[1] TRéGUER P, NELSON D M, VAN BENNEKOM A J, et al. The Silica Balance in the World Ocean: A Reestimate[J]. Science, 1995, 268(5209): 375-379.
[2] STRUYF E, SMIS A, VAN DAMME S, et al. The Global Biogeochemical Silicon Cycle[J]. Silicon, 2009, 1(4): 207-213.
[3] MEANWELL N A. Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design[J]. Journal of Medicinal Chemistry, 2011, 54(8): 2529-2591.
[4] THOMAS M J K. Silicon in Organic, Organometallic and Polymer Chemistry[M]. Michael A Brook. John Wiley & Sons, New York, 2000.
[5] RAPPOPORT Z, APELOIG Y, Eds. The Chemistry of Organic Silicon Compounds[M]. Wiley, Chichester, 2003.
[6] HIYAMA T, OESTREICH M, Eds. Organosilicon Chemistry: Novel Approaches and Reactions[M]. Wiley: Weinheim, Germany, 2019.
[7] WEICKGENANNT A, OESTREICH M. The Renaissance of Silicon Stereogenic Silanes: A Personal Account[M]. Asymmetric Synth. II 2013, 35−42.
[8] SOMMER L H. Stereochemistry, Mechanism and Silicon; An Introduction to the Dynamic Stereochemistry and Reaction Mechanisms of Silicon Centers [M]. McGraw-Hill Series in Advanced Chemistry; McGrawHill: New York, 1965
[9] OESTREICH M. Silicon-Stereogenic Silanes in Asymmetric Catalysis[J]. Synlett, 2007, 2007(11): 1629-1643.
[10] XU L-W, LI L, LAI G-Q, et al. The Recent Synthesis and Application of Silicon-Stereogenic Silanes: A Renewed and Significant Challenge in Asymmetric Synthesis[J]. Chemical Society Reviews, 2011, 40(3): 1777-1790.
[11] RENDLER S, AUER G, KELLER M, et al. Preparation of a Privileged Silicon-Stereogenic Silane: Classical Versus Kinetic Resolution[J]. Advanced Synthesis & Catalysis, 2006, 348(10-11): 1171-1182.
[12] BAUER J O, STROHMANN C. Stereocontrol in Nucleophilic Substitution Reactions at Silicon: The Role of Permutation in Generating Silicon-Centered Chirality[J]. Journal of the American Chemical Society, 2015, 137(13): 4304-4307.
[13] LUCAS P, ROBIN J-J. Silicone-Based Polymer Blends: An Overview of The Materials and Processes[J]. Advances in Polymer Science, 2007, 209 (Functional Materials and Biomaterials): 111-147.
[14] 冯圣玉,张洁,利美江,等. 有机硅高分子及其应用[M]. 北京:化学工业出版社,2004.
[15] SHINTANI R. Recent Advances in the Transition-Metal-Catalyzed Enantioselective Synthesis of Silicon-Stereogenic Organosilanes[J]. Asian Journal of Organic Chemistry, 2015, 4(6): 510-514.
[16] WU Y, WANG P. Silicon-Stereogenic Monohydrosilane: Synthesis and Applications[J]. Angewandte Chemie International Edition, 2022, 61(36): e202205382.
[17] YUAN W, HE C. Enantioselective C–H Functionalization toward Silicon-Stereogenic Silanes[J]. Synthesis, 2022, 54(08): 1939-1950.
[18] GE Y, HUANG X, KE J, et al. Transitionmetal-Catalyzed Enantioselective C−H Silylation [J]. Chem Catalysis, 2022, 2(11): 2898-928.
[19] SOMMER L H, FRYE C L. Optically Acttive Organosilicon Compounds Having Reactive Groups Bonded to Asymmetric Silicon. Displacement Reactions at Silicon with Pure Retention and Pure Invevtion of Configuration[J]. Journal of the American Chemical Society, 1959, 81(4): 1013.
[20] SOMMER L H, FRYE C L, PARKER G A, et al. Stereochemistry of Asymmetric Silicon. I. Relative and Absolute Configurations of Optically Active α-Naphthylphenylmethylsilanes[J]. Journal of the American Chemical Society, 1964, 86(16): 3271-3276.
[21] SOMMER L H, ROSBOROUGH K T. Stereochemistry of Asymmetric Silicon. XVII. Synthesis, Resolution, and Stereochemistry of The 1,2,2,2-Tetraphenyl-1-methyldisilane System[J]. Journal of the American Chemical Society, 1969, 91(25): 7067-7076.
