. Accounts of Chemical Research, 2012, 45: 1294-1308.
[79] OGOSHI T, AOKI T, KITAJIMA K, et al. Facile, rapid, and high-yield synthesis of pillar
[5]arene from commercially available reagents and its X-ray crystal structure[J]. The Journal of Organic Chemistry, 2011, 76: 328-331.
[80] CAO D, KOU Y, LIANG J, et al. A facile and efficient preparation of pillararenes and a pillarquinone[J]. Angewandte Chemie International Edition, 2009, 48: 9721-9723.
[81] XIA D, WANG P, JI X, et al. Functional supramolecular polymeric networks: the marriage of covalent polymers and macrocycle-based host–guest interactions[J]. Chemical Reviews, 2020, 120: 6070-6123.
[82] DONG S, ZHENG B, WANG F, et al. Supramolecular polymers constructed from macrocycle-based host–guest molecular recognition motifs[J]. Accounts of Chemical Research, 2014, 47: 1982-1994.
[83] CHEN L, SHENG X, LI G, et al. Mechanically interlocked polymers based on rotaxanes[J]. Chemical Society Reviews, 2022, 51: 7046-7065.
[84] TIAN Y, GUO Y, DONG X, et al. Synthesis of covalent organic pillars as molecular nanotubes with precise length, diameter and chirality[J]. Nature Synthesis, 2023, 2: 395-402.
[85] TAO H, CAO D, LIU L, et al. Synthesis and host-guest properties of pillar
[6]arenes[J]. Science China Chemistry, 2012, 55: 223-228.
[86] CHEN Y, TAO H Q, KOU Y H, et al. Synthesis of pillar
[7]arene[J]. Chinese Chemical Letters, 2012, 23: 509-511.
[87] HU X-B, CHEN Z, CHEN L, et al. Pillar[n]arenes (n = 8–10) with two cavities: synthesis, structures and complexing properties[J]. Chemical Communications, 2012, 48: 10999-11001.
[88] OGOSHI T, UESHIMA N, SAKAKIBARA F, et al. Conversion from pillar
[5]arene to pillar
[6–15]arenes by ring expansion and encapsulation of C60 by pillar[n]arenes with Nanosize Cavities[J]. Organic Letters, 2014, 16: 2896-2899.
[89] ZHANG Z, XIA B, HAN C, et al. Syntheses of copillar
[5]arenes by co-oligomerization of different monomers[J]. Organic Letters, 2010, 12: 3285-3287.
[90] STRUTT N L, FORGAN R S, SPRUELL J M, et al. Monofunctionalized pillar
[5]arene as a host for alkanediamines[J]. Journal of the American Chemical Society, 2011, 133: 5668-5671.
[91] BEHERA H, YANG L, HOU J-L. Pillar[n]arenes: chemistry and their material applications[J]. Chinese Journal of Chemistry, 2020, 38: 215-217.
[92] JIE K, ZHOU Y, LI E, et al. Nonporous adaptive crystals of pillararenes[J]. Accounts of Chemical Research, 2018, 51: 2064-2072.
[93] SI W, XIN P, LI Z-T, et al. Tubular unimolecular transmembrane channels: construction strategy and transport activities[J]. Accounts of Chemical Research, 2015, 48: 1612-1619.
[94] SCHNEEBELI S T, CHENG C, HARTLIEB K J, et al. Asararenes—a family of large aromatic macrocycles[J]. Chemistry – A European Journal, 2013, 19: 3860-3868.
[95] YANG W, SAMANTA K, WAN X, et al. Tiara
[5]arenes: synthesis, solid-state conformational studies, host–guest properties, and application as nonporous adaptive crystals[J]. Angewandte Chemie International Edition, 2020, 59: 3994-3999.
[96] GAO B, TAN L-L, SONG N, et al. A high-yield synthesis of [m]biphenyl-extended pillar[n]arenes for an efficient selective inclusion of toluene and m-xylene in the solid state[J]. Chemical Communications, 2016, 52: 5804-5807.
