[1] PRESCHER J A, CONTAG C H. Guided by the light: visualizing biomolecular processes in living animals with bioluminescence[J]. Current Opinion in Chemical Biology, 2010, 14(1): 80‒89.
[2] LAU E S, OAKLEY T H. Multi-level convergence of complex traits and the evolution of bioluminescence[J]. Biological Reviews, 2021, 96(2): 673‒691.
[3] KIM D Y. Potential application of spintronic light-emitting diode to binocular vision for three-dimensional display technology[J]. Journal of the Korean Physical Society, 2006, 49: 505‒508.
[4] LIN S, TANG Y, KANG W, et al. Photo-triggered full-color circularly polarized luminescence based on photonic capsules for multilevel information encryption[J]. Nature Communications, 2023, 14: 3005.
[5] TAKAISHI K, MAEDA C, EMA T. Circularly polarized luminescence in molecular recognition systems: recent achievements[J]. Chirality, 2023, 35(2): 92‒103.
[6] LOVE A C, PRESCHER J A. Seeing (and using) the light: recent developments in bioluminescence technology[J]. Cell Chemical Biology, 2020, 27(8): 904‒920.
[7] VACHER M, GALVAN I F, DING B W, et al. Chemi- and bioluminescence of cyclic peroxides[J]. Chemical Reviews, 2018, 118(15): 6927‒6974.
[8] MCCAPRA F. Chemical mechanisms in bioluminescence[J]. Accounts of Chemical Research, 1976, 9(6): 201‒208.
[9] KOPECKY K R, MUMFORD C. Luminescence in the thermal decomposition of 3,3,4-trimethyl-1,2-dioxetane[J]. Canadian Journal of Chemistry, 1969, 47(4): 709‒711.
[10] ADAM W, LIU J C. Cyclic peroxides. XVI. α-peroxy lactone. synthesis and chemiluminescence[J]. Journal of the American Chemical Society, 1972, 94(8): 2894‒2895.
[11] CISCATO L F M L, Augusto F A, WEISS D, et al. The chemiluminescent peroxyoxalate system: state of the art almost 50 years from its discovery[J]. Arkivoc, 2012, 2012(3): 391‒430.
[12] MATSUMOTO M. Advanced chemistry of dioxetane-based chemiluminescent substrates originating from bioluminescence[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2004, 5(1): 27‒53.
[13] WIERINGA J H, STRATING J, WYNBERG H, et al. Adamantylidene-adamantane peroxide, a stable 1,2-dioxetane[J]. Tetrahedron Letters, 1972, 13(2): 169‒172.
[14] SCHAAP A P, HANDLEY R S, GIRI B P. Chemical and enzymatic triggering of 1,2-dioxetanes. 1: aryl esterase-catalyzed chemiluminescence from a naphthyl acetate-substituted dioxetane[J]. Tetrahedron Letters, 1987, 28(9): 935‒938.
[15] SCHAAP A P, CHEN T S, HANDLEY R S, et al. Chemical and enzymatic triggering of 1,2-dioxetanes. 2: fluoride-induced chemiluminescence from tert-butyldimethylsilyloxy-substituted dioxetanes[J]. Tetrahedron Letters, 1987, 28(11): 1155‒1158.
[16] SCHAAP A P, SANDISON M D, HANDLEY R S. Chemical and enzymatic triggering of 1,2-dioxetanes. 3: alkaline phosphatase-catalyzed chemilumines-cence from an aryl phosphate-substituted dioxetane[J]. Tetrahedron Letters, 1987, 28(11): 1159‒1162.
[17] KOO J Y, SCHUSTER G B. Chemiluminescence of diphenoyl peroxide. Chemically initiated electron exchange luminescence. A new general mechanism for chemical production of electronically excited states[J]. Journal of the American Chemical Society, 1978, 100(14): 4496‒4503.
[18] BASTOS E L, DA SILVA S M, BAADER W J. Solvent cage effects: basis of a general mechanism for efficient chemiluminescence[J]. The Journal of Organic Chemistry, 2013, 78(9): 4432‒4439.
[19] ADAM W, BRONSTEIN I, TROFIMOV A V, et al. Solvent-cage effect (viscosity dependence) as a diagnostic probe for the mechanism of the intramolecular chemically initiated electron-exchange luminescence (CIEEL) triggered from a spiroadamantyl-substituted dioxetane[J]. Journal of the American Chemical Society, 1999, 121(5): 958‒961.
[20] ADAM W. The chemistry of peroxides[M]. New York: Wiley, 1983: 829‒920.
[21] ADAM W, REINHARDT D, SAHA-MÖLLER C R. From the firefly biolumines-cence to the dioxetane-based (AMPPD) chemiluminescence immunoassay: a retroanalysis[J]. The Analyst, 1996, 121(11): 1527‒1531.
[22] ADAM W, TROFIMOV A V. The effect of meta versus para substitution on the efficiency of chemiexcitation in the chemically triggered electron-transfer-initiated decomposition of spiroadamantyl dioxetanes[J]. The Journal of Organic Chemistry, 2000, 65(20): 6474‒6478.
[23] EDWARDS B, SPARKS A, VOYTA J C, et al. Unusual luminescent properties of odd- and even-substituted naphthyl-derivatized dioxetanes[J]. Journal of Bioluminescence and Chemiluminescence, 1990, 5(1): 1‒4.
[24] MATSUMOTO M, HIROSHIMA T, CHIBA S, et al. Synthesis of 3-ethoxy-4,4-diisopropyl-1,2-dioxetanes bearing a benzo(b)furan-2-yl or a benzo(b)thiophen-2-yl group: CIEEL-active dioxetanes emitting red light[J]. Luminescence, 1999, 14(6): 345‒348.
[25] HOSHIYA N, FUKUDA N, MAEDA H, et al. Synthesis and fluoride-induced chemiluminescent decomposition of bicyclic dioxetanes substituted with a 2-hydroxynaphthyl group[J]. Tetrahedron, 2006, 62(24): 5808‒5820.
[26] BRONSTEIN I, EDWARDS B, VOYTA J C. 1,2-Dioxetanes: novel chemiluminescent enzyme substrates. Applications to immunoassays [J]. Journal of Bioluminescence and Chemiluminescence, 1989, 4(1): 99‒111.
[27] BRONSTEIN I, EDWARDS B, SPARKS A. Improved chemiluminescent 1,2-dioxetanes: WO9426726-A1[P/OL], 1994. https://europepmc.org/article/PAT-/WO9426726.
[28] BRONSTEIN I, EDWARDS B, VOYTA J C. Improved enhancement of chemiluminescent assays: WO9421821A1[P/OL]. 1994/03/15. https://europe-pmc.org/article/PAT/WO9421821.
