中文版 | English
题名

芳炔基化合物的化学发光和圆偏振发光研究

其他题名
CHEMILUMINESCENCE AND CIRCULARLY POLARIZED LUMINESCENCE OF ARYL ALKYNYL COMPOUNDS
姓名
姓名拼音
SHI Minglin
学号
11849564
学位类型
博士
学位专业
081704 应用化学
学科门类/专业学位类别
08 工学
导师
陆为
导师单位
化学系
论文答辩日期
2023-10-26
论文提交日期
2024-01-04
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

化学发光种类繁多,常见的有二氧杂环丁烷类、草酸酯类、鲁米诺和吖啶酯等。化学发光不需要激发光源,因此其在生物成像中有着巨大的应用潜力。而在探针的应用中,除了发光强度、发光波长和发光寿命,圆偏振程度也可以作为信号维度。本文制备了一系列结构各异但基本以炔键为联结单元的分子,研究了这些分子的化学发光、圆偏振发光或者圆偏振化学发光性质,探索分子的化学结构对发光性质的影响。结合对环芳烷骨架成功制备了手性二氧杂环丁烷分子,实现了化学触发型圆偏振化学发光,研究化学发光的动力学和激发态性质,以“看到化学发光的中间体”;制备了平面手性大环荧光分子,将其作为激活剂成功实现了草酸酯的圆偏振化学发光,研究激活剂的氧化还原性质以提高化学发光效率。引入金属制备了新型二氧杂环丁烷分子,研究炔键和金属对化学发光的影响,实现了化学发光效率和速率的调节。制备了平面手性金配合物,探索分子结构、激发态性质和磁场对圆偏振发光的影响。具体研究内容如下:

通过炔键或者双键将手性对环芳烷骨架引入Schaap二氧杂环丁烷,制备了具有光学活性的二氧杂环丁烷C1R/C1S-C4R/C4S。经TBAF脱除TBS保护基触发后,C1RC3R发出绿光和黄光,其化学发光峰和发光效率分别为497 nm/537 nm7%/1.5%。完整地记录了化学发光圆偏振信号随波长和时间变化的谱图,双取代的C1R/C1SC3R/C3S的圆偏振化学发光不对称因子分别为+1.1´103/-1.0´103+6.0´104/-5.0´104。动力学研究显示,圆偏振化学发光信号随着时间而衰减,但其不对称因子一直保持不变,在将来的分析应用中,这一性质可以作为新的内标参数。研究了光致激发态和化学激发态的紫外-可见吸收、圆二色、光致/化学发光和圆偏振光致/化学发光光谱,在本例中,实验表明可以通过光致激发态来模拟研究化学激发态的性质。手性结构相似的C12RC14R分别具有两个和一个苯酚生色团,但其圆二色吸收和圆偏振发光光谱展现出明显的差异,TDDFT计算很好地复现了实验结果,而且表明C12R存在激子耦合现象,这对于将来设计更优秀的圆偏振光致/化学发光分子具有指导意义。

以手性对环芳烷为骨架,以炔基为支臂制备了带有给电子取代基的大环分子(D1R/D1S-D4R/D4S)以及手性螺烯分子(D5P/D5M),这些分子的光致发光量子效率在17%41%之间,圆二色吸收不对称因子和圆偏振发光不对称因子分别在5.0´1034.0´103左右。将其作为荧光受体(激活剂)应用于草酸酯化学发光体系中,观察到了强度不等的草酸酯化学发光,通过调整催化剂和荧光分子的种类和浓度,草酸酯和过氧化氢的浓度,可以调节化学发光的瞬时强度、总强度和持续时间。通过比较法测定了其化学发光量子效率(FCL),D1R, D2R, D3R, D4RD5P 在浓度为1.0´104 mol dm-3时的FCL分别为8.2´105, 2.1´10‒3, 5.5´106, 2.7´1042.8´104。结果发现,在一定的激活剂浓度下,ln(FS)FS为单线态量子效率)和Ep/2(半峰氧化电位)呈负相关关系,氧化电位越低,化学发光效率越高。研究了这些手性激活剂的圆偏振化学发光性质,记录到了明确且镜像对称的圆偏振信号,这是第一次观察到了草酸酯化学发光的圆偏振信号,其不对称因子gCL稍小于光致圆偏振发光不对称因子(gPL),且不随时间改变,这些发现对于设计更优秀的草酸酯圆偏振化学发光分子以及将其应用于实践中有借鉴意义。

在苯酚基二氧杂环丁烷的羟基邻位引入炔基制备了E6,使其在二甲基亚砜溶液中的化学发光效率提高了20倍。而且,以炔基作为连接体,成功制备了含有一价金(Au)和二价铂(Pt)的二氧杂环丁烷分子E8E10,研究具有较大自旋轨道耦合参数(SOC)的金属对化学发光的影响。实验结果发现,金属的引入使得化学发光时间缩短至原来的十分之一,化学发光由辉光型转变为闪光型。在空气氛条件下的发光效率降低,因为重原子效应促进了系间窜越过程导致较多的三线态,其被空气淬灭牺牲了化学发光效率。通过监测化学发光反应过程中吸收光谱的变化,观察到了E6分解过程中间体的吸收峰。分解产物E11的斯托克斯位移达到了10693 cm-1,可归因于激发态分子内质子转移。

基于手性对环芳烷通过炔键的配位制备了手性多核金()配合物(F2R/F2S-F6R/F6S)及其相应的模型配合物(F1AF1B),详细的光物理性质研究表明,分子空间排列方式和与金的配位与否都能调控手性光谱的正负符号。这些金(Ⅰ)配合物展现出荧光-磷光双发射现象,通过调节核数,可以调节荧光-磷光的强度比例;荧光-磷光展现出不一样的圆偏振发光和磁圆偏振发光性质,在无外磁场存在时,荧光区有比较明显的CPL信号,磷光区没有或只有很微弱的CPL信号;在外磁场存在时,荧光区CPL信号不受影响,磷光区展现处明显的CPL信号,CPL的符号由磁场控制。实验结果表明,分子结构、激发态性质和外磁场都能影响圆偏振发光的性质,对称性的降低有利于圆偏振信号的增强。

其他摘要

Chemiluminescence encompasses a wide range of types, including dioxetanes, peroxyoxalates, luminol, and acridinium esters. Chemiluminescence does not require an excitation source, thus having great application potential in biological imaging. In application of the probe, the intensity, wavelength, and lifetime of the emitted light are commonly used signal dimensions. Additionally, circular polarization can serve as a valuable signal dimension. This dissertation presents the synthesis of a series of novel molecules with different structures but basically linked by alkynyl unit, which either possess both chemiluminescence and circularly polarized luminescence properties, or only one of the two, to explore the influence of molecular chemical structure on luminescent properties. By combining the [2.2]paracyclophane skeleton, chiral dioxetanes were successfully prepared, achieving chemically triggered circularly polarized luminescence. The kinetics and excited state properties of chemiluminescence were studied to "observe the intermediate of chemiluminescence. Planar chiral macrocyclic fluorescent molecules were synthesized and used as activators to achieve circularly polarized peroxyoxalate chemiluminescence. The redox properties of the activators were studied to improve the efficiency of chemiluminescence. Introduction of metals led to the preparation of new dioxetanes, and the effects of acetylene bond and metals on chemiluminescence were studied, realizing the regulation of chemiluminescence efficiency and rate. Planar chiral gold complexes were prepared to explore the influence of molecular structure, excited state properties, and magnetic field on circularly polarized luminescence. The research contents are specified as follows:

Optical-active dioxetanes, C1R/C1S-C4R/C4S, were synthesized by introducing a chiral [2.2]paracyclophane skeleton into Schaap dioxetane through triple or double bonds. Upon triggering with TBAF, C1R and C3R emitted green and yellow light, with chemiluminescent peaks at 497 nm/537 nm and efficiencies of 7%/1.5%, respectively. Circularly polarized chemiluminescence signals vs wavelength and time were completely recorded. The circular polarization asymmetry factors for C1R/C1S and C3R/C3S were determined to be +1.1´103/-1.0´103 and +6.0´104/-5.0´104, respectively. Kinetic studies revealed that while the circularly polarized chemiluminescent signal decayed over time, its asymmetry factor remained constant. This property can serve as a new internal standard parameter in future analytical applications. The UV-Vis absorption, circular dichroism, photo/chemical-luminescence, and circularly polarized photo/chemical-luminescence spectra of the photoexcited and chemically excited states were investigated, and it was found that the properties of the chemically excited state can be simulated by studying the photoexcited state. C12R and C14R, which have similar chiral structures but differ in the number of phenol chromophores (two and one, respectively), exhibited significant differences in their circular dichroism absorption and circularly polarized luminescence spectra. TDDFT calculations successfully reproduced the experimental results and indicated the presence of exciton coupling in C12R, which provides guidelines for the future design of circularly polarized photo/chemical-luminescent molecules.