[22] CORRIU R, MASSE J. Stereochemistry and Mechanism of Nucleophilic Substitution Silicon Atoms. An Asymmetric Cyclosilane[J]. Bulletin de la Société Chimique de France, 1969, (10): 3491-3496.
[23] CORRIU R J P, OULD-KADA S, LANNEAU G. Methylphenyl- triphenylgermylsilanes Fonctionnels Optiquement Actifs: I. Synthese et Stereochimie[J]. Journal of Organometallic Chemistry, 1983, 248(1): 23-37.
[24] DAIYO T, KATSUTOSHI M, MASANORI K, et al. Optical Resolutions and Configurations of Benzylmethylphenylsilylmethylamine and Its Derivatives[J]. Bulletin of the Chemical Society of Japan, 1980, 53(3): 789-794.
[25] JANKOWSKI P, SCHAUMANN E, WICHA J, et al. Facile Synthesis of Enantiomerically Pure Tert-butyl(methyl)phenylsilanes[J]. Tetrahedron: Asymmetry, 1999, 10(3): 519-526.
[26] JANKOWSKI P, SCHAUMANN E, WICHA J, et al. Preparation of Optically Active n-Butyl(methyl)phenyl-, tert-Butyl(methyl)phenyl- and iso-Propyl-(methyl)phenylsilanes from the Corresponding Silyl Chlorides Using 2,2′-dihydroxy-1,1′-binaphthyls as Resolving Agents[J]. Chemical Communications, 2000, (12): 1029-1030.
[27] TRZOSS M, SHAO J, BIENZ S. Preparation of a Si-Centered Chiral Auxiliary by Resolution[J]. Tetrahedron: Asymmetry, 2004, 15(9): 1501-1505.
[28] KIMIKO K, TAKAYUKI K, SHINJI M. Asymmetric Synthesis of Silicon Compounds Using Chiral 5,6-Dimethoxy-1,3,2-dioxasilacycloheptane Derivatives[J]. Chemistry Letters, 1987, 16(1): 101-104.
[29] OKA N, NAKAMURA M, SOEDA N, et al. Stereocontrolled Synthesis of Tertiary Silanes via Optically Pure 1,3,2-Oxazasilolidine Derivatives[J]. Journal of Organometallic Chemistry, 2009, 694(14): 2171-2178.
[30] CORRIU R J P, MOREAU J J E. Asymmetric Synthesis at Silicon: II. Alcoholysis of Prochiral Organosilicon Compounds Catalysed by Rhodium Complexes[J]. Journal of Organometallic Chemistry, 1976, 120(3): 337-346.
[31] GUO J, WANG H, XING S, et al. Cobalt-Catalyzed Asymmetric Synthesis of gem-Bis(silyl)alkanes by Double Hydrosilylation of Aliphatic Terminal Alkynes[J]. Chem, 2019, 5(4): 881-895.
[32] CORRIU R J P, MOREAU J J E. Asymmetric Hydrosilylation of Ketones Catalysed by a Chiral Rhodium Complex[J]. Journal of Organometallic Chemistry, 1974, 64(3): C51-C4.
[33] Hayashi T, Yamamoto K, Kumada M. Asymmetric Synthesis of Bifunctional Organosilicon Compounds via Hydrosilylation[J]. Tetrahedron Letters, 1974, 15(4): 331-334.
[34] HAYASHI T, YAMAMOTO K, KUMADA M, et al. Asymmetric Synthesis of Silanes with a Stereogenic Centre at Silicon via Hydrosilylation of Symmetric Ketones with Prochiral Diaryl Silanes Catalysed by Binap–Rh Complexes[J]. Journal of the Chemical Society, Chemical Communications, 1994, (21): 2525-2526.
[35] TAMAO K, NAKAMURA K, ISHII H, et al. Axially Chiral Spirosilanes via Catalytic Asymmetric Intramolecular Hydrosilation[J]. Journal of the American Chemical Society, 1996, 118(49): 12469-12470.
[36] IGAWA K, YOSHIHIRO D, ICHIKAWA N, et al. Catalytic Enantioselective Synthesis of Alkenylhydrosilanes[J]. Angewandte Chemie International Edition, 2012, 51(51): 12745-12748.
[37] WEN H, WAN X, HUANG Z. Asymmetric Synthesis of Silicon-Stereogenic Vinylhydrosilanes by Cobalt-Catalyzed Regio- and Enantioselective Alkyne Hydrosilylation with Dihydrosilanes[J]. Angewandte Chemie International Edition, 2018, 57(21): 6319-6323.