[29] GNAIM S, SHABAT D. Chemiluminescence molecular probe with intrinsic auto-inductive amplification: incorporation of chemiexcitation in a quinone-methide elimination[J]. Chemical Communications, 2018, 54(21): 2655‒2658.
[30] RICHARD J A, JEAN L, ROMIEU A, et al. Chemiluminescent probe for the in vitro detection of protease activity[J]. Organic Letters, 2007, 9(23): 4853‒4855.
[31] HANANYA N, ELDAR BOOCK A, BAUER C R, et al. Remarkable enhancement of chemiluminescent signal by dioxetane-fluorophore conjugates: turn-on chemiluminescence probes with color modulation for sensing and imaging[J]. Journal of the American Chemical Society, 2016, 138(40): 13438‒13446.
[32] HANANYA N, SHABAT D. Recent advances and challenges in luminescent imaging: bright outlook for chemiluminescence of dioxetanes in water[J]. ACS Central Science, 2019, 5(6): 949‒959.
[33] GREEN O, EILON T, HANANYA N, et al. Opening a gateway for chemilumines-cence cell imaging: distinctive methodology for design of bright chemilumines-cent dioxetane probes[J]. ACS Central Science, 2017, 3(4): 349‒358.
[34] GREEN O, GNAIM S, BLAU R, et al. Near-infrared dioxetane luminophores with direct chemiluminescence emission mode[J]. Journal of the American Chemical Society, 2017, 139(37): 13243‒13248.
[35] HANANYA N, REID J P, GREEN O, et al. Rapid chemiexcitation of phenoxy-dioxetane luminophores yields ultrasensitive chemiluminescence assays[J]. Chemical Science, 2019, 10(5): 1380‒1385.
[36] CHEN Y, SPIERING A J, KARTHIKEYAN S, et al. Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain[J]. Nature Chemistry, 2012, 4(7): 559‒562.
[37] WU M, GUO Z, HE W, et al. Empowering self-reporting polymer blends with orthogonal optical properties responsive in a broader force range[J]. Chemical Science, 2020, 12(4): 1245‒1250.
[38] 高玉祺. 基于萤火虫荧光素及1,2-二氧杂环丁烷的小分子发光探针研究[D]. 济南:山东大学,2018:1‒42.
[39] 孙英爱. 基于金刚烷基-1,2-二氧杂环丁烷结构的化学发光次氯酸探针的设计、合成及活性评价[D]. 济南:山东大学,2020:22‒27.
[40] 巩媛媛. 1,2-二氧杂环丁烷类化学发光探针的构建及性能优化[D]. 遵义:遵义医科大学,2022:12‒39.
[41] YANG B, CHEN Y, SHI J. Reactive oxygen species (ROS)-based nanomedicine[J]. Chemical Reviews, 2019, 119(8): 4881‒4985.
[42] HANANYA N, GREEN O, BLAU R, et al. A highly efficient chemiluminescence probe for the detection of singlet oxygen in living cells[J]. Angewandte Chemie International Edition, 2017, 56(39): 11793‒11796.
[43] YANG M, ZHANG J, SHABAT D, et al. Near-infrared chemiluminescent probe for real-time monitoring singlet oxygen in cells and mice model[J]. ACS Sensors, 2020, 5(10): 3158‒3164.
[44] YE S, HANANYA N, GREEN O, et al. A highly selective and sensitive chemiluminescent probe for real-time monitoring of hydrogen peroxide in cells and animals[J]. Angewandte Chemie International Edition, 2020, 59(34): 14326‒14330.
[45] BRUEMMER K J, GREEN O, SU T A, et al. Chemiluminescent probes for activity-based sensing of formaldehyde released from folate degradation in living mice[J]. Angewandte Chemie International Edition, 2018, 57(25): 7508‒7512.
[46] AN W, RYAN L S, REEVES A G, et al. A chemiluminescent probe for HNO quantification and real-time monitoring in living cells[J]. Angewandte Chemie International Edition, 2019, 58(5): 1361‒1365.
[47] CAO J, AN W, REEVES A G, et al. A chemiluminescent probe for cellular peroxynitrite using a self-immolative oxidative decarbonylation reaction[J]. Chemical Science, 2018, 9(9): 2552‒2558.
[48] CHEN C, GAO H, OU H, et al. Amplification of activated near-infrared afterglow luminescence by introducing twisted molecular geometry for understanding neutrophil-involved diseases[J]. Journal of the American Chemical Society, 2022, 144(8): 3429‒3441.
[49] CAO J, LOPEZ R, THACKER J M, et al. Chemiluminescent probes for imaging H2S in living animals[J]. Chemical Science, 2015, 6(3): 1979‒1985.
[50] SUN J, HU Z, ZHANG S, et al. A novel chemiluminescent probe based on 1,2-dioxetane scaffold for imaging cysteine in living mice[J]. ACS Sensors, 2019, 4(1): 87‒92.
[51] GAO Y, LIN Y, LIU T, et al. A specific and selective chemiluminescent probe for Pd2+ detection[J]. Chinese Chemical Letters, 2019, 30(1): 63‒66.
[52] KAGALWALA H N, GERBERICH J, SMITH C J, et al. Chemiluminescent 1,2-dioxetane Iridium complexes for near-infrared oxygen sensing[J]. Angewandte Chemie International Edition, 2022, 61(12): e202115704.
[53] 江龙,王开杰,孔晴,等. 基于金刚烷-二氧杂环丁烷化学发光探针的研究进展[J]. 化工学报, 2021, 72(01): 229‒246.
[54] SCOTT J I, GUTKIN S, GREEN O, et al. A functional chemiluminescent probe for in vivo imaging of natural killer cell activity against tumours[J]. Angewandte Chemie International Edition, 2021, 60(11): 5699‒5703.
[55] DAS S, IHSSEN J, WICK L, et al. Chemiluminescent carbapenem-based molecular probe for detection of carbapenemase activity in live bacteria[J]. Chemistry - A European Journal, 2020, 26(16): 3647‒3652.
[56] SON S, WON M, GREEN O, et al. Chemiluminescent probe for the in vitro and in vivo imaging of cancers over-expressing NQO1[J]. Angewandte Chemie International Edition, 2019, 58(6): 1739‒1743.
[57] GNAIM S, SCOMPARIN A, DAS S, et al. Direct real-time monitoring of prodrug activation by chemiluminescence[J]. Angewandte Chemie International Edition, 2018, 57(29): 9033‒9037.
[58] ROTH-KONFORTI M, GREEN O, HUPFELD M, et al. Ultrasensitive detection of salmonella and listeria monocytogenes by small-molecule chemiluminescence probes[J]. Angewandte Chemie International Edition, 2019, 58(30): 10361‒10367.