Chiral macrocyclic molecules (D1R/D1S-D4R/D4S) based on chiral [2.2]paracyclophane and alkynyl unit with electron-donating substituents and chiral helicenes (D5P/D5M) were synthesized. These molecules exhibited moderate photoluminescence quantum efficiency (17%-41%) and relatively high chiroptical properties, with circular dichroism absorption asymmetry factors around 5.0×10‒3 and circularly polarized luminescence factors around 4.0×10‒3. When applied as fluorescent receptors (activators) in peroxyoxalate chemiluminescent systems, chemiluminescence was observed. By adjusting the catalyst and fluorophore types and concentrations, as well as the concentrations of peroxyoxalate and hydrogen peroxide, the instantaneous intensity, total intensity, and duration of chemiluminescence could be modulated. The chemiluminescent quantum efficiency (ΦCL) of D1R, D2R, D3R, D4R, and D5P at a concentration of 1.0×10‒4 mol dm‒3 was determined by comparative methods, resulting in values of 8.2×10‒5, 2.1×10‒3, 5.5×10‒6, 2.7×10‒4, and 2.8×10‒4, respectively. The results indicated that, at a certain activator concentration, ln(ΦS) (ΦS being singlet state quantum efficiency) and Ep/2 (half-wave oxidation potential) exhibited a negative correlation, where lower oxidation potentials corresponded to higher chemiluminescent efficiencies. The circularly polarized chemiluminescence of these chiral activators were studied, clear and mirror-symmetric circularly polarized signals were recorded. The asymmetry factor gCL for circularly polarized chemiluminescence was slightly smaller than the g-factor for photoexcited circularly polarized luminescence (gPL) and remained constant over time. These findings are of practical significance for designing better peroxyacetate circularly polarized chemiluminescent molecules and applying them in practice.

The introduction of an alkynyl moiety at the hydroxyl o-position of phenol-based dioxetane has resulted in the synthesis of E6, which exhibits a 20-fold improvement in chemiluminescent efficiency in dimethyl sulfoxide solution. Additionally, using the alkynyl group as a linker, we successfully prepared dioxetane molecules, namely E8 and E10, incorporating monovalent gold Au(Ⅰ) and divalent platinum Pt(Ⅱ), respectively, to investigate the influence of heavy metal atoms on chemiluminescence. Experimental results revealed that the introduction of metal atoms led to a significant reduction in the chemiluminescence duration to approximately one-tenth of its original value, transforming the chemiluminescence from glow-type to flash-type. The efficiency of chemiluminescence under atmospheric conditions decreased, which we attributed to the heavy atom effect resulting in the generation of more triplet states that were quenched by air, thereby sacrificing the chemiluminescent efficiency. By monitoring changes in the absorption spectra during the chemiluminescent reaction, we observed absorption peaks corresponding to intermediates involved in the decomposition process of E6. The Stokes shift of the decomposition product E11 reached 10693 cm-1, which can be attributed to excited-state intramolecular proton transfer (ESIPT).

Chiral multinuclear gold (I) complexes (F2R/F2S-F6R/F6S) and their corresponding model complexes (F1A and F1B) were prepared based on chiral [2.2]paracyclophane and alkynyl bonds. Detailed photophysical studies revealed that the spatial arrangement of molecules and their coordination to gold could regulate the sign of chiroptical spectra. These gold (I) complexes exhibited fluorescence-phosphorescence dual emission phenomena, and the intensity ratio of fluorescence to phosphorescence could be adjusted by tuning the number of cores. Fluorescence and phosphorescence demonstrated different circularly polarized luminescence and magnetic circularly polarized luminescence. In the absence of an external magnetic field, the fluorescence region exhibited significant circularly polarized luminescence (CPL) signals, while the phosphorescence region either had no CPL signal or only a weak one. In the presence of an external magnetic field, the CPL signal in the fluorescence region remained unaffected, while the phosphorescence region showed a pronounced CPL signal. Experimental results indicated that molecular structure, excited state properties, and external magnetic fields can all influence the properties of circularly polarized luminescence, and the reduction of symmetry is beneficial for enhancing the circularly polarized signal.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2023-12
参考文献列表

