中文版 | English
题名

Physics-Informed Neural Networks for Elliptical-Anisotropy Eikonal Tomography: Application to Data From the Northeastern Tibetan Plateau

作者
通讯作者Sjoerd A. L. de Ridder; Yongshun Chen
发表日期
2023-12-27
DOI
发表期刊
ISSN
2169-9313
EISSN
2169-9356
卷号128期号:12
摘要
["We develop a novel approach for multi-frequency, elliptical-anisotropic eikonal tomography based on physics-informed neural networks (pinnEAET). This approach simultaneously estimates the medium properties controlling anisotropic Rayleigh waves and reconstructs the traveltimes. The physics constraints built into pinnEAET's neural network enable high-resolution results with limited inputs by inferring physically plausible models between data points. Even with a single source, pinnEAET can achieve stable convergence on key features where traditional methods lack resolution. We apply pinnEAET to ambient noise data from a dense seismic array (ChinArray-Himalaya II) in the northeastern Tibetan Plateau with only 20 quasi-randomly distributed stations as sources. Anisotropic phase velocity maps for Rayleigh waves in the period range from 10-40 s are obtained by training on observed traveltimes. Despite using only about 3% of the total stations as sources, our results show low uncertainties, good resolution and are consistent with results from conventional tomography.","Anisotropy refers to the directional dependence of seismic wave velocities, which can arise from a variety of factors such as crystal alignment, stress fields, or fluid-filled cracks. Elliptical-anisotropic eikonal tomography is a variant of eikonal tomography that can be used to estimate medium properties and reconstructed traveltimes from ambient noise data. In this study, we propose a new algorithm to implement multi-frequency, elliptical-anisotropic eikonal tomography based on physics-informed neural networks (pinnEAET), which combine data-driven models with theory-based models that include physics constraints on the system. We apply this architecture to data from a dense seismic array deployed on the northeastern Tibetan Plateau. Our results can achieve at least the same resolution as traditional methods while requiring less traveltime data. This strategy can provide new insights into the seismic imaging in case of limited or noisy data.","We present a physics-informed deep learning eikonal tomography method for anisotropic velocity modelingThe algorithm incorporates wave physics to simultaneously process multi-frequency data, ensuring reliable tomographic modelsWe successfully recover the anisotropic velocity structure of the northeastern Tibet using less data than in traditional models"]
关键词
相关链接[来源记录]
收录类别
语种
英语
重要成果
NI论文
学校署名
第一 ; 通讯
资助项目
National Science Foundation of China["U1901602","41890814"] ; null[KQTD20170810111725321]
WOS研究方向
Geochemistry & Geophysics
WOS类目
Geochemistry & Geophysics
WOS记录号
WOS:001131019300001
出版者
ESI学科分类
GEOSCIENCES
来源库
人工提交
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/647105
专题工学院_海洋科学与工程系
作者单位
1.Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.School of Earth and Environment, University of Leeds, Leeds, UK
第一作者单位海洋科学与工程系
通讯作者单位海洋科学与工程系
第一作者的第一单位海洋科学与工程系
推荐引用方式
GB/T 7714
Yunpeng Chen,Sjoerd A. L. de Ridder,Sebastian Rost,et al. Physics-Informed Neural Networks for Elliptical-Anisotropy Eikonal Tomography: Application to Data From the Northeastern Tibetan Plateau[J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH,2023,128(12).
APA
Yunpeng Chen.,Sjoerd A. L. de Ridder.,Sebastian Rost.,Zhen Guo.,Xiaoyang Wu.,...&Yongshun Chen.(2023).Physics-Informed Neural Networks for Elliptical-Anisotropy Eikonal Tomography: Application to Data From the Northeastern Tibetan Plateau.JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH,128(12).
MLA
Yunpeng Chen,et al."Physics-Informed Neural Networks for Elliptical-Anisotropy Eikonal Tomography: Application to Data From the Northeastern Tibetan Plateau".JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH 128.12(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
JGR Solid Earth - 20(4710KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yunpeng Chen]的文章
[Sjoerd A. L. de Ridder]的文章
[Sebastian Rost]的文章
百度学术
百度学术中相似的文章
[Yunpeng Chen]的文章
[Sjoerd A. L. de Ridder]的文章
[Sebastian Rost]的文章
必应学术
必应学术中相似的文章
[Yunpeng Chen]的文章
[Sjoerd A. L. de Ridder]的文章
[Sebastian Rost]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。