[97] WANG X, WU J-R, LIANG F, et al. In situ gold nanoparticle synthesis mediated by a water-soluble leaning pillar
[6]arene for self-assembly, detection, and catalysis[J]. Organic Letters, 2019, 21: 5215-5218.
[98] WU J-R, YANG Y-W. Geminiarene: molecular scale dual selectivity for chlorobenzene and chlorocyclohexane fractionation[J]. Journal of the American Chemical Society, 2019, 141: 12280-12287.
[99] SHINODA S, TADOKORO M, TSUKUBE H, et al. One-step synthesis of a quaternary tetrapyridinium macrocycle as a new specific receptor of tricarboxylate anions[J]. Chemical Communications, 1998, 34: 181-182.
[100]KOSIOREK S, ROSA B, BOINSKI T, et al. Pillar
[4]pyridinium: a square-shaped molecular box[J]. Chemical Communications, 2017, 53: 13320-13323.
[101]KOSIOREK S, BUTKIEWICZ H, DANYLYUK O, et al. Pillar
[6]pyridinium: a hexagonally shaped molecular box that selectively recognizes multicharged anionic species[J]. Chemical Communications, 2018, 54: 6316-6319.
[102]YU X, WU W, ZHOU D, et al. Bisindole
[3]arenes—indolyl macrocyclic arenes having significant iodine capture capacity[J]. CCS Chemistry, 2021, 4: 1806-1814.
[103]MAO L, HU Y, TU Q, et al. Highly efficient synthesis of non-planar macrocycles possessing intriguing self-assembling behaviors and ethene/ethyne capture properties[J]. Nature Communications, 2020, 11: 5806.
[104]LEI S-N, XIAO H, ZENG Y, et al. BowtieArene: a dual macrocycle exhibiting stimuli-responsive fuorescence[J]. Angewandte Chemie International Edition, 2020, 59: 10059-10065.
[105]ZHAO Y, XIAO H, TUNG C-H, et al. Adsorptive separation of cyclohexanol and cyclohexanone by nonporous adaptive crystals of RhombicArene[J]. Chemical Science, 2021, 12: 15528-15532.
[106]ZHANG Z-Y, LI C. Biphen[n]arenes: modular synthesis, customizable cavity sizes, and diverse skeletons[J]. Accounts of Chemical Research, 2022, 55: 916-929.
[107]CHEN H, FAN J, HU X, et al. Biphen[n]arenes[J]. Chemical Science, 2015, 6: 197-202.
[108]DAI L, DING Z-J, CUI L, et al. 2,2′-Biphen[n]arenes (n = 4–8): one-step, high-yield synthesis, and host–guest properties[J]. Chemical Communications, 2017, 53: 12096-12099.
[109]HUANG X, ZHANG X, QIAN T, et al. Synthesis of a water-soluble 2,2′-biphen
[4]arene and its efficient complexation and sensitive fluorescence enhancement towards palmatine and berberine[J]. Beilstein Journal of Organic Chemistry, 2018, 14: 2236-2241.
[110]LI B, WANG B, HUANG X, et al. Terphen[n]arenes and quaterphen[n]arenes (n=3–6): one-pot synthesis, self-assembly into supramolecular gels, and iodine capture[J]. Angewandte Chemie International Edition, 2019, 58: 3885-3889.
[111]XU K, ZHANG Z-Y, YU C, et al. A modular synthetic strategy for functional macrocycles[J]. Angewandte Chemie International Edition, 2020, 59: 7214-7218.
[112]LI S, LIU K, FENG X-C, et al. Synthesis and macrocyclization-induced emission enhancement of benzothiadiazole-based macrocycle[J]. Nature Communications, 2022, 13: 2850.
[113]XU K, LI B, YAO S, et al. Modular introduction of endo-binding sites in a macrocyclic cavity towards selective recognition of neutral azacycles[J]. Angewandte Chemie International Edition, 2022, 61: e202203016.