[1] PRESCHER J A, CONTAG C H. Guided by the light: visualizing biomolecular processes in living animals with bioluminescence[J]. Current Opinion in Chemical Biology, 2010, 14(1): 80‒89.
[2] LAU E S, OAKLEY T H. Multi-level convergence of complex traits and the evolution of bioluminescence[J]. Biological Reviews, 2021, 96(2): 673‒691.
[3] KIM D Y. Potential application of spintronic light-emitting diode to binocular vision for three-dimensional display technology[J]. Journal of the Korean Physical Society, 2006, 49: 505‒508.
[4] LIN S, TANG Y, KANG W, et al. Photo-triggered full-color circularly polarized luminescence based on photonic capsules for multilevel information encryption[J]. Nature Communications, 2023, 14: 3005.
[5] TAKAISHI K, MAEDA C, EMA T. Circularly polarized luminescence in molecular recognition systems: recent achievements[J]. Chirality, 2023, 35(2): 92‒103.
[6] LOVE A C, PRESCHER J A. Seeing (and using) the light: recent developments in bioluminescence technology[J]. Cell Chemical Biology, 2020, 27(8): 904‒920.
[7] VACHER M, GALVAN I F, DING B W, et al. Chemi- and bioluminescence of cyclic peroxides[J]. Chemical Reviews, 2018, 118(15): 6927‒6974.
[8] MCCAPRA F. Chemical mechanisms in bioluminescence[J]. Accounts of Chemical Research, 1976, 9(6): 201‒208.
[9] KOPECKY K R, MUMFORD C. Luminescence in the thermal decomposition of 3,3,4-trimethyl-1,2-dioxetane[J]. Canadian Journal of Chemistry, 1969, 47(4): 709‒711.
[10] ADAM W, LIU J C. Cyclic peroxides. XVI. α-peroxy lactone. synthesis and chemiluminescence[J]. Journal of the American Chemical Society, 1972, 94(8): 2894‒2895.
[11] CISCATO L F M L, Augusto F A, WEISS D, et al. The chemiluminescent peroxyoxalate system: state of the art almost 50 years from its discovery[J]. Arkivoc, 2012, 2012(3): 391‒430.
[12] MATSUMOTO M. Advanced chemistry of dioxetane-based chemiluminescent substrates originating from bioluminescence[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2004, 5(1): 27‒53.
[13] WIERINGA J H, STRATING J, WYNBERG H, et al. Adamantylidene-adamantane peroxide, a stable 1,2-dioxetane[J]. Tetrahedron Letters, 1972, 13(2): 169‒172.
[14] SCHAAP A P, HANDLEY R S, GIRI B P. Chemical and enzymatic triggering of 1,2-dioxetanes. 1: aryl esterase-catalyzed chemiluminescence from a naphthyl acetate-substituted dioxetane[J]. Tetrahedron Letters, 1987, 28(9): 935‒938.
[15] SCHAAP A P, CHEN T S, HANDLEY R S, et al. Chemical and enzymatic triggering of 1,2-dioxetanes. 2: fluoride-induced chemiluminescence from tert-butyldimethylsilyloxy-substituted dioxetanes[J]. Tetrahedron Letters, 1987, 28(11): 1155‒1158.
[16] SCHAAP A P, SANDISON M D, HANDLEY R S. Chemical and enzymatic triggering of 1,2-dioxetanes. 3: alkaline phosphatase-catalyzed chemilumines-cence from an aryl phosphate-substituted dioxetane[J]. Tetrahedron Letters, 1987, 28(11): 1159‒1162.
[17] KOO J Y, SCHUSTER G B. Chemiluminescence of diphenoyl peroxide. Chemically initiated electron exchange luminescence. A new general mechanism for chemical production of electronically excited states[J]. Journal of the American Chemical Society, 1978, 100(14): 4496‒4503.
[18] BASTOS E L, DA SILVA S M, BAADER W J. Solvent cage effects: basis of a general mechanism for efficient chemiluminescence[J]. The Journal of Organic Chemistry, 2013, 78(9): 4432‒4439.
[19] ADAM W, BRONSTEIN I, TROFIMOV A V, et al. Solvent-cage effect (viscosity dependence) as a diagnostic probe for the mechanism of the intramolecular chemically initiated electron-exchange luminescence (CIEEL) triggered from a spiroadamantyl-substituted dioxetane[J]. Journal of the American Chemical Society, 1999, 121(5): 958‒961.
[20] ADAM W. The chemistry of peroxides[M]. New York: Wiley, 1983: 829‒920.
[21] ADAM W, REINHARDT D, SAHA-MÖLLER C R. From the firefly biolumines-cence to the dioxetane-based (AMPPD) chemiluminescence immunoassay: a retroanalysis[J]. The Analyst, 1996, 121(11): 1527‒1531.
[22] ADAM W, TROFIMOV A V. The effect of meta versus para substitution on the efficiency of chemiexcitation in the chemically triggered electron-transfer-initiated decomposition of spiroadamantyl dioxetanes[J]. The Journal of Organic Chemistry, 2000, 65(20): 6474‒6478.
[23] EDWARDS B, SPARKS A, VOYTA J C, et al. Unusual luminescent properties of odd- and even-substituted naphthyl-derivatized dioxetanes[J]. Journal of Bioluminescence and Chemiluminescence, 1990, 5(1): 1‒4.
[24] MATSUMOTO M, HIROSHIMA T, CHIBA S, et al. Synthesis of 3-ethoxy-4,4-diisopropyl-1,2-dioxetanes bearing a benzo(b)furan-2-yl or a benzo(b)thiophen-2-yl group: CIEEL-active dioxetanes emitting red light[J]. Luminescence, 1999, 14(6): 345‒348.
[25] HOSHIYA N, FUKUDA N, MAEDA H, et al. Synthesis and fluoride-induced chemiluminescent decomposition of bicyclic dioxetanes substituted with a 2-hydroxynaphthyl group[J]. Tetrahedron, 2006, 62(24): 5808‒5820.
[26] BRONSTEIN I, EDWARDS B, VOYTA J C. 1,2-Dioxetanes: novel chemiluminescent enzyme substrates. Applications to immunoassays [J]. Journal of Bioluminescence and Chemiluminescence, 1989, 4(1): 99‒111.
[27] BRONSTEIN I, EDWARDS B, SPARKS A. Improved chemiluminescent 1,2-dioxetanes: WO9426726-A1[P/OL], 1994. https://europepmc.org/article/PAT-/WO9426726.
[28] BRONSTEIN I, EDWARDS B, VOYTA J C. Improved enhancement of chemiluminescent assays: WO9421821A1[P/OL]. 1994/03/15. https://europe-pmc.org/article/PAT/WO9421821.
[29] GNAIM S, SHABAT D. Chemiluminescence molecular probe with intrinsic auto-inductive amplification: incorporation of chemiexcitation in a quinone-methide elimination[J]. Chemical Communications, 2018, 54(21): 2655‒2658.
[30] RICHARD J A, JEAN L, ROMIEU A, et al. Chemiluminescent probe for the in vitro detection of protease activity[J]. Organic Letters, 2007, 9(23): 4853‒4855.
[31] HANANYA N, ELDAR BOOCK A, BAUER C R, et al. Remarkable enhancement of chemiluminescent signal by dioxetane-fluorophore conjugates: turn-on chemiluminescence probes with color modulation for sensing and imaging[J]. Journal of the American Chemical Society, 2016, 138(40): 13438‒13446.
[32] HANANYA N, SHABAT D. Recent advances and challenges in luminescent imaging: bright outlook for chemiluminescence of dioxetanes in water[J]. ACS Central Science, 2019, 5(6): 949‒959.
[33] GREEN O, EILON T, HANANYA N, et al. Opening a gateway for chemilumines-cence cell imaging: distinctive methodology for design of bright chemilumines-cent dioxetane probes[J]. ACS Central Science, 2017, 3(4): 349‒358.
[34] GREEN O, GNAIM S, BLAU R, et al. Near-infrared dioxetane luminophores with direct chemiluminescence emission mode[J]. Journal of the American Chemical Society, 2017, 139(37): 13243‒13248.
[35] HANANYA N, REID J P, GREEN O, et al. Rapid chemiexcitation of phenoxy-dioxetane luminophores yields ultrasensitive chemiluminescence assays[J]. Chemical Science, 2019, 10(5): 1380‒1385.
[36] CHEN Y, SPIERING A J, KARTHIKEYAN S, et al. Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain[J]. Nature Chemistry, 2012, 4(7): 559‒562.
[37] WU M, GUO Z, HE W, et al. Empowering self-reporting polymer blends with orthogonal optical properties responsive in a broader force range[J]. Chemical Science, 2020, 12(4): 1245‒1250.
[38] 高玉祺. 基于萤火虫荧光素及1,2-二氧杂环丁烷的小分子发光探针研究[D]. 济南:山东大学,2018:1‒42.
[39] 孙英爱. 基于金刚烷基-1,2-二氧杂环丁烷结构的化学发光次氯酸探针的设计、合成及活性评价[D]. 济南:山东大学,2020:22‒27.
[40] 巩媛媛. 1,2-二氧杂环丁烷类化学发光探针的构建及性能优化[D]. 遵义:遵义医科大学,2022:12‒39.