[59] ROTH-KONFORTI M E, BAUER C R, SHABAT D. Unprecedented sensitivity in a probe for monitoring cathepsin B: chemiluminescence microscopy cell-imaging of a natively expressed enzyme[J]. Angewandte Chemie International Edition, 2017, 56(49): 15633‒15638.
[60] CHANDROSS E A. A new chemiluminescent system[J]. Tetrahedron Letters, 1963, 4(12): 761‒765.
[61] RAUHUT M M, BOLLYKY L J, ROBERTS B G, et al. Chemiluminescence from reactions of electronegatively substituted aryl oxalates with hydrogen peroxide and fluorescent compounds[J]. Journal of the American Chemical Society, 1967, 89(25): 6515‒6522.
[62] GERBIG D, SCHREINER P R. Preparation and spectroscopic identification of the cyclic CO2 dimer 1,2-dioxetanedione[J]. Journal of the American Chemical Society, 2023, 145(41): 22341–22346.
[63] CORDES H F, RICHTER H P, HELLER C A. Mass spectrometric evidence for the existence of 1,2-dioxetanedione (carbon dioxide dimer). Chemiluminescent intermediate[J]. Journal of the American Chemical Society, 2002, 91(25): 7209‒7209.
[64] BOS R, BARNETT N W, DYSON G A, et al. Studies on the mechanism of the peroxyoxalate chemiluminescence reaction[J]. Analytica Chimica Acta, 2004, 502(2): 141‒147.
[65] DA SILVA S M, LANG A P, DOS SANTOS A P F, et al. Cyclic peroxidic carbon dioxide dimer fuels peroxyoxalate chemiluminescence[J]. The Journal of Organic Chemistry, 2021, 86(17): 11434‒11441.
[66] SCHUSTER G B. Chemiluminescence of organic peroxides. Conversion of ground-state reactants to excited-state products by the chemically initiated electron-exchange luminescence mechanism[J]. Accounts of Chemical Research, 1979, 12(10): 366‒373.
[67] SCHMIDT S P, SCHUSTER G B. Chemiluminescence of dimethyldioxetanone. Unimolecular generation of excited singlet and triplet acetone. Chemically initiated electron-exchange luminescence, the primary light generating reaction[J]. Journal of the American Chemical Society, 1980, 102(1): 306‒314.
[68] ZUO M, QIAN W, LI T, et al. Full-color tunable fluorescent and chemiluminescent supramolecular nanoparticles for anti-counterfeiting inks[J]. ACS Applied Materials & Interfaces, 2018, 10(45): 39214‒39221.
[69] YANG Y, WANG S, LU L, et al. NIR-II chemiluminescence molecular sensor for in vivo high-contrast inflammation imaging[J]. Angewandte Chemie International Edition, 2020, 59(42): 18380‒18385.
[70] DELAFRESNAYE L, BLOESSER F R, Kockler K B, et al. All eyes on visible-light peroxyoxalate chemiluminescence read-out systems[J]. Chemistry - A European Journal, 2020, 26(1): 114‒127.
[71] 冯玉蓉,徐帅,宦双燕,等. 化学发光探针构建及应用进展[J]. 南通大学学报(自然科学版), 2022, 21(1): 1‒13.
[72] EGHLIMI A, JUBAER H, SURMIAK A, et al. Developing a safe and versatile chemiluminescence demonstration for studying reaction kinetics[J]. Journal of Chemical Education, 2019, 96(3): 522‒527.
[73] MOHAMMADI S S, VAEZI Z, Shojaedin-Givi B, et al. Chemiluminescent liposomes as a theranostic carrier for detection of tumor cells under oxidative stress[J]. Analytica Chimica Acta, 2019, 1059: 113‒123.
[74] ROMANYUK A V, GROZDOVA I D, EZHOV A A, et al. Peroxyoxalate chemiluminescent reaction as a tool for elimination of tumour cells under oxidative stress[J]. Scientific Reports, 2017, 7(1): 3410.
[75] MAO D, WU W, JI S, et al. Chemiluminescence-guided cancer therapy using a chemiexcited photosensitizer[J]. Chem, 2017, 3(6): 991‒1007.
[76] ERMOSHKIN A A, NECKERS D C, FEDOROV A V. Photopolymerization without light. Polymerization of acrylates using oxalate esters and hydrogen peroxide[J]. Macromolecules, 2006, 39(17): 5669‒5674.
[77] WATUTHANTHRIGE N D A, ALLEGREZZA M L, Dolan M T, et al. In-situ chemiluminescence-driven reversible addition-fragmentation chain-transfer photopolymerization[J]. Angewandte Chemie International Edition, 2019, 58(34): 11826‒11829.
[78] KOCKLER K B, FRISCH H, BARNER-KOWOLLIK C. Making and breaking chemical bonds by chemiluminescence[J]. Macromolecular Rapid Communications, 2018, 39(21): e1800516.
[79] KHAN P, IDREES D, MOXLEY M A, et al. Luminol-based chemiluminescent signals: clinical and non-clinical application and future uses[J]. Applied Biochemistry and Biotechnology, 2014, 173(2): 333‒355.
[80] MARQUETTE C A, BLUM L J. Applications of the luminol chemiluminescent reaction in analytical chemistry[J]. Analytical and Bioanalytical Chemistry, 2006, 385(3): 546‒554.
[81] WHITEHEAD T P, THORPE G H G, CARTER T J N, et al. Enhanced luminescence procedure for sensitive determination of peroxidase-labelled conjugates in immunoassay[J]. Nature, 1983, 305(5930): 158‒159.
[82] 袁传军. 奇妙的化学发光:鲁米诺检测血迹[J]. 化学教育(中英文), 2021, 42(10): 7‒10.
[83] GIUSSANI A, FARAHANI P, MARTINEZ-MUNOZ D, et al. Molecular basis of the chemiluminescence mechanism of luminol[J]. Chemistry - A European Journal, 2019, 25(20): 5202‒5213.
[84] ZOMER B, COLLE L, JEDYNSKA A, et al. Chemiluminescent reductive acridinium triggering (CRAT)-mechanism and applications[J]. Analytical and Bioanalytical Chemistry, 2011, 401(9): 2945‒2954.
[85] NAKAZONO M, OSHIKAWA Y, NAKAMURA M, et al. Strongly chemiluminescent acridinium esters under neutral conditions: synthesis, properties, determination, and theoretical study[J]. The Journal of Organic Chemistry, 2017, 82(5): 2450‒2461.
[86] ADCOCK J L, BARNETT N W, BARROW C J, et al. Advances in the use of acidic potassium permanganate as a chemiluminescence reagent: a review[J]. Analytica Chimica Acta, 2014, 807: 9‒28.