[114]KUMAR P, VENKATAKRISHNAN P. Coumarin
[4]arene: a fluorescent macrocycle[J]. Organic Letters, 2018, 20: 1295-1299.
[115]BOINSKI T, CIESZKOWSKI A, ROSA B, et al. Hybrid [n]arenes through thermodynamically driven macrocyclization reactions[J]. The Journal of Organic Chemistry, 2015, 80: 3488-3495.
[116]WANG J-Q, HAN Y, CHEN C-F. 3,6-Fluoren
[5]arenes: synthesis, structure and complexation with fullerenes C60 and C70[J]. Chemical Communications, 2021, 57: 3987-3990.
[117]DU X-S, ZHANG D-W, GUO Y, et al. Towards the highly efficient synthesis and selective methylation of C(sp3)-bridged
[6]cycloparaphenylenes from fluoren
[3]arenes[J]. Angewandte Chemie International Edition, 2021, 60: 13021-13028.
[118]ZENG F, CHENG L, ZHANG W-J, et al. Phenanthrene
[2]arene: synthesis and application as nonporous adaptive crystals in the separation of benzene from cyclohexane[J]. Organic Chemistry Frontiers, 2022, 9: 3307-3311.
[119]ZHANG G-W, LI P-F, MENG Z, et al. Triptycene-based chiral macrocyclic hosts for highly enantioselective recognition of chiral guests containing a trimethylamino group[J]. Angewandte Chemie International Edition, 2016, 55: 5304-5308.
[120]ZHANG G-W, HAN Y, HAN Y, et al. Synthesis of a water-soluble 2,6-helic
[6]arene derivative and its strong binding abilities towards quaternary phosphonium salts: an acid/base controlled switchable complexation process[J]. Chemical Communications, 2017, 53: 10433-10436.
[121]HAN X-N, LI P-F, HAN Y, et al. Enantiomeric water-soluble octopus
[3]arenes for highly enantioselective recognition of chiral ammonium salts in water[J]. Angewandte Chemie International Edition, 2022, 61: e202202527.
[122]GEORGHIOU P E, LI Z. Calix
[4]naphthalenes: cyclic tetramers of 1-naphthol and formaldehyde[J]. Tetrahedron Letters, 1993, 34: 2887-2890.
[123]GEORGHIOU P E, ASHRAM M, LI Z, et al. Syntheses of calix
[4]naphthalenes derived from 1-naphthol[J]. The Journal of Organic Chemistry, 1995, 60: 7284-7289.
[124]GEORGHIOU P E, ASHRAM M, CLASE H J, et al. Spirodienone and bis(spirodienone) derivatives of calix
[4]naphthalenes[J]. The Journal of Organic Chemistry, 1998, 63: 1819-1826.
[125]CHOWDHURY S, GEORGHIOU P E. Synthesis and properties of a new member of the calixnaphthalene family: A C2-symmetrical endo-calix
[4]naphthalene[J]. The Journal of Organic Chemistry, 2002, 67: 6808-6811.
[126]BOINSKI T, CIESZKOWSKI A, ROSA B, et al. Calixarenes with naphthalene units: calix
[4]naphthalenes and hybrid
[4]arenes[J]. New Journal of Chemistry, 2016, 40: 8892-8896.
[127]DELLA SALA P, DEL REGNO R, TALOTTA C, et al. Prismarenes: a new class of macrocyclic hosts obtained by templation in a thermodynamically controlled synthesis[J]. Journal of the American Chemical Society, 2020, 142: 1752-1756.
[128]DELLA SALA P, DEL REGNO R, DI MARINO L, et al. An intramolecularly self-templated synthesis of macrocycles: self-filling effects on the formation of prismarenes[J]. Chemical Science, 2021, 12: 9952-9961.
[129]DEL REGNO R, DELLA SALA P, PICARIELLO D, et al. per-Hydroxylated prism[n]arenes: supramolecularly assisted demethylation of methoxy-prism
[5]arene[J]. Organic Letters, 2021, 23: 8143-8146.