[41] YANG B, CHEN Y, SHI J. Reactive oxygen species (ROS)-based nanomedicine[J]. Chemical Reviews, 2019, 119(8): 4881‒4985.
[42] HANANYA N, GREEN O, BLAU R, et al. A highly efficient chemiluminescence probe for the detection of singlet oxygen in living cells[J]. Angewandte Chemie International Edition, 2017, 56(39): 11793‒11796.
[43] YANG M, ZHANG J, SHABAT D, et al. Near-infrared chemiluminescent probe for real-time monitoring singlet oxygen in cells and mice model[J]. ACS Sensors, 2020, 5(10): 3158‒3164.
[44] YE S, HANANYA N, GREEN O, et al. A highly selective and sensitive chemiluminescent probe for real-time monitoring of hydrogen peroxide in cells and animals[J]. Angewandte Chemie International Edition, 2020, 59(34): 14326‒14330.
[45] BRUEMMER K J, GREEN O, SU T A, et al. Chemiluminescent probes for activity-based sensing of formaldehyde released from folate degradation in living mice[J]. Angewandte Chemie International Edition, 2018, 57(25): 7508‒7512.
[46] AN W, RYAN L S, REEVES A G, et al. A chemiluminescent probe for HNO quantification and real-time monitoring in living cells[J]. Angewandte Chemie International Edition, 2019, 58(5): 1361‒1365.
[47] CAO J, AN W, REEVES A G, et al. A chemiluminescent probe for cellular peroxynitrite using a self-immolative oxidative decarbonylation reaction[J]. Chemical Science, 2018, 9(9): 2552‒2558.
[48] CHEN C, GAO H, OU H, et al. Amplification of activated near-infrared afterglow luminescence by introducing twisted molecular geometry for understanding neutrophil-involved diseases[J]. Journal of the American Chemical Society, 2022, 144(8): 3429‒3441.
[49] CAO J, LOPEZ R, THACKER J M, et al. Chemiluminescent probes for imaging H2S in living animals[J]. Chemical Science, 2015, 6(3): 1979‒1985.
[50] SUN J, HU Z, ZHANG S, et al. A novel chemiluminescent probe based on 1,2-dioxetane scaffold for imaging cysteine in living mice[J]. ACS Sensors, 2019, 4(1): 87‒92.
[51] GAO Y, LIN Y, LIU T, et al. A specific and selective chemiluminescent probe for Pd2+ detection[J]. Chinese Chemical Letters, 2019, 30(1): 63‒66.
[52] KAGALWALA H N, GERBERICH J, SMITH C J, et al. Chemiluminescent 1,2-dioxetane Iridium complexes for near-infrared oxygen sensing[J]. Angewandte Chemie International Edition, 2022, 61(12): e202115704.
[53] 江龙,王开杰,孔晴,等. 基于金刚烷-二氧杂环丁烷化学发光探针的研究进展[J]. 化工学报, 2021, 72(01): 229‒246.
[54] SCOTT J I, GUTKIN S, GREEN O, et al. A functional chemiluminescent probe for in vivo imaging of natural killer cell activity against tumours[J]. Angewandte Chemie International Edition, 2021, 60(11): 5699‒5703.
[55] DAS S, IHSSEN J, WICK L, et al. Chemiluminescent carbapenem-based molecular probe for detection of carbapenemase activity in live bacteria[J]. Chemistry - A European Journal, 2020, 26(16): 3647‒3652.
[56] SON S, WON M, GREEN O, et al. Chemiluminescent probe for the in vitro and in vivo imaging of cancers over-expressing NQO1[J]. Angewandte Chemie International Edition, 2019, 58(6): 1739‒1743.
[57] GNAIM S, SCOMPARIN A, DAS S, et al. Direct real-time monitoring of prodrug activation by chemiluminescence[J]. Angewandte Chemie International Edition, 2018, 57(29): 9033‒9037.
[58] ROTH-KONFORTI M, GREEN O, HUPFELD M, et al. Ultrasensitive detection of salmonella and listeria monocytogenes by small-molecule chemiluminescence probes[J]. Angewandte Chemie International Edition, 2019, 58(30): 10361‒10367.
[59] ROTH-KONFORTI M E, BAUER C R, SHABAT D. Unprecedented sensitivity in a probe for monitoring cathepsin B: chemiluminescence microscopy cell-imaging of a natively expressed enzyme[J]. Angewandte Chemie International Edition, 2017, 56(49): 15633‒15638.
[60] CHANDROSS E A. A new chemiluminescent system[J]. Tetrahedron Letters, 1963, 4(12): 761‒765.
[61] RAUHUT M M, BOLLYKY L J, ROBERTS B G, et al. Chemiluminescence from reactions of electronegatively substituted aryl oxalates with hydrogen peroxide and fluorescent compounds[J]. Journal of the American Chemical Society, 1967, 89(25): 6515‒6522.
[62] GERBIG D, SCHREINER P R. Preparation and spectroscopic identification of the cyclic CO2 dimer 1,2-dioxetanedione[J]. Journal of the American Chemical Society, 2023, 145(41): 22341–22346.
[63] CORDES H F, RICHTER H P, HELLER C A. Mass spectrometric evidence for the existence of 1,2-dioxetanedione (carbon dioxide dimer). Chemiluminescent intermediate[J]. Journal of the American Chemical Society, 2002, 91(25): 7209‒7209.
[64] BOS R, BARNETT N W, DYSON G A, et al. Studies on the mechanism of the peroxyoxalate chemiluminescence reaction[J]. Analytica Chimica Acta, 2004, 502(2): 141‒147.
[65] DA SILVA S M, LANG A P, DOS SANTOS A P F, et al. Cyclic peroxidic carbon dioxide dimer fuels peroxyoxalate chemiluminescence[J]. The Journal of Organic Chemistry, 2021, 86(17): 11434‒11441.
[66] SCHUSTER G B. Chemiluminescence of organic peroxides. Conversion of ground-state reactants to excited-state products by the chemically initiated electron-exchange luminescence mechanism[J]. Accounts of Chemical Research, 1979, 12(10): 366‒373.
[67] SCHMIDT S P, SCHUSTER G B. Chemiluminescence of dimethyldioxetanone. Unimolecular generation of excited singlet and triplet acetone. Chemically initiated electron-exchange luminescence, the primary light generating reaction[J]. Journal of the American Chemical Society, 1980, 102(1): 306‒314.
[68] ZUO M, QIAN W, LI T, et al. Full-color tunable fluorescent and chemiluminescent supramolecular nanoparticles for anti-counterfeiting inks[J]. ACS Applied Materials & Interfaces, 2018, 10(45): 39214‒39221.
[69] YANG Y, WANG S, LU L, et al. NIR-II chemiluminescence molecular sensor for in vivo high-contrast inflammation imaging[J]. Angewandte Chemie International Edition, 2020, 59(42): 18380‒18385.
[70] DELAFRESNAYE L, BLOESSER F R, Kockler K B, et al. All eyes on visible-light peroxyoxalate chemiluminescence read-out systems[J]. Chemistry - A European Journal, 2020, 26(1): 114‒127.
[71] 冯玉蓉,徐帅,宦双燕,等. 化学发光探针构建及应用进展[J]. 南通大学学报(自然科学版), 2022, 21(1): 1‒13.
[72] EGHLIMI A, JUBAER H, SURMIAK A, et al. Developing a safe and versatile chemiluminescence demonstration for studying reaction kinetics[J]. Journal of Chemical Education, 2019, 96(3): 522‒527.
[73] MOHAMMADI S S, VAEZI Z, Shojaedin-Givi B, et al. Chemiluminescent liposomes as a theranostic carrier for detection of tumor cells under oxidative stress[J]. Analytica Chimica Acta, 2019, 1059: 113‒123.
[74] ROMANYUK A V, GROZDOVA I D, EZHOV A A, et al. Peroxyoxalate chemiluminescent reaction as a tool for elimination of tumour cells under oxidative stress[J]. Scientific Reports, 2017, 7(1): 3410.
[75] MAO D, WU W, JI S, et al. Chemiluminescence-guided cancer therapy using a chemiexcited photosensitizer[J]. Chem, 2017, 3(6): 991‒1007.
[76] ERMOSHKIN A A, NECKERS D C, FEDOROV A V. Photopolymerization without light. Polymerization of acrylates using oxalate esters and hydrogen peroxide[J]. Macromolecules, 2006, 39(17): 5669‒5674.
[77] WATUTHANTHRIGE N D A, ALLEGREZZA M L, Dolan M T, et al. In-situ chemiluminescence-driven reversible addition-fragmentation chain-transfer photopolymerization[J]. Angewandte Chemie International Edition, 2019, 58(34): 11826‒11829.
[78] KOCKLER K B, FRISCH H, BARNER-KOWOLLIK C. Making and breaking chemical bonds by chemiluminescence[J]. Macromolecular Rapid Communications, 2018, 39(21): e1800516.