[87] GERARDI R D, BARNETT N W, LEWIS S W. Analytical applications of tris(2,2 -bipyridyl)Ruthenium(III) as a chemiluminescent reagent[J]. Analytica Chimica Acta, 1999, 378: 1‒41.
[88] GONG Z L, ZHU X, ZHOU Z, et al. Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications[J]. Science China Chemistry, 2021, 64(12): 2060‒2104.
[89] MA J L, DI BARI L, ZINNA F. Quantifying the overall efficiency of circularly polarized emitters[J]. Chemistry - A European Journal, 2021, 27(9): 2920‒2934.
[90] ARRICO L, PENG Q, ZHAO C H. Circularly polarized luminescence switching in small organic molecules[J]. Chemistry - A European Journal, 2019, 25(68): 15441‒15454.
[91] 张花红,杨倩莹,刁子轩,等. 基于过渡金属配合物圆偏振磷光材料研究进展[J]. 海南师范大学学报(自然科学版), 2020, 33(4): 391‒402.
[92] MA S, AHN J, MOON J. Chiral perovskites for next-generation photonics: from chirality transfer to chiroptical activity[J]. Advanced Materials, 2021, 33(47): e2005760.
[93] YANG S, ZHANG S, Hu F, et al. Circularly polarized luminescence polymers: from design to applications[J]. Coordination Chemistry Reviews, 2023, 485, 215116.
[94] ZHAO T, HAN J, DUAN P, et al. New perspectives to trigger and modulate circularly polarized luminescence of complex and aggregated systems: energy transfer, photon upconversion, charge transfer, and organic radical[J]. Accounts of Chemical Research, 2020, 53(7): 1279‒1292.
[95] HAN J, GUO S, LU H, et al. Recent progress on circularly polarized luminescent materials for organic optoelectronic devices[J]. Advanced Optical Materials, 2018, 6(17): 1800538.
[96] DO K, MULLER F C, MULLER G. A promising change in the selection of the circular polarization excitation used in the measurement of Eu(III) circularly polarized luminescence[J]. The Journal of Physical Chemistry A, 2008, 112(30): 6789‒6793.
[97] DOISTAU B, JIMÉNEZ J R, PIGUET C. Beyond chiral organic (p-block) chromophores for circularly polarized luminescence: the success of d-block and f-block chiral complexes[J]. Frontiers in Chemistry, 2020, 8: 555.
[98] MUKTHAR N F M, SCHLEY N D, UNG G. Strong circularly polarized luminescence at 1550 nm from enantiopure molecular Erbium complexes[J]. Journal of the American Chemical Society, 2022, 144(14): 6148‒6153.
[99] ZINNA F, GIOVANELLA U, DI BARI L. Highly circularly polarized electroluminescence from a chiral Europium complex[J]. Advanced Materials, 2015, 27(10): 1791‒1795.
[100] EMEIS C A, OOSTERHOFF L J. Emission of circularly-polarised radiation by optically-active compounds[J]. Chemical Physics Letters, 1967, 1(4): 129‒132.
[101] 王晨雪,寇峻宁,孙春义. 联萘基手性发光材料的圆偏振发光[J]. 分子科学学报, 2022, 38(3): 189‒202
[102] CHEN N, YAN B. Recent theoretical and experimental progress in circularly polarized luminescence of small organic molecules[J]. Molecules, 2018, 23(12): 3376.
[103] SANG Y, HAN J, ZHAO T, et al. Circularly polarized luminescence in nanoassemblies: generation, amplification, and application[J]. Advanced Materials, 2020, 32(41): e1900110.
[104] CARR R, EVANS N H, PARKER D. Lanthanide complexes as chiral probes exploiting circularly polarized luminescence[J]. Chemical Society Reviews, 2012, 41(23): 7673‒7686.
[105] STASZAK K, WIESZCZYCKA K, MARTURANO V, et al. Lanthanides complexes-chiral sensing of biomolecules[J]. Coordination Chemistry Reviews, 2019, 397: 76‒90.
[106] HASSAN Z, SPULING E, KNOLL D M, et al. Regioselective functionalization of
[2.2]paracyclophanes: recent synthetic progress and perspectives[J]. Angewandte Chemie International Edition, 2020, 59(6): 2156‒2170.
[107] REICH H J, CRAM D J. Transannular directive influences in electrophilic substitution of
[2.2]paracyclophane[J]. Journal of the American Chemical Society, 1968, 90(5): 1365‒1367.
[108] TENG J M, ZHANG D W, CHEN C F. Recent progress in circularly polarized luminescence of
[2.2]paracyclophane derivatives[J]. ChemPhotoChem, 2022, 6(3): e202100228.
[109] MORISAKI Y, INOSHITA K, CHUJO Y. Planar-chiral through-space conjugated oligomers: synthesis and characterization of chiroptical properties[J]. Chemistry - A European Journal, 2014, 20(27): 8386‒8390.
[110] TANAKA K, INOUE R, MORISAKI Y. Optically active cyclic oligomers based on planar chiral
[2.2]paracyclophane[J]. Chemistry - An Asian Journal, 2022, 17(2): e202101267.
[111] ISHIOKA S, HASEGAWA M, HARA N, et al. Chiroptical properties of oligophenylenes anchoring with stereogenic
[2.2]paracyclophane[J]. Chemistry Letters, 2019, 48(7): 640‒643.
[112] HASEGAWA M, ISHIDA Y, SASAKI H, et al. Helical oligophenylene linked with
[2.2]paracyclophane: stereogenic -conjugated dye for highly emissive chiroptical properties[J]. Chemistry - A European Journal, 2021, 27(65): 16225‒16231.
[113] HARA N, SHIZUMA M, HARADA T, et al. Inter- and intramolecular excimer circularly polarised luminescence of planar chiral paracyclophane-pyrene luminophores[J]. RSC Advances, 2020, 10(19): 11335‒11338.
[114] LIANG X, LIU T T, YAN Z P, et al. Organic room-temperature phosphorescence with strong circularly polarized luminescence based on paracyclophanes[J]. Angewandte Chemie International Edition, 2019, 58(48): 17220‒17225.
[115] ZHANG M Y, LIANG X, NI D N, et al. 2-(Dimesitylboryl)phenyl-substituted
[2.2]paracyclophanes featuring intense and sign-invertible circularly polarized luminescence[J]. Organic Letters, 2021, 23(1): 2‒7.
[116] ZHANG D W, TENG J M, WANG Y F, et al. D-*-A type planar chiral TADF materials for efficient circularly polarized electroluminescence[J]. Materials Horizons, 2021, 8(12): 3417‒3423.
[117] MORISAKI Y, GON M, SASAMORI T, et al. Planar chiral tetrasubstituted
[2.2]paracyclophane: optical resolution and functionalization[J]. Journal of the American Chemical Society, 2014, 136(9): 3350‒3353.