[130]DEL REGNO R, SANTONOCETA G D G, DELLA SALA P, et al. Molecular recognition in an aqueous medium using water-soluble prismarene hosts[J]. Organic Letters, 2022, 24: 2711-2715.
[131]ZHAI C, ISAACS L. New synthetic route to water-soluble prism
[5]arene hosts and their molecular recognition properties**[J]. Chemistry – A European Journal, 2022, 28: e202201743.
[132]LI J, ZHOU H-Y, HAN Y, et al. Saucer[n]arenes: synthesis, structure, complexation, and guest-induced circularly polarized luminescence property[J]. Angewandte Chemie International Edition, 2021, 60: 21927-21933.
[133]GU M-J, HAN X-N, GUO W-C, et al. Naphth
[4]arene: synthesis, conformations, and application in color-tunable supramolecular crystalline assemblies[J]. Angewandte Chemie International Edition, 2023, 62: e202305214.
[134]HAN X N, HAN Y, CHEN C F. Pagoda
[4]arene and i-pagoda
[4]arene[J]. Journal of the American Chemical Society, 2020, 142: 8262-8269.
[135]HAN X-N, HAN Y, CHEN C-F. Supramolecular tessellations by the exo-wall interactions of pagoda
[4]arene[J]. Nature Communications, 2021, 12: 6378.
[136]HAN X-N, ZONG Q-S, HAN Y, et al. Pagoda
[5]arene with large and rigid cavity for the formation of 1∶2 host–guest complexes and acid/base-responsive crystalline vapochromic properties[J]. CCS Chemistry, 2021, 4: 318-330.
[137]OGOSHI T, KITAJIMA K, AOKI T, et al. Effect of an intramolecular hydrogen bond belt and complexation with the guest on the rotation behavior of phenolic units in pillar
[5]arenes[J]. The Journal of Physical Chemistry Letters, 2010, 1: 817-821.
[138]TRöGER J. Ueber einige mittelst nascirenden formaldehydes entstehende basen[J]. Journal für Praktische Chemie, 1887, 36: 225-245.
[139]SPIELMAN M A. The structure of troeger's base[J]. Journal of the American Chemical Society, 1935, 57: 583-585.
[140]LARSON S B, WILCOX C S. Structure of 5,11-methano-2,8-dimethyl-5,6,11,12-tetrahydrodibenzo[b,f]
[1,5]diazocine (Troger's base) at 163 K[J]. Acta Crystallographica Section C, 1986, 42: 224-227.
[141]CHEN Y, CHENG M, HONG B, et al. N-centered chiral self-sorting and supramolecular helix of tröger's base-based dimeric macrocycles in crystalline state[J]. Frontiers in Chemistry, 2019, 7: 383.
[142]SHI C, NIU P, XIE W, et al. Tröger's base-based cuboid constructed by chiral self-discrimination[J]. Chemistry – A European Journal, 2023, 29: e202300410.
[143]CHEN Y, QIAN C, ZHAO Q, et al. Adjustable chiral self-sorting and self-discriminating behaviour between diamond-like Tröger's base-linked cryptands[J]. Chemical Communications, 2019, 55: 8072-8075.
[144]JIANG B, HAN Y, WU S, et al. Tröger’s base based triangular macrocycles with a nanoscale cavity for chirality-dependent packing in single crystals[J]. ACS Applied Nano Materials, 2022, 5: 14027-14030.
[145]VAN ALLAN J A, GIANNINI D D, WHITESIDES T H. Dibenzoxanthene derivatives and related products from .beta.-naphthol and aldehydes or acetals[J]. The Journal of Organic Chemistry, 1982, 47: 820-823.
[146]HE Z, YANG X, JIANG W. Synthesis, solid-state structures, and molecular recognition of chiral molecular tweezer and related structures based on a rigid bis-naphthalene cleft[J]. Organic Letters, 2015, 17: 3880-3883.
[147]SHORTHILL B J, AVETTA C T, GLASS T E. Shape-selective sensing of lipids in aqueous solution by a designed fluorescent molecular tube[J]. Journal of the American Chemical Society, 2004, 126: 12732-12733.