[79] KHAN P, IDREES D, MOXLEY M A, et al. Luminol-based chemiluminescent signals: clinical and non-clinical application and future uses[J]. Applied Biochemistry and Biotechnology, 2014, 173(2): 333‒355.
[80] MARQUETTE C A, BLUM L J. Applications of the luminol chemiluminescent reaction in analytical chemistry[J]. Analytical and Bioanalytical Chemistry, 2006, 385(3): 546‒554.
[81] WHITEHEAD T P, THORPE G H G, CARTER T J N, et al. Enhanced luminescence procedure for sensitive determination of peroxidase-labelled conjugates in immunoassay[J]. Nature, 1983, 305(5930): 158‒159.
[82] 袁传军. 奇妙的化学发光:鲁米诺检测血迹[J]. 化学教育(中英文), 2021, 42(10): 7‒10.
[83] GIUSSANI A, FARAHANI P, MARTINEZ-MUNOZ D, et al. Molecular basis of the chemiluminescence mechanism of luminol[J]. Chemistry - A European Journal, 2019, 25(20): 5202‒5213.
[84] ZOMER B, COLLE L, JEDYNSKA A, et al. Chemiluminescent reductive acridinium triggering (CRAT)-mechanism and applications[J]. Analytical and Bioanalytical Chemistry, 2011, 401(9): 2945‒2954.
[85] NAKAZONO M, OSHIKAWA Y, NAKAMURA M, et al. Strongly chemiluminescent acridinium esters under neutral conditions: synthesis, properties, determination, and theoretical study[J]. The Journal of Organic Chemistry, 2017, 82(5): 2450‒2461.
[86] ADCOCK J L, BARNETT N W, BARROW C J, et al. Advances in the use of acidic potassium permanganate as a chemiluminescence reagent: a review[J]. Analytica Chimica Acta, 2014, 807: 9‒28.
[87] GERARDI R D, BARNETT N W, LEWIS S W. Analytical applications of tris(2,2 -bipyridyl)Ruthenium(III) as a chemiluminescent reagent[J]. Analytica Chimica Acta, 1999, 378: 1‒41.
[88] GONG Z L, ZHU X, ZHOU Z, et al. Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications[J]. Science China Chemistry, 2021, 64(12): 2060‒2104.
[89] MA J L, DI BARI L, ZINNA F. Quantifying the overall efficiency of circularly polarized emitters[J]. Chemistry - A European Journal, 2021, 27(9): 2920‒2934.
[90] ARRICO L, PENG Q, ZHAO C H. Circularly polarized luminescence switching in small organic molecules[J]. Chemistry - A European Journal, 2019, 25(68): 15441‒15454.
[91] 张花红,杨倩莹,刁子轩,等. 基于过渡金属配合物圆偏振磷光材料研究进展[J]. 海南师范大学学报(自然科学版), 2020, 33(4): 391‒402.
[92] MA S, AHN J, MOON J. Chiral perovskites for next-generation photonics: from chirality transfer to chiroptical activity[J]. Advanced Materials, 2021, 33(47): e2005760.
[93] YANG S, ZHANG S, Hu F, et al. Circularly polarized luminescence polymers: from design to applications[J]. Coordination Chemistry Reviews, 2023, 485, 215116.
[94] ZHAO T, HAN J, DUAN P, et al. New perspectives to trigger and modulate circularly polarized luminescence of complex and aggregated systems: energy transfer, photon upconversion, charge transfer, and organic radical[J]. Accounts of Chemical Research, 2020, 53(7): 1279‒1292.
[95] HAN J, GUO S, LU H, et al. Recent progress on circularly polarized luminescent materials for organic optoelectronic devices[J]. Advanced Optical Materials, 2018, 6(17): 1800538.
[96] DO K, MULLER F C, MULLER G. A promising change in the selection of the circular polarization excitation used in the measurement of Eu(III) circularly polarized luminescence[J]. The Journal of Physical Chemistry A, 2008, 112(30): 6789‒6793.
[97] DOISTAU B, JIMÉNEZ J R, PIGUET C. Beyond chiral organic (p-block) chromophores for circularly polarized luminescence: the success of d-block and f-block chiral complexes[J]. Frontiers in Chemistry, 2020, 8: 555.
[98] MUKTHAR N F M, SCHLEY N D, UNG G. Strong circularly polarized luminescence at 1550 nm from enantiopure molecular Erbium complexes[J]. Journal of the American Chemical Society, 2022, 144(14): 6148‒6153.
[99] ZINNA F, GIOVANELLA U, DI BARI L. Highly circularly polarized electroluminescence from a chiral Europium complex[J]. Advanced Materials, 2015, 27(10): 1791‒1795.
[100] EMEIS C A, OOSTERHOFF L J. Emission of circularly-polarised radiation by optically-active compounds[J]. Chemical Physics Letters, 1967, 1(4): 129‒132.
[101] 王晨雪,寇峻宁,孙春义. 联萘基手性发光材料的圆偏振发光[J]. 分子科学学报, 2022, 38(3): 189‒202
[102] CHEN N, YAN B. Recent theoretical and experimental progress in circularly polarized luminescence of small organic molecules[J]. Molecules, 2018, 23(12): 3376.
[103] SANG Y, HAN J, ZHAO T, et al. Circularly polarized luminescence in nanoassemblies: generation, amplification, and application[J]. Advanced Materials, 2020, 32(41): e1900110.
[104] CARR R, EVANS N H, PARKER D. Lanthanide complexes as chiral probes exploiting circularly polarized luminescence[J]. Chemical Society Reviews, 2012, 41(23): 7673‒7686.
[105] STASZAK K, WIESZCZYCKA K, MARTURANO V, et al. Lanthanides complexes-chiral sensing of biomolecules[J]. Coordination Chemistry Reviews, 2019, 397: 76‒90.
[106] HASSAN Z, SPULING E, KNOLL D M, et al. Regioselective functionalization of
[2.2]paracyclophanes: recent synthetic progress and perspectives[J]. Angewandte Chemie International Edition, 2020, 59(6): 2156‒2170.
[107] REICH H J, CRAM D J. Transannular directive influences in electrophilic substitution of
[2.2]paracyclophane[J]. Journal of the American Chemical Society, 1968, 90(5): 1365‒1367.
[108] TENG J M, ZHANG D W, CHEN C F. Recent progress in circularly polarized luminescence of
[2.2]paracyclophane derivatives[J]. ChemPhotoChem, 2022, 6(3): e202100228.
[109] MORISAKI Y, INOSHITA K, CHUJO Y. Planar-chiral through-space conjugated oligomers: synthesis and characterization of chiroptical properties[J]. Chemistry - A European Journal, 2014, 20(27): 8386‒8390.
[110] TANAKA K, INOUE R, MORISAKI Y. Optically active cyclic oligomers based on planar chiral
[2.2]paracyclophane[J]. Chemistry - An Asian Journal, 2022, 17(2): e202101267.
[111] ISHIOKA S, HASEGAWA M, HARA N, et al. Chiroptical properties of oligophenylenes anchoring with stereogenic
[2.2]paracyclophane[J]. Chemistry Letters, 2019, 48(7): 640‒643.
[112] HASEGAWA M, ISHIDA Y, SASAKI H, et al. Helical oligophenylene linked with
[2.2]paracyclophane: stereogenic -conjugated dye for highly emissive chiroptical properties[J]. Chemistry - A European Journal, 2021, 27(65): 16225‒16231.
[113] HARA N, SHIZUMA M, HARADA T, et al. Inter- and intramolecular excimer circularly polarised luminescence of planar chiral paracyclophane-pyrene luminophores[J]. RSC Advances, 2020, 10(19): 11335‒11338.
[114] LIANG X, LIU T T, YAN Z P, et al. Organic room-temperature phosphorescence with strong circularly polarized luminescence based on paracyclophanes[J]. Angewandte Chemie International Edition, 2019, 58(48): 17220‒17225.
[115] ZHANG M Y, LIANG X, NI D N, et al. 2-(Dimesitylboryl)phenyl-substituted
[2.2]paracyclophanes featuring intense and sign-invertible circularly polarized luminescence[J]. Organic Letters, 2021, 23(1): 2‒7.
[116] ZHANG D W, TENG J M, WANG Y F, et al. D-*-A type planar chiral TADF materials for efficient circularly polarized electroluminescence[J]. Materials Horizons, 2021, 8(12): 3417‒3423.
[117] MORISAKI Y, GON M, SASAMORI T, et al. Planar chiral tetrasubstituted
[2.2]paracyclophane: optical resolution and functionalization[J]. Journal of the American Chemical Society, 2014, 136(9): 3350‒3353.
[118] GON M, MORISAKI Y, CHUJO Y. Optically active cyclic compounds based on planar chiral
[2.2]paracyclophane: extension of the conjugated systems and chiroptical properties[J]. Journal of Materials Chemistry C, 2015, 3(3): 521‒529.
[119] GON M, MORISAKI Y, CHUJO Y. Highly emissive optically active conjugated dimers consisting of a planar chiral