[118] GON M, MORISAKI Y, CHUJO Y. Optically active cyclic compounds based on planar chiral
[2.2]paracyclophane: extension of the conjugated systems and chiroptical properties[J]. Journal of Materials Chemistry C, 2015, 3(3): 521‒529.
[119] GON M, MORISAKI Y, CHUJO Y. Highly emissive optically active conjugated dimers consisting of a planar chiral
[2.2]paracyclophane showing circularly polarized luminescence[J]. European Journal of Organic Chemistry, 2015, 2015(35): 7756‒7762.
[120] MORISAKI Y, SAWADA R, GON M, et al. New types of planar chiral
[2.2]paracyclophanes and construction of one-handed double helices[J]. Chemistry - An Asian Journal, 2016, 11(18): 2524‒2527.
[121] GON M, KOZUKA H, MORISAKI Y, et al. Optically active cyclic compounds based on planar chiral
[2.2]paracyclophane with naphthalene units[J]. Asian Journal of Organic Chemistry, 2016, 5(3): 353‒359.
[122] MIKI N, INOUE R, MORISAKI Y. Synthesis and chiroptical properties of one-handed helical oligo-o-phenylene-ethynylenes using planar chiral
[2.2]paracyclophane[J]. Bulletin of the Chemical Society of Japan, 2022, 95(1): 110‒115.
[123] GON M, MORISAKI Y, CHUJO Y. Optically active phenylethene dimers based on planar chiral tetrasubstituted
[2.2]paracyclophane[J]. Chemistry - A European Journal, 2017, 23(26): 6323‒6329.
[124] GON M, MORISAKI Y, SAWADA R, et al. Synthesis of optically active, X-shaped, conjugated compounds and dendrimers based on planar chiral
[2.2]paracyclophane, leading to highly emissive circularly polarized luminescence[J]. Chemistry - A European Journal, 2016, 22(7): 2291‒2298.
[125] GON M, MORISAKI Y, CHUJO Y. A Silver(I)-induced higher-ordered structure based on planar chiral tetrasubstituted
[2.2]paracyclophane[J]. Chemical Communications, 2017, 53(59): 8304‒8307.
[126] DELCOURT M L, REYNAUD C, TURCAUD S, et al. 3D Coumarin systems based on
[2.2]paracyclophane: synthesis, spectroscopic characterization, and chiroptical properties[J]. The Journal of Organic Chemistry, 2019, 84(2): 888‒899.
[127] CHEN C H, ZHENG W H. Planar chiral B-N heteroarenes based on
[2.2]paracyclophane as circularly polarized luminescence emitters[J]. Organic Letters, 2021, 23(14): 5554‒5558.
[128] TSUCHIYA M, MAEDA H, INOUE R, et al. Construction of helical structures with planar chiral
[2.2]paracyclophane: fusing helical and planar chiralities[J]. Chemical Communications, 2021, 57(73): 9256‒9259.
[129] BRUICE P Y. Organic chemistry sixth edition[M] // Chapter 1: electronic structure and bonding acids and bases. Prentice hall, 2011, 33.
[130] CHINCHILLA R, NÁJERA C. The Sonogashira reaction: a booming methodology in synthetic organic chemistry[J]. Chemical Reviews, 2007, 107(3): 874‒922.
[131] LONG N J, WILLIAMS C K. Metal alkynyl σ complexes: synthesis and materials[J]. Angewandte Chemie International Edition, 2003, 42: 2586–2617.
[132] CIFUENTES M P, HUMPHREY M G. Alkynyl compounds and nonlinear optics[J]. Journal of Organometallic Chemistry, 2004, 689: 3968–3981.
[133] PUJADAS M, RODRÍGUEZ L. Luminescent phosphine Gold(I) alkynyl complexes. Highlights from 2010 to 2018[J]. Coordination Chemistry Reviews, 2020, 408: 213179.
[134] 张洲洋, 孔翔飞, 戴胜平, 等. 含炔基类盘状液晶分子的研究进展[J]. 影像科学与光化学, 2017, 35(6): 868‒883.
[135] MATSUMURA K, INOUE R, MORISAKI Y. Optically active A-shaped cyclic molecules based on planar chiral
[2.2]paracyclophanes emitting bright circularly polarized luminescence with high anisotropy factors[J]. Advanced Functional Materials, 2023, 2310566.
[136] FAN J L, HU M M, ZHAN P, et al. Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing[J]. Chemical Society Reviews, 2013, 42(1), 29–43.
[137] WAN C W, BURGHART A, CHEN J, et al. Anthracene–BODIPY cassettes: syntheses and energy transfer[J]. Chemistry - A European Journal, 2003, 9(18), 4430–4441.
[138] LOUDET A, BANDICHHOR R, WU L, et al. Functionalized BF2 chelated azadipyrromethene dyes[J]. Tetrahedron, 2008, 64(17), 3642–3654.
[139] JOSE J, UENO Y, CASTRO J C, et al. Energy transfer dyads based on Nile Red[J]. Tetrahedron Letters, 2009, 50(47), 6442–6445.
[140] HAN J, JOSE J, MEI E, et al. Chemiluminescent energy-transfer cassettes based on fluorescein and nile red[J]. Angewandte Chemie International Edition, 2007, 46(10): 1684‒1687.
[141] YAM V W W, WONG K M C. Luminescent molecular rods – transition-metal alkynyl complexes[J]. Topics in Current Chemistry, 2005, 257: 1–32.
[142] LIMA J C, RODRIGUEZ L. Applications of Gold(I) alkynyl systems: a growing field to explore[J]. Chemical Society Reviews, 2011, 40(11): 5442‒5456.
[143] HAQUE A, XU L L, AL-BALUSHI R A, et al. Cyclometallated tridentate Platinum(II) arylacetylide complexes: old wine in new bottles[J]. Chemical Society Reviews, 2019, 48(23): 5529–5618.
[144] MAGANTI T, VENKATESAN K. The search for efficient true blue and deep blue emitters: an overview of platinum carbene acetylide complexes[J]. ChemPlusChem, 2022, 87(5): e202200014.
[145] DALMAU D, URRIOLABEITIA E P. Luminescence and palladium: the odd couple[J]. Molecules, 2023, 28(6), 2663.
[146] HAQUE A, AL-BALUSHI R A, AL-BALUSHI I J, et al. Rise of conjugated poly-ynes and poly(metalla-ynes): from design through synthesis to structure−property relationships and applications[J]. Chemical Reviews, 2018, 118(18), 8474−8597.
[147] MIRZADEH N, PRIVÉR S H, BLAKE A J, et al. Innovative molecular design strategies in materials science following the aurophilicity concept[J]. Chemical Reviews, 2010, 120(15): 7551−7591.