[148]MA Y-L, KE H, VALKONEN A, et al. Achieving strong positive cooperativity through activating weak non-covalent interactions[J]. Angewandte Chemie International Edition, 2018, 57: 709-713.
[149]CHAI H, YANG L-P, KE H, et al. Allosteric cooperativity in ternary complexes with low symmetry[J]. Chemical Communications, 2018, 54: 7677-7680.
[150]HUANG G, HE Z, CAI C-X, et al. Bis-urea macrocycles with a deep cavity[J]. Chemical Communications, 2015, 51: 15490-15493.
[151]HUANG G, VALKONEN A, RISSANEN K, et al. Endo-Functionalized molecular tubes: selective encapsulation of neutral molecules in non-polar media[J]. Chemical Communications, 2016, 52: 9078-9081.
[152]HUANG G-B, WANG S-H, KE H, et al. Selective recognition of highly hydrophilic molecules in water by endo-functionalized molecular tubes[J]. Journal of the American Chemical Society, 2016, 138: 14550-14553.
[153]WANG L-L, CHEN Z, LIU W-E, et al. Molecular recognition and chirality sensing of epoxides in water using endo-Functionalized molecular tubes[J]. Journal of the American Chemical Society, 2017, 139: 8436-8439.
[154]HUANG G-B, LIU W-E, VALKONEN A, et al. Selective recognition of aromatic hydrocarbons by endo-functionalized molecular tubes via C/N-H⋅⋅⋅π interactions[J]. Chinese Chemical Letters, 2018, 29: 91-94.
[155]CUI J-S, BA Q-K, KE H, et al. Directional shuttling of a stimuli-responsive cone-like macrocycle on a single-state symmetric dumbbell axle[J]. Angewandte Chemie International Edition, 2018, 57: 7809-7814.
[156]YAO H, KE H, ZHANG X, et al. Molecular recognition of hydrophilic molecules in water by combining the hydrophobic effect with hydrogen bonding[J]. Journal of the American Chemical Society, 2018, 140: 13466-13477.
[157]HUANG G B, WANG S H, KE H, et al. Selective recognition of highly hydrophilic molecules in water by endo-functionalized molecular tubes[J]. Journal of the American Chemical Society, 2016, 138: 14550-14553.
[158]YANG L-P, KE H, YAO H, et al. Effective and rapid removal of polar organic micropollutants from water by amide naphthotube-crosslinked polymers[J]. Angewandte Chemie International Edition, 2021, 60: 21404-21411.
[159]MA Y-L, SUN C, LI Z, et al. Biomimetic recognition-based bioorthogonal host–guest pairs for cell targeting and tissue imaging in living animals[J]. CCS Chemistry, 2021, 4: 1977-1989.
[160]KISHI N, LI Z, YOZA K, et al. An M2L4 molecular capsule with an anthracene shell: encapsulation of large guests up to 1 nm[J]. Journal of the American Chemical Society, 2011, 133: 11438-11441.
[161]YOSHIZAWA M, CATTI L. Bent anthracene dimers as versatile building blocks for supramolecular capsules[J]. Accounts of Chemical Research, 2019, 52: 2392-2404.
[162]HAGIWARA K, SEI Y, AKITA M, et al. A tubular macrocycle from covalently linked anthracenes and meta-phenylene spacers[J]. Chemical Communications, 2012, 48: 7678-7680.
[163]YAZAKI K, CATTI L, YOSHIZAWA M. Polyaromatic molecular tubes: from strategic synthesis to host functions[J]. Chemical Communications, 2018, 54: 3195-3206.
[164]HAGIWARA K, AKITA M, YOSHIZAWA M. An aqueous molecular tube with polyaromatic frameworks capable of binding fluorescent dyes[J]. Chemical Science, 2015, 6: 259-263.
[165]YAZAKI K, SEI Y, AKITA M, et al. A polyaromatic molecular tube that binds long hydrocarbons with high selectivity[J]. Nature Communications, 2014, 5: 5179.