[2.2]paracyclophane showing circularly polarized luminescence[J]. European Journal of Organic Chemistry, 2015, 2015(35): 7756‒7762.
[120] MORISAKI Y, SAWADA R, GON M, et al. New types of planar chiral
[2.2]paracyclophanes and construction of one-handed double helices[J]. Chemistry - An Asian Journal, 2016, 11(18): 2524‒2527.
[121] GON M, KOZUKA H, MORISAKI Y, et al. Optically active cyclic compounds based on planar chiral
[2.2]paracyclophane with naphthalene units[J]. Asian Journal of Organic Chemistry, 2016, 5(3): 353‒359.
[122] MIKI N, INOUE R, MORISAKI Y. Synthesis and chiroptical properties of one-handed helical oligo-o-phenylene-ethynylenes using planar chiral
[2.2]paracyclophane[J]. Bulletin of the Chemical Society of Japan, 2022, 95(1): 110‒115.
[123] GON M, MORISAKI Y, CHUJO Y. Optically active phenylethene dimers based on planar chiral tetrasubstituted
[2.2]paracyclophane[J]. Chemistry - A European Journal, 2017, 23(26): 6323‒6329.
[124] GON M, MORISAKI Y, SAWADA R, et al. Synthesis of optically active, X-shaped, conjugated compounds and dendrimers based on planar chiral
[2.2]paracyclophane, leading to highly emissive circularly polarized luminescence[J]. Chemistry - A European Journal, 2016, 22(7): 2291‒2298.
[125] GON M, MORISAKI Y, CHUJO Y. A Silver(I)-induced higher-ordered structure based on planar chiral tetrasubstituted
[2.2]paracyclophane[J]. Chemical Communications, 2017, 53(59): 8304‒8307.
[126] DELCOURT M L, REYNAUD C, TURCAUD S, et al. 3D Coumarin systems based on
[2.2]paracyclophane: synthesis, spectroscopic characterization, and chiroptical properties[J]. The Journal of Organic Chemistry, 2019, 84(2): 888‒899.
[127] CHEN C H, ZHENG W H. Planar chiral B-N heteroarenes based on
[2.2]paracyclophane as circularly polarized luminescence emitters[J]. Organic Letters, 2021, 23(14): 5554‒5558.
[128] TSUCHIYA M, MAEDA H, INOUE R, et al. Construction of helical structures with planar chiral
[2.2]paracyclophane: fusing helical and planar chiralities[J]. Chemical Communications, 2021, 57(73): 9256‒9259.
[129] BRUICE P Y. Organic chemistry sixth edition[M] // Chapter 1: electronic structure and bonding acids and bases. Prentice hall, 2011, 33.
[130] CHINCHILLA R, NÁJERA C. The Sonogashira reaction: a booming methodology in synthetic organic chemistry[J]. Chemical Reviews, 2007, 107(3): 874‒922.
[131] LONG N J, WILLIAMS C K. Metal alkynyl σ complexes: synthesis and materials[J]. Angewandte Chemie International Edition, 2003, 42: 2586–2617.
[132] CIFUENTES M P, HUMPHREY M G. Alkynyl compounds and nonlinear optics[J]. Journal of Organometallic Chemistry, 2004, 689: 3968–3981.
[133] PUJADAS M, RODRÍGUEZ L. Luminescent phosphine Gold(I) alkynyl complexes. Highlights from 2010 to 2018[J]. Coordination Chemistry Reviews, 2020, 408: 213179.
[134] 张洲洋, 孔翔飞, 戴胜平, 等. 含炔基类盘状液晶分子的研究进展[J]. 影像科学与光化学, 2017, 35(6): 868‒883.
[135] MATSUMURA K, INOUE R, MORISAKI Y. Optically active A-shaped cyclic molecules based on planar chiral
[2.2]paracyclophanes emitting bright circularly polarized luminescence with high anisotropy factors[J]. Advanced Functional Materials, 2023, 2310566.
[136] FAN J L, HU M M, ZHAN P, et al. Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing[J]. Chemical Society Reviews, 2013, 42(1), 29–43.
[137] WAN C W, BURGHART A, CHEN J, et al. Anthracene–BODIPY cassettes: syntheses and energy transfer[J]. Chemistry - A European Journal, 2003, 9(18), 4430–4441.
[138] LOUDET A, BANDICHHOR R, WU L, et al. Functionalized BF2 chelated azadipyrromethene dyes[J]. Tetrahedron, 2008, 64(17), 3642–3654.
[139] JOSE J, UENO Y, CASTRO J C, et al. Energy transfer dyads based on Nile Red[J]. Tetrahedron Letters, 2009, 50(47), 6442–6445.
[140] HAN J, JOSE J, MEI E, et al. Chemiluminescent energy-transfer cassettes based on fluorescein and nile red[J]. Angewandte Chemie International Edition, 2007, 46(10): 1684‒1687.
[141] YAM V W W, WONG K M C. Luminescent molecular rods – transition-metal alkynyl complexes[J]. Topics in Current Chemistry, 2005, 257: 1–32.
[142] LIMA J C, RODRIGUEZ L. Applications of Gold(I) alkynyl systems: a growing field to explore[J]. Chemical Society Reviews, 2011, 40(11): 5442‒5456.
[143] HAQUE A, XU L L, AL-BALUSHI R A, et al. Cyclometallated tridentate Platinum(II) arylacetylide complexes: old wine in new bottles[J]. Chemical Society Reviews, 2019, 48(23): 5529–5618.
[144] MAGANTI T, VENKATESAN K. The search for efficient true blue and deep blue emitters: an overview of platinum carbene acetylide complexes[J]. ChemPlusChem, 2022, 87(5): e202200014.
[145] DALMAU D, URRIOLABEITIA E P. Luminescence and palladium: the odd couple[J]. Molecules, 2023, 28(6), 2663.
[146] HAQUE A, AL-BALUSHI R A, AL-BALUSHI I J, et al. Rise of conjugated poly-ynes and poly(metalla-ynes): from design through synthesis to structure−property relationships and applications[J]. Chemical Reviews, 2018, 118(18), 8474−8597.
[147] MIRZADEH N, PRIVÉR S H, BLAKE A J, et al. Innovative molecular design strategies in materials science following the aurophilicity concept[J]. Chemical Reviews, 2010, 120(15): 7551−7591.
[148] FRISCH G W T, SCHLEGEL H B, SCUSERIA G E, et al. Gaussian 16, Revision B01[S]. Gaussian Inc Wallingford CT, 2016.
[149] ZHANG D W, LI M, CHEN C F. Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes[J]. Chemical Society Reviews, 2020, 49(5): 1331‒1343.
[150] ZHANG Y P, ZHENG Y X. Frontiers in chiral phosphorescent complexes for circularly polarized electroluminescence[J]. Dalton Transactions, 2022, 51(26): 9966‒9970.
[151] ZHENG H, LI W, LI W, et al. Uncovering the circular polarization potential of chiral photonic cellulose films for photonic applications[J]. Advanced Materials, 2018, 30(13): e1705948.
[152] DAI Y, CHEN J, ZHAO C, et al. Biomolecule-based circularly polarized luminescent materials: construction, progress, and applications[J]. Angewandte Chemie International Edition, 2022, 61(47): e202211822.
[153] MORGENROTH M, SCHOLZ M, GUY L, et al. Spatiotemporal mapping of efficient chiral induction by helicene-type additives in copolymer thin films[J]. Angewandte Chemie International Edition, 2022, 61(31): e202203075.
[154] OKAYASU Y, WAKABAYASHI K, YUASA J. Anion-driven circularly polarized luminescence inversion of unsymmetrical Europium(III) complexes for target identifiable sensing[J]. Inorganic Chemistry, 2022, 61(38): 15108‒15115.
[155] ZINNA F, DI BARI L. Emerging field of chiral Ln(III) complexes for OLEDs[M] // MARTÍN-RAMOS P, RAMOS SILVA M, Lanthanide-based multifunctional materials. Elsevier, 2018: 171‒194.
[156] ZINNA F, VOCI S, ARRICO L, et al. Circularly polarized electrochemiluminescence from a chiral bispyrene organic macrocycle[J]. Angewandte Chemie International Edition, 2019, 58(21): 6952‒6956.
[157] WYNBERG H, MEIJER E W, HUMMELEN J C, et al. Circular polarization observed in bioluminescence[J]. Nature, 1980, 286: 641‒642.
[158] WYNBERG H, NUMAN H, DEKKERS H P J M. The detection of optical activity in chemiluminescence[J]. Journal of the American Chemical Society, 1977, 99(11): 3870‒3871.
[159] HANS WYNBERG H N. Synthesis and spectral data of a stable, optically active 1,2-dioxetane[J]. Journal of the American Chemical Society, 1977, 99(2): 603‒605.
[160] FRANCISCUS W A M, MIESEN A P P W, STEFAN C. J. et al. Synthesis of optically pure 3-(1n*)-(1S,6R)-bicyclo
[4.4.0]decane-3,8-dione, a molecule which is chiral in the excited state only[J]. Journal of the American Chemical Society, 1994, 116(12): 5129‒5133.