[148] FRISCH G W T, SCHLEGEL H B, SCUSERIA G E, et al. Gaussian 16, Revision B01[S]. Gaussian Inc Wallingford CT, 2016.
[149] ZHANG D W, LI M, CHEN C F. Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes[J]. Chemical Society Reviews, 2020, 49(5): 1331‒1343.
[150] ZHANG Y P, ZHENG Y X. Frontiers in chiral phosphorescent complexes for circularly polarized electroluminescence[J]. Dalton Transactions, 2022, 51(26): 9966‒9970.
[151] ZHENG H, LI W, LI W, et al. Uncovering the circular polarization potential of chiral photonic cellulose films for photonic applications[J]. Advanced Materials, 2018, 30(13): e1705948.
[152] DAI Y, CHEN J, ZHAO C, et al. Biomolecule-based circularly polarized luminescent materials: construction, progress, and applications[J]. Angewandte Chemie International Edition, 2022, 61(47): e202211822.
[153] MORGENROTH M, SCHOLZ M, GUY L, et al. Spatiotemporal mapping of efficient chiral induction by helicene-type additives in copolymer thin films[J]. Angewandte Chemie International Edition, 2022, 61(31): e202203075.
[154] OKAYASU Y, WAKABAYASHI K, YUASA J. Anion-driven circularly polarized luminescence inversion of unsymmetrical Europium(III) complexes for target identifiable sensing[J]. Inorganic Chemistry, 2022, 61(38): 15108‒15115.
[155] ZINNA F, DI BARI L. Emerging field of chiral Ln(III) complexes for OLEDs[M] // MARTÍN-RAMOS P, RAMOS SILVA M, Lanthanide-based multifunctional materials. Elsevier, 2018: 171‒194.
[156] ZINNA F, VOCI S, ARRICO L, et al. Circularly polarized electrochemiluminescence from a chiral bispyrene organic macrocycle[J]. Angewandte Chemie International Edition, 2019, 58(21): 6952‒6956.
[157] WYNBERG H, MEIJER E W, HUMMELEN J C, et al. Circular polarization observed in bioluminescence[J]. Nature, 1980, 286: 641‒642.
[158] WYNBERG H, NUMAN H, DEKKERS H P J M. The detection of optical activity in chemiluminescence[J]. Journal of the American Chemical Society, 1977, 99(11): 3870‒3871.
[159] HANS WYNBERG H N. Synthesis and spectral data of a stable, optically active 1,2-dioxetane[J]. Journal of the American Chemical Society, 1977, 99(2): 603‒605.
[160] FRANCISCUS W A M, MIESEN A P P W, STEFAN C. J. et al. Synthesis of optically pure 3-(1n*)-(1S,6R)-bicyclo
[4.4.0]decane-3,8-dione, a molecule which is chiral in the excited state only[J]. Journal of the American Chemical Society, 1994, 116(12): 5129‒5133.
[161] MATSUMOTO M, HAMAOKA K, TAKASHIMA Y, et al. Chemiluminescence in molecular recognition: base-induced decomposition of optically active dioxetanes bearing a bisnaphthol moiety with a complex of optically active crown ether-potassium tert-butoxide[J]. Chemical Communications, 2005, 41(6): 808‒810.
[162] MATSUMOTO M, MAEDA H, HOSHIYA N, et al. Chemiluminescence in anisotropic microenvironment: splitting of chemiluminescence efficiency for charge-transfer-induced decomposition of optically active bicyclic dioxetanes bearing a 2-hydroxy-1,1'-binaphthyl-4-yl moiety under chiral recognition[J]. Tetrahedron Letters, 2007, 48(3): 491‒496.
[163] KAWASHIMA H, WATANABE N, IJUIN H K, et al. Magnesium methoxide-induced chemiluminescent decomposition of bicyclic dioxetanes bearing a 2'-alkoxy-2-hydroxy-1,1'-binaphthyl-7-yl moiety[J]. Luminescence, 2013, 28(5): 696‒704.
[164] WIERINGA J H, STRATING J, WYNBERG H. Adamantylideneadamantane peroxide, a stable 1,2-dioxetane [J]. Tetrahedron Letters, 1972, 13(2): 169‒172.
[165] BLOESSER F R, CAVALLI F, WALDEN S L, et al. Chemiluminescent read-out of para-fluoro-thiol reaction events[J]. Chemical Communications, 2020, 56(95): 14996‒14999.
[166] TROFIMOV A V, MIELKE K, VASIĽEV R F, et al. Chemically initiated electron exchange luminescence of silyloxyaryl-substituted spiroadamantyl dioxetanes: kinetics and excited state yields[J]. Photochemistry and Photobiology, 1996, 63(4): 463‒467.
[167] KONING H, SENDEN K. Determination of the order of a reaction and calculation of the initial rate by absorption spectroscopy[J]. Recueil des Travaux Chimiques des Pays-Bas, 2010, 81(12): 1024‒1030.
[168] DHBAIBI K, FAVEREAU L, SREBRO-HOOPER M, et al. Exciton coupling in diketopyrrolopyrrole-helicene derivatives leads to red and near-infrared circularly polarized luminescence[J]. Chemical Science, 2018, 9(3): 735‒742.
[169] MORI T. Chiroptical properties of symmetric double, triple, and multiple helicenes[J]. Chemical Reviews, 2021, 121(4): 2373‒2412.
[170] OLIVEIRA M A D, BARTOLONI F H, AUGUSTO F A, et al. Revision of singlet quantum yields in the catalyzed decomposition of cyclic peroxides[J]. The Journal of Organic Chemistry, 2012, 77(23): 10537‒10544.
[171] AUGUSTO F A, DE SOUZA G A, DE SOUZA J S P, et al. Efficiency of electron transfer initiated chemiluminescence[J]. Photochemistry and Photobiology, 2013, 89(6): 1299‒1317.
[172] SOUZA S P, KHALID M, AUGUSTO F A, et al. Peroxyoxalate chemiluminescence efficiency in polar medium is moderately enhanced by solvent viscosity[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 321: 143‒150.
[173] LEE Y D, LIM C K, SINGH A, et al. Dye/peroxalate aggregated nanoparticles with enhanced and tunable chemiluminescence for biomedical imaging of hydrogen peroxide[J]. ACS Nano, 2012, 6(8): 6759‒6766.
[174] TAHIROVIC A, COPRA A, OMANOVIC-MIKLICANIN E, et al. A chemiluminescence sensor for the determination of hydrogen peroxide[J]. Talanta, 2007, 72(4): 1378‒1385.
[175] KUNTZLEMAN T S, ROHRER K, SCHULTZ E. The chemistry of lightsticks: demonstrations to illustrate chemical processes[J]. Journal of Chemical Education, 2012, 89(7): 910‒916.