[166]ZHOU H, PANG X-Y, WANG X, et al. Biomimetic recognition of quinones in water by an endo-functionalized cavity with anthracene sidewalls[J]. Angewandte Chemie International Edition, 2021, 60: 25981-25987.
[167]YAO H, WANG Y M, QUAN M, et al. Adsorptive separation of benzene, cyclohexene, and cyclohexane by amorphous nonporous amide naphthotube solids[J]. Angewandte Chemie International Edition, 2020, 59: 19945-19950.
[168]HUANG W-H, LIU S, ZAVALIJ P Y, et al. Nor-seco-cucurbit
[10]uril exhibits homotropic allosterism[J]. Journal of the American Chemical Society, 2006, 128: 14744-14745.
[169]YANG L P, ZHANG L, QUAN M, et al. A supramolecular system that strictly follows the binding mechanism of conformational selection[J]. Nature Communications, 2020, 11: 2740.
[170]CHENG X-J, LIANG L-L, CHEN K, et al. Twisted cucurbit
[14]uril[J]. Angewandte Chemie International Edition, 2013, 52: 7252-7255.
[171]WANG L L, QUAN M, YANG T L, et al. A green and wide-scope approach for chiroptical sensing of organic molecules through biomimetic recognition in water[J]. Angewandte Chemie International Edition, 2020, 59: 23817-23824.
[172]QUAN M, PANG X Y, JIANG W. Circular dichroism based chirality sensing with supramolecular host-guest chemistry[J]. Angewandte Chemie International Edition, 2022, 61: e202201258.
[173]YAWER M A, HAVEL V, SINDELAR V. A bambusuril macrocycle that binds anions in water with high affinity and selectivity[J]. Angewandte Chemie International Edition, 2015, 54: 276-279.
[174]CHENG L, ZHANG H, DONG Y, et al. Tetraphenylethene-based tetracationic cyclophanes and their selective recognition for amino acids and adenosine derivatives in water[J]. Chemical Communications, 2019, 55: 2372-2375.
[175]LIU W, TAN Y, JONES L O, et al. PCage: fluorescent molecular temples for binding sugars in water[J]. Journal of the American Chemical Society, 2021, 143: 15688-15700.
[176]TROMANS R A, CARTER T S, CHABANNE L, et al. A biomimetic receptor for glucose[J]. Nature Chemistry, 2019, 11: 52-56.
[177]LIU Y, ZHAO W, CHEN C-H, et al. Chloride capture using a C–H hydrogen-bonding cage[J]. Science, 2019, 365: 159-161.
[178]SARKAR S, BALLESTER P, SPEKTOR M, et al. Micromolar affinity and higher: synthetic host–guest complexes with high stabilities[J]. Angewandte Chemie International Edition, 2023, 62: e202214705.
[179]CAO L, ŠEKUTOR M, ZAVALIJ P Y, et al. Cucurbit
[7]uril⋅guest pair with an attomolar dissociation constant[J]. Angewandte Chemie International Edition, 2014, 53: 988-993.
[180]RANDO C, VáZQUEZ J, SOKOLOV J, et al. Highly efficient and selective recognition of dicyanoaurate(I) by a bambusuril macrocycle in water[J]. Angewandte Chemie International Edition, 2022, 61: e202210184.
[181]CHEN Y, WU G, CHEN L, et al. Selective recognition of chloride anion in water[J]. Organic Letters, 2020, 22: 4878-4882.
[182]GARNETT G A E, DAZE K D, PEñA DIAZ J A, et al. Attraction by repulsion: compounds with like charges undergo self-assembly in water that improves in high salt and persists in real biological fluids[J]. Chemical Communications, 2016, 52: 2768-2771.
[183]BIEDERMANN F, NAU W M, SCHNEIDER H-J. The hydrophobic effect revisited—studies with supramolecular complexes imply high-energy water as a noncovalent driving force[J]. Angewandte Chemie International Edition, 2014, 53: 11158-11171.
修改评论