[161] MATSUMOTO M, HAMAOKA K, TAKASHIMA Y, et al. Chemiluminescence in molecular recognition: base-induced decomposition of optically active dioxetanes bearing a bisnaphthol moiety with a complex of optically active crown ether-potassium tert-butoxide[J]. Chemical Communications, 2005, 41(6): 808‒810.
[162] MATSUMOTO M, MAEDA H, HOSHIYA N, et al. Chemiluminescence in anisotropic microenvironment: splitting of chemiluminescence efficiency for charge-transfer-induced decomposition of optically active bicyclic dioxetanes bearing a 2-hydroxy-1,1'-binaphthyl-4-yl moiety under chiral recognition[J]. Tetrahedron Letters, 2007, 48(3): 491‒496.
[163] KAWASHIMA H, WATANABE N, IJUIN H K, et al. Magnesium methoxide-induced chemiluminescent decomposition of bicyclic dioxetanes bearing a 2'-alkoxy-2-hydroxy-1,1'-binaphthyl-7-yl moiety[J]. Luminescence, 2013, 28(5): 696‒704.
[164] WIERINGA J H, STRATING J, WYNBERG H. Adamantylideneadamantane peroxide, a stable 1,2-dioxetane [J]. Tetrahedron Letters, 1972, 13(2): 169‒172.
[165] BLOESSER F R, CAVALLI F, WALDEN S L, et al. Chemiluminescent read-out of para-fluoro-thiol reaction events[J]. Chemical Communications, 2020, 56(95): 14996‒14999.
[166] TROFIMOV A V, MIELKE K, VASIĽEV R F, et al. Chemically initiated electron exchange luminescence of silyloxyaryl-substituted spiroadamantyl dioxetanes: kinetics and excited state yields[J]. Photochemistry and Photobiology, 1996, 63(4): 463‒467.
[167] KONING H, SENDEN K. Determination of the order of a reaction and calculation of the initial rate by absorption spectroscopy[J]. Recueil des Travaux Chimiques des Pays-Bas, 2010, 81(12): 1024‒1030.
[168] DHBAIBI K, FAVEREAU L, SREBRO-HOOPER M, et al. Exciton coupling in diketopyrrolopyrrole-helicene derivatives leads to red and near-infrared circularly polarized luminescence[J]. Chemical Science, 2018, 9(3): 735‒742.
[169] MORI T. Chiroptical properties of symmetric double, triple, and multiple helicenes[J]. Chemical Reviews, 2021, 121(4): 2373‒2412.
[170] OLIVEIRA M A D, BARTOLONI F H, AUGUSTO F A, et al. Revision of singlet quantum yields in the catalyzed decomposition of cyclic peroxides[J]. The Journal of Organic Chemistry, 2012, 77(23): 10537‒10544.
[171] AUGUSTO F A, DE SOUZA G A, DE SOUZA J S P, et al. Efficiency of electron transfer initiated chemiluminescence[J]. Photochemistry and Photobiology, 2013, 89(6): 1299‒1317.
[172] SOUZA S P, KHALID M, AUGUSTO F A, et al. Peroxyoxalate chemiluminescence efficiency in polar medium is moderately enhanced by solvent viscosity[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 321: 143‒150.
[173] LEE Y D, LIM C K, SINGH A, et al. Dye/peroxalate aggregated nanoparticles with enhanced and tunable chemiluminescence for biomedical imaging of hydrogen peroxide[J]. ACS Nano, 2012, 6(8): 6759‒6766.
[174] TAHIROVIC A, COPRA A, OMANOVIC-MIKLICANIN E, et al. A chemiluminescence sensor for the determination of hydrogen peroxide[J]. Talanta, 2007, 72(4): 1378‒1385.
[175] KUNTZLEMAN T S, ROHRER K, SCHULTZ E. The chemistry of lightsticks: demonstrations to illustrate chemical processes[J]. Journal of Chemical Education, 2012, 89(7): 910‒916.
[176] SHEN H, SUN F, ZHU X, et al. Rational design of NIR-II AIEgens with ultrahigh quantum yields for photo- and chemi-luminescence imaging[J]. Journal of the American Chemical Society, 2022, 144(33): 15391‒15402.
[177] ZHENG G S, SHEN C L, LOU Q, et al. Meter-scale chemiluminescent carbon nanodot films for temperature imaging[J]. Materials Horizons, 2022, 9(10): 2533‒2541.
[178] SAWADA Y, FURUMI S, TAKAI A, et al. Rhodium-catalyzed enantioselective synthesis, crystal structures, and photophysical properties of helically chiral 1,1′-bitriphenylenes[J]. Journal of the American Chemical Society, 2012, 134(9): 4080‒4083.
[179] STEVANI C V, SILVA S M, BAADER W J. Studies on the mechanism of the excitation step in peroxyoxalate chemiluminescence[J]. European Journal of Organic Chemistry, 2000, 2000(24): 4037‒4046.
[180] KÖNIG B, KNIERIEM B, MEIJERE A D. Double‐layered 1,4‐distyrylbenzene chromophores–synthesis, UV and fluorescene spectra[J]. Chemische Berichte, 1993, 126(7): 1643‒1650.
[181] STEVANI C V, LIMA D F, TOSCANO V G, et al. Kinetic studies on the peroxyoxalate chemiluminescent reaction: imidazole as a nucleophilic catalyst[J]. Journal of the Chemical Society, Perkin Transactions 2, 1996, 5: 989‒995.
[182] KAZEMI S Y, ABEDIRAD S M, VAEZI Z, et al. A study of chemiluminescence characteristics of a novel peroxyoxalate system using berberine as the fluorophore[J]. Dyes and Pigments, 2012, 95(3): 751‒756.
[183] LI B, MIAO W, CHENG L. Influence of fluorescer concentration on peroxyoxalate chemiluminescence spectra[J]. Dyes and Pigments, 2000, 46(2): 81‒84.
[184] ADAM W, BAADER W J. Effects of methylation on the thermal stability and chemiluminescence properties of 1,2-dioxetanes[J]. Journal of the American Chemical Society, 1985, 107(2): 410‒416.
[185] ADAM W, CILENTO G. Four-membered ring peroxides as excited state equivalents: A new dimension in bioorganic chemistry[J]. Angewandte Chemie International Edition, 1983, 22(7): 529‒542.
[186] ADAM W. Thermal generation of electronic excitation with hyperenergetic molecules[J]. Pure and Applied Chemistry, 1980, 52(12): 2591‒2608.
[187] BASTOS E L, FARAHANI P, BECHARA E J H, et al. Four-membered cyclic peroxides: carriers of chemical energy[J]. Journal of Physical Organic Chemistry, 2017, 30(9): e3725.
[188] KOO J Y, SCHUSTER G B. Chemically initiated electron exchange luminescence. A new chemiluminescent reaction path for organic peroxides[J]. Journal of the American Chemical Society, 1977, 99(18): 6107–6109.
[189] WANG H M J, CHEN C Y L, LIN I J B. Synthesis, structure, and spectroscopic properties of Gold(I)-carbene complexes[J]. Organometallics, 1999, 18: 1216‒1223.
[190] CHEN Y, CHENG G, LI K, et al. Phosphorescent polymeric nanomaterials with metallophilic d10⋯d10 interactions self-assembled from [Au(NHC)2]+ and [M(CN)2]−[J]. Chemical Science, 2014, 5(4): 1348‒1353.
[191] LIU Q, XIE M, CHANG X Y, et al. Tunable multicolor phosphorescence of crystalline polymeric complex salts with metallophilic backbones[J]. Angewandte Chemie International Edition, 2018, 57(21): 6279‒6283.
[192] LI K, MING TONG G S, WAN Q, et al. Highly phosphorescent Platinum(II) emitters: photophysics, materials and biological applications[J]. Chemical Science, 2016, 7(3): 1653‒1673.
[193] LI K, CHENG G, MA C, et al. Light-emitting Platinum(II) complexes supported by tetradentate dianionic bis(N-heterocyclic carbene) ligands: towards robust blue electrophosphors[J]. Chemical Science, 2013, 4(6): 2630‒2644.
[194] WINKEL R W, DUBININA G G, ABBOUD K A, et al. Photophysical properties of trans-Platinum acetylide complexes featuring N-heterocyclic carbene ligands[J]. Dalton Transactions, 2014, 43(47): 17712‒17720.
[195] ADAM W, ARIAS L A, ZAHN A, et al. X-ray structural parameters and the thermal stability of 1,2-dioxetanes[J]. Tetrahedron Letters, 1982, 23(32): 3251‒3254.
[196] MATSUMOTO M, WATANABE N, KASUGA N C, et al. Synthesis of 5-alkyl-1-aryl-4,4-dimethyl-2,6,7-trioxabicyclo
[3.2.0]heptanes as a chemiluminescent substrate with remarkable thermal stability[J]. Tetrahedron Letters, 1997, 38(16): 2863‒2866.
[197] MATSUMOTO M, TAKAMIDO Y, NOMURA K, et al. Marked difference in singlet-chemiexcitation efficiency between syn-anti isomers of spiro