[176] SHEN H, SUN F, ZHU X, et al. Rational design of NIR-II AIEgens with ultrahigh quantum yields for photo- and chemi-luminescence imaging[J]. Journal of the American Chemical Society, 2022, 144(33): 15391‒15402.
[177] ZHENG G S, SHEN C L, LOU Q, et al. Meter-scale chemiluminescent carbon nanodot films for temperature imaging[J]. Materials Horizons, 2022, 9(10): 2533‒2541.
[178] SAWADA Y, FURUMI S, TAKAI A, et al. Rhodium-catalyzed enantioselective synthesis, crystal structures, and photophysical properties of helically chiral 1,1′-bitriphenylenes[J]. Journal of the American Chemical Society, 2012, 134(9): 4080‒4083.
[179] STEVANI C V, SILVA S M, BAADER W J. Studies on the mechanism of the excitation step in peroxyoxalate chemiluminescence[J]. European Journal of Organic Chemistry, 2000, 2000(24): 4037‒4046.
[180] KÖNIG B, KNIERIEM B, MEIJERE A D. Double‐layered 1,4‐distyrylbenzene chromophores–synthesis, UV and fluorescene spectra[J]. Chemische Berichte, 1993, 126(7): 1643‒1650.
[181] STEVANI C V, LIMA D F, TOSCANO V G, et al. Kinetic studies on the peroxyoxalate chemiluminescent reaction: imidazole as a nucleophilic catalyst[J]. Journal of the Chemical Society, Perkin Transactions 2, 1996, 5: 989‒995.
[182] KAZEMI S Y, ABEDIRAD S M, VAEZI Z, et al. A study of chemiluminescence characteristics of a novel peroxyoxalate system using berberine as the fluorophore[J]. Dyes and Pigments, 2012, 95(3): 751‒756.
[183] LI B, MIAO W, CHENG L. Influence of fluorescer concentration on peroxyoxalate chemiluminescence spectra[J]. Dyes and Pigments, 2000, 46(2): 81‒84.
[184] ADAM W, BAADER W J. Effects of methylation on the thermal stability and chemiluminescence properties of 1,2-dioxetanes[J]. Journal of the American Chemical Society, 1985, 107(2): 410‒416.
[185] ADAM W, CILENTO G. Four-membered ring peroxides as excited state equivalents: A new dimension in bioorganic chemistry[J]. Angewandte Chemie International Edition, 1983, 22(7): 529‒542.
[186] ADAM W. Thermal generation of electronic excitation with hyperenergetic molecules[J]. Pure and Applied Chemistry, 1980, 52(12): 2591‒2608.
[187] BASTOS E L, FARAHANI P, BECHARA E J H, et al. Four-membered cyclic peroxides: carriers of chemical energy[J]. Journal of Physical Organic Chemistry, 2017, 30(9): e3725.
[188] KOO J Y, SCHUSTER G B. Chemically initiated electron exchange luminescence. A new chemiluminescent reaction path for organic peroxides[J]. Journal of the American Chemical Society, 1977, 99(18): 6107–6109.
[189] WANG H M J, CHEN C Y L, LIN I J B. Synthesis, structure, and spectroscopic properties of Gold(I)-carbene complexes[J]. Organometallics, 1999, 18: 1216‒1223.
[190] CHEN Y, CHENG G, LI K, et al. Phosphorescent polymeric nanomaterials with metallophilic d10⋯d10 interactions self-assembled from [Au(NHC)2]+ and [M(CN)2]−[J]. Chemical Science, 2014, 5(4): 1348‒1353.
[191] LIU Q, XIE M, CHANG X Y, et al. Tunable multicolor phosphorescence of crystalline polymeric complex salts with metallophilic backbones[J]. Angewandte Chemie International Edition, 2018, 57(21): 6279‒6283.
[192] LI K, MING TONG G S, WAN Q, et al. Highly phosphorescent Platinum(II) emitters: photophysics, materials and biological applications[J]. Chemical Science, 2016, 7(3): 1653‒1673.
[193] LI K, CHENG G, MA C, et al. Light-emitting Platinum(II) complexes supported by tetradentate dianionic bis(N-heterocyclic carbene) ligands: towards robust blue electrophosphors[J]. Chemical Science, 2013, 4(6): 2630‒2644.
[194] WINKEL R W, DUBININA G G, ABBOUD K A, et al. Photophysical properties of trans-Platinum acetylide complexes featuring N-heterocyclic carbene ligands[J]. Dalton Transactions, 2014, 43(47): 17712‒17720.
[195] ADAM W, ARIAS L A, ZAHN A, et al. X-ray structural parameters and the thermal stability of 1,2-dioxetanes[J]. Tetrahedron Letters, 1982, 23(32): 3251‒3254.
[196] MATSUMOTO M, WATANABE N, KASUGA N C, et al. Synthesis of 5-alkyl-1-aryl-4,4-dimethyl-2,6,7-trioxabicyclo
[3.2.0]heptanes as a chemiluminescent substrate with remarkable thermal stability[J]. Tetrahedron Letters, 1997, 38(16): 2863‒2866.
[197] MATSUMOTO M, TAKAMIDO Y, NOMURA K, et al. Marked difference in singlet-chemiexcitation efficiency between syn-anti isomers of spiro
[1,2-dioxetane-3,1′-dihydroisobenzofuran] for intramolecular charge-transfer-induced decomposition[J]. Tetrahedron Letters, 2008, 49(42): 6145‒6147.
[198] DUPUY S, LAZREG F, SLAWIN A M Z, et al. Decarboxylation of aromatic carboxylic acids by Gold(Ⅰ)-N-heterocyclic carbene (NHC) complexes[J]. Chemical Communications, 2011, 47(19): 5455‒5457.
[199] HASHMI A S K, RAMAMURTHI T D, ROMINGER F. On the trapping of vinylgold intermediates[J]. Advanced Synthesis & Catalysis, 2010, 352(6): 971‒975.
[200] WAGNIÈRE G H. Light, Magnetism, and Chirality [M] // On chirality and the universal asymmetry. Wiley, 2007: 49‒74.
[201] TANAKA H, INOUE Y, MORI T. Circularly polarized luminescence and circular dichroisms in small organic molecules: correlation between excitation and emission dissymmetry factors[J]. ChemPhotoChem, 2018, 2(5): 386‒402.
[202] KOBAYASHI N, MURANAKA A, MACK J. Chapter 1. Theory of Optical Spectroscopy[M] // Circular dichroism and magnetic circular dichroism spectroscopy for organic chemists. Wiley, 2011: 1‒41.
[203] IMAI Y. Circularly polarized luminescence (CPL) induced by an external magnetic field: magnetic CPL (MCPL)[J]. ChemPhotoChem, 2021, 5(11): 969‒973.