[1,2-dioxetane-3,1′-dihydroisobenzofuran] for intramolecular charge-transfer-induced decomposition[J]. Tetrahedron Letters, 2008, 49(42): 6145‒6147.
[198] DUPUY S, LAZREG F, SLAWIN A M Z, et al. Decarboxylation of aromatic carboxylic acids by Gold(Ⅰ)-N-heterocyclic carbene (NHC) complexes[J]. Chemical Communications, 2011, 47(19): 5455‒5457.
[199] HASHMI A S K, RAMAMURTHI T D, ROMINGER F. On the trapping of vinylgold intermediates[J]. Advanced Synthesis & Catalysis, 2010, 352(6): 971‒975.
[200] WAGNIÈRE G H. Light, Magnetism, and Chirality [M] // On chirality and the universal asymmetry. Wiley, 2007: 49‒74.
[201] TANAKA H, INOUE Y, MORI T. Circularly polarized luminescence and circular dichroisms in small organic molecules: correlation between excitation and emission dissymmetry factors[J]. ChemPhotoChem, 2018, 2(5): 386‒402.
[202] KOBAYASHI N, MURANAKA A, MACK J. Chapter 1. Theory of Optical Spectroscopy[M] // Circular dichroism and magnetic circular dichroism spectroscopy for organic chemists. Wiley, 2011: 1‒41.
[203] IMAI Y. Circularly polarized luminescence (CPL) induced by an external magnetic field: magnetic CPL (MCPL)[J]. ChemPhotoChem, 2021, 5(11): 969‒973.
[204] ZHANG J, DAI L, WEBSTER A M, et al. Unusual magnetic field responsive circularly polarized luminescence probes with highly emissive chiral Europium(III) complexes[J]. Angewandte Chemie International Edition, 2021, 60(2): 1004‒1010.
[205] WANG Y F, LI M, TENG J M, et al. Chiral TADF-active polymers for high-efficiency circularly polarized organic light-emitting diodes[J]. Angewandte Chemie International Edition, 2021, 60(44): 23619‒23624.
[206] CHEN Z, ZHONG C, HAN J, et al. High-performance circularly polarized electroluminescence with simultaneous narrowband emission, high efficiency, and large dissymmetry factor[J]. Advanced Materials, 2022, 34(17): e2109147.
[207] MESKERS S C J. Circular polarization of luminescence as a tool to study molecular dynamical processes[J]. ChemPhotoChem, 2021, 6(1): e202100154.
[208] MISHIMA K, KAJI D, FUJIKI M, et al. Remarkable effects of external magnetic field on circularly polarized luminescence of EuIII(hfa)3 with phosphine chirality[J]. Chemphyschem, 2021, 22(17): 1728‒1737.
[209] KAJI D, IKEDA S, TAKAMURA K, et al. Sign control of circularly polarized luminescence based on geometric arrangement of fluorescent pyrene units in a binaphthyl scaffold[J]. Chemistry Letters, 2019, 48(8): 874‒876.
[210] TODA H, OTAKE S, ITO A, et al. Magnetic circularly polarized luminescence in the photoexcited states of racemic [n]helicenes (n=3-5,7) in tetrahydrofuran and dimethyl sulfoxide solutions[J]. Chemphyschem, 2021, 22(20): 2058‒2062.
[211] KIMOTO T, OKUNO M, NUNOTANI N, et al. Mirror symmetric green-color magnetic circularly polarized luminescence from TbIII-containing inorganics under north-up and south-up Faraday geometries[J]. Inorganic Chemistry Communications, 2021, 134: 109034.
[212] MATSUDAIRA K, IZUMOTO A, MIMURA Y, et al. Sign inversion of magnetic circularly polarized luminescence in Iridium(III) complexes bearing achiral ligands[J]. Physical Chemistry Chemical Physics, 2021, 23(9): 5074‒5078.
[213] MATSUDAIRA K, MIMURA Y, HOTEI J, et al. Magnetic circularly polarized luminescence from PtIIOEP and F2-ppyPtII(acac) under north-up and south-up faraday geometries[J]. Chemistry - An Asian Journal, 2021, 16(8): 926‒930.
[214] PAN R, WANG K, YU Z G. Magnetic-field manipulation of circularly polarized photoluminescence in chiral perovskites[J]. Materials Horizons, 2022, 9(2): 740‒747.
[215] AMASAKI R, KITAHARA M, KIMOTO T, et al. Mirror‐image magnetic circularly polarized luminescence from perovskite (M+Pb2+Br3, M+ = Cs+ and amidinium) quantum dots[J]. European Journal of Inorganic Chemistry, 2022, 2022(10): e202101066.
[216] GREENFIELD J L, WADE J, BRANDT J R, et al. Pathways to increase the dissymmetry in the interaction of chiral light and chiral molecules[J]. Chemical Science, 2021, 12(25): 8589‒8602.
[217] CHAO H Y, LU W, LI Y Q, et al. Organic triplet emissions of arylacetylide moieties harnessed through coordination to [Au(PCy3)]+. Effect of molecular structure upon photoluminescent properties[J]. Journal of the American Chemical Society, 2002, 124(49): 14696‒14706.
[218] MIHALY J J, WOLF S M, PHILLIPS A T, et al. Synthetically tunable white-, green-, and yellow-green-light emission in dual-luminescent Gold(I) complexes bearing a diphenylamino-2,7-fluorenyl moiety[J]. Inorganic Chemistry Communications, 2022, 61(3): 1228‒1235.
[219] LU W, KWOK W M, MA C, Et al. Organic triplet excited states of Gold(I) complexes with oligo(o- or m-phenyleneethynylene) ligands: conjunction of steady-state and time-resolved spectroscopic studies on exciton delocalization and emission pathways[J]. Journal of the American Chemical Society, 2011, 133(35): 14120‒14135.
[220] WAN S, LU W. Reversible photoactivated phosphorescence of Gold(I) arylethynyl complexes in aerated DMSO solutions and gels[J]. Angewandte Chemie International Edition, 2017, 56(7): 1784‒1788.
[221] SCATTOLIN T, NOLAN S P. Synthetic routes to late transition metal‒NHC complexes[J]. Trends in Chemistry, 2020, 2(8): 721‒736.
[222] HOSSAIN J, AKHTAR R, KHAN S. Luminescent coinage metal complexes of carbenes[J]. Polyhedron, 2021, 201: 115151.
[223] PENNEY A A, STAROVA G L, GRACHOVA E V, et al. Gold(I) alkynyls supported by mono- and bidentate NHC ligands: luminescence and isolation of unprecedented ionic complexes[J]. Inorganic Chemistry Communications, 2017, 56(24): 14771‒14787.
[224] AUFFRAY M, CHARRA F, SOSA VARGAS L, et al. Synthesis and photophysics of new pyridyl end-capped 3D-dithia
[3.3]paracyclophane-based Janus tectons: surface-confined self-assembly of their model pedestal on HOPG[J]. New Journal of Chemistry, 2020, 44(19): 7665‒7674.
[225] ASAKAWA R, TABATA D, MIKI N, et al. Syntheses of optically active V‐shaped molecules: relationship between their chiroptical properties and the orientation of the stacked -electron system[J]. European Journal of Organic Chemistry, 2021, 2021(41): 5725‒5731.
[226] KIKUCHI K, NAKAMURA J, NAGATA Y, et al. Control of circularly polarized luminescence by orientation of stacked -electron systems[J]. Chemistry - An Asian Journal, 2019, 14(10): 1681‒1685.
[227] CHAO H Y, LU W, LI Y, et al. Organic triplet emissions of arylacetylide moieties harnessed through coordination to [Au(PCy3)]+. Effect of molecular structure upon photoluminescent properties[J]. Journal of the American Chemical Society, 2002, 124(49): 14696‒14706.
[228] LU W, ZHU N, CHE C M. Polymorphic forms of a Gold(I) arylacetylide complex with contrasting phosphorescent characteristics[J]. Journal of the American Chemical Society, 2003, 125(51): 16081‒16088.
[229] ROSENTHAL M, LI L, HERNANDEZ J J, et al. A diacetylene-containing wedge-shaped compound: synthesis, morphology, and photopolymerization[J]. Chemistry - A European Journal, 2013, 19(13): 4300‒4307.

所在学位评定分委会
化学
国内图书分类号
O69
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/647091
专题理学院_化学系
推荐引用方式
GB/T 7714
石明林. 芳炔基化合物的化学发光和圆偏振发光研究[D]. 哈尔滨. 哈尔滨工业大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849564-石明林-化学系.pdf(15117KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[石明林]的文章
百度学术
百度学术中相似的文章
[石明林]的文章
必应学术
必应学术中相似的文章
[石明林]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。