[204] ZHANG J, DAI L, WEBSTER A M, et al. Unusual magnetic field responsive circularly polarized luminescence probes with highly emissive chiral Europium(III) complexes[J]. Angewandte Chemie International Edition, 2021, 60(2): 1004‒1010.
[205] WANG Y F, LI M, TENG J M, et al. Chiral TADF-active polymers for high-efficiency circularly polarized organic light-emitting diodes[J]. Angewandte Chemie International Edition, 2021, 60(44): 23619‒23624.
[206] CHEN Z, ZHONG C, HAN J, et al. High-performance circularly polarized electroluminescence with simultaneous narrowband emission, high efficiency, and large dissymmetry factor[J]. Advanced Materials, 2022, 34(17): e2109147.
[207] MESKERS S C J. Circular polarization of luminescence as a tool to study molecular dynamical processes[J]. ChemPhotoChem, 2021, 6(1): e202100154.
[208] MISHIMA K, KAJI D, FUJIKI M, et al. Remarkable effects of external magnetic field on circularly polarized luminescence of EuIII(hfa)3 with phosphine chirality[J]. Chemphyschem, 2021, 22(17): 1728‒1737.
[209] KAJI D, IKEDA S, TAKAMURA K, et al. Sign control of circularly polarized luminescence based on geometric arrangement of fluorescent pyrene units in a binaphthyl scaffold[J]. Chemistry Letters, 2019, 48(8): 874‒876.
[210] TODA H, OTAKE S, ITO A, et al. Magnetic circularly polarized luminescence in the photoexcited states of racemic [n]helicenes (n=3-5,7) in tetrahydrofuran and dimethyl sulfoxide solutions[J]. Chemphyschem, 2021, 22(20): 2058‒2062.
[211] KIMOTO T, OKUNO M, NUNOTANI N, et al. Mirror symmetric green-color magnetic circularly polarized luminescence from TbIII-containing inorganics under north-up and south-up Faraday geometries[J]. Inorganic Chemistry Communications, 2021, 134: 109034.
[212] MATSUDAIRA K, IZUMOTO A, MIMURA Y, et al. Sign inversion of magnetic circularly polarized luminescence in Iridium(III) complexes bearing achiral ligands[J]. Physical Chemistry Chemical Physics, 2021, 23(9): 5074‒5078.
[213] MATSUDAIRA K, MIMURA Y, HOTEI J, et al. Magnetic circularly polarized luminescence from PtIIOEP and F2-ppyPtII(acac) under north-up and south-up faraday geometries[J]. Chemistry - An Asian Journal, 2021, 16(8): 926‒930.
[214] PAN R, WANG K, YU Z G. Magnetic-field manipulation of circularly polarized photoluminescence in chiral perovskites[J]. Materials Horizons, 2022, 9(2): 740‒747.
[215] AMASAKI R, KITAHARA M, KIMOTO T, et al. Mirror‐image magnetic circularly polarized luminescence from perovskite (M+Pb2+Br3, M+ = Cs+ and amidinium) quantum dots[J]. European Journal of Inorganic Chemistry, 2022, 2022(10): e202101066.
[216] GREENFIELD J L, WADE J, BRANDT J R, et al. Pathways to increase the dissymmetry in the interaction of chiral light and chiral molecules[J]. Chemical Science, 2021, 12(25): 8589‒8602.
[217] CHAO H Y, LU W, LI Y Q, et al. Organic triplet emissions of arylacetylide moieties harnessed through coordination to [Au(PCy3)]+. Effect of molecular structure upon photoluminescent properties[J]. Journal of the American Chemical Society, 2002, 124(49): 14696‒14706.
[218] MIHALY J J, WOLF S M, PHILLIPS A T, et al. Synthetically tunable white-, green-, and yellow-green-light emission in dual-luminescent Gold(I) complexes bearing a diphenylamino-2,7-fluorenyl moiety[J]. Inorganic Chemistry Communications, 2022, 61(3): 1228‒1235.
[219] LU W, KWOK W M, MA C, Et al. Organic triplet excited states of Gold(I) complexes with oligo(o- or m-phenyleneethynylene) ligands: conjunction of steady-state and time-resolved spectroscopic studies on exciton delocalization and emission pathways[J]. Journal of the American Chemical Society, 2011, 133(35): 14120‒14135.
[220] WAN S, LU W. Reversible photoactivated phosphorescence of Gold(I) arylethynyl complexes in aerated DMSO solutions and gels[J]. Angewandte Chemie International Edition, 2017, 56(7): 1784‒1788.
[221] SCATTOLIN T, NOLAN S P. Synthetic routes to late transition metal‒NHC complexes[J]. Trends in Chemistry, 2020, 2(8): 721‒736.
[222] HOSSAIN J, AKHTAR R, KHAN S. Luminescent coinage metal complexes of carbenes[J]. Polyhedron, 2021, 201: 115151.
[223] PENNEY A A, STAROVA G L, GRACHOVA E V, et al. Gold(I) alkynyls supported by mono- and bidentate NHC ligands: luminescence and isolation of unprecedented ionic complexes[J]. Inorganic Chemistry Communications, 2017, 56(24): 14771‒14787.
[224] AUFFRAY M, CHARRA F, SOSA VARGAS L, et al. Synthesis and photophysics of new pyridyl end-capped 3D-dithia
[3.3]paracyclophane-based Janus tectons: surface-confined self-assembly of their model pedestal on HOPG[J]. New Journal of Chemistry, 2020, 44(19): 7665‒7674.
[225] ASAKAWA R, TABATA D, MIKI N, et al. Syntheses of optically active V‐shaped molecules: relationship between their chiroptical properties and the orientation of the stacked -electron system[J]. European Journal of Organic Chemistry, 2021, 2021(41): 5725‒5731.
[226] KIKUCHI K, NAKAMURA J, NAGATA Y, et al. Control of circularly polarized luminescence by orientation of stacked -electron systems[J]. Chemistry - An Asian Journal, 2019, 14(10): 1681‒1685.
[227] CHAO H Y, LU W, LI Y, et al. Organic triplet emissions of arylacetylide moieties harnessed through coordination to [Au(PCy3)]+. Effect of molecular structure upon photoluminescent properties[J]. Journal of the American Chemical Society, 2002, 124(49): 14696‒14706.
[228] LU W, ZHU N, CHE C M. Polymorphic forms of a Gold(I) arylacetylide complex with contrasting phosphorescent characteristics[J]. Journal of the American Chemical Society, 2003, 125(51): 16081‒16088.
[229] ROSENTHAL M, LI L, HERNANDEZ J J, et al. A diacetylene-containing wedge-shaped compound: synthesis, morphology, and photopolymerization[J]. Chemistry - A European Journal, 2013, 19(13): 4300‒4307.
修改评论