[38] XIE J-L, XU Z, ZHOU H-Q, et al. Palladium-Catalyzed Hydrosilylation of Ynones to Access Silicon-Stereogenic Silylenones by Stereospecific Aromatic Interaction-Assisted Si−H Activation[J]. Science China Chemistry, 2021, 64(5): 761-769.
[39] ZHAN G, TENG H-L, LUO Y, et al. Enantioselective Construction of Silicon-Stereogenic Silanes by Scandium-Catalyzed Intermolecular Alkene Hydrosilylation[J]. Angewandte Chemie International Edition, 2018, 57(38): 12342-12346.
[40] HE T, LIU L-C, MA W-P, et al. Enantioselective Construction of Si-Stereogenic Center via Rhodium-Catalyzed Intermolecular Hydrosilylation of Alkene[J]. Chemistry – A European Journal, 2020, 26(71): 17011-17015.
[41] HUANG Y-H, WU Y, ZHU Z, et al. Enantioselective Synthesis of Silicon-Stereogenic Monohydrosilanes by Rhodium-Catalyzed Intramolecular Hydrosilylation[J]. Angewandte Chemie International Edition, 2022, 61(1): e202113052.
[42] LU W, ZHAO Y, MENG F. Cobalt-Catalyzed Sequential Site- and Stereoselective Hydrosilylation of 1,3- and 1,4-Enynes[J]. Journal of the American Chemical Society, 2022, 144(12): 5233-5240.
[43] YASUTOMI Y, SUEMATSU H, KATSUKI T. Iridium(III)-Catalyzed Enantioselective Si−H Bond Insertion and Formation of an Enantioenriched Silicon Center[J]. Journal of the American Chemical Society, 2010, 132(13): 4510-4511.
[44] NAKAGAWA Y, CHANTHAMATH S, FUJISAWA I, et al. Ru(ii)-Pheox-Catalyzed Si–H Insertion Reaction: Construction of Enantioenriched Carbon and Silicon Centers[J]. Chemical Communications, 2017, 53(26): 3753-3756.
[45] JAGANNATHAN J R, FETTINGER J C, SHAW J T, et al. Enantioselective Si–H Insertion Reactions of Diarylcarbenes for the Synthesis of Silicon-Stereogenic Silanes[J]. Journal of the American Chemical Society, 2020, 142(27): 11674-11679.
[46] KUNINOBU Y, YAMAUCHI K, TAMURA N, et al. Rhodium-Catalyzed Asymmetric Synthesis of Spirosilabifluorene Derivatives[J]. Angewandte Chemie International Edition, 2013, 52(5): 1520-1522.
[47] MURAI M, TAKEUCHI Y, YAMAUCHI K, et al. Rhodium-Catalyzed Synthesis of Chiral Spiro-9-silabifluorenes by Dehydrogenative Silylation: Mechanistic Insights into the Construction of Tetraorganosilicon Stereocenters[J]. Chemistry – A European Journal, 2016, 22(17): 6048-6058.
[48] MU D, YUAN W, CHEN S, et al. Streamlined Construction of Silicon-Stereogenic Silanes by Tandem Enantioselective C–H Silylation/Alkene Hydrosilylation[J]. Journal of the American Chemical Society, 2020, 142(31): 13459-13468.
[49] YUAN W, YOU L, LIN W, et al. Asymmetric Synthesis of Silicon-Stereogenic Monohydrosilanes by Dehydrogenative C–H Silylation[J]. Organic Letters, 2021, 23(4): 1367-1372.
[50] MA W, LIU L-C, AN K, et al. Rhodium-Catalyzed Synthesis of Chiral Monohydrosilanes by Intramolecular C−H Functionalization of Dihydrosilanes[J]. Angewandte Chemie International Edition, 2021, 60(8): 4245-4251.
[51] CHEN S, MU D, MAI P-L, et al. Enantioselective Construction of Six- and Seven-Membered Triorgano-Substituted Silicon-Stereogenic Heterocycles [J]. Nature Communications, 2021, 12(1): 1249.
[52] GUO Y, LIU M-M, ZHU X, et al. Catalytic Asymmetric Synthesis of Silicon-Stereogenic Dihydrodibenzosilines: Silicon Central-to-Axial Chirality Relay[J]. Angewandte Chemie International Edition, 2021, 60(25): 13887-13891.
[53] CORRIU R J P, MOREAU J J E. Synthese Asymetrique D'alcoxysilanes Catalysee par des Complexes du Rhodium[J]. Tetrahedron Letters, 1973, 14(45): 4469-4472.
[54] SCHMIDT D R, O'MALLE S J, LEIGHTON J L, Leighton J L. Catalytic Asymmetric Silane Alcoholysis: Practical Access to Chiral Silanes[J]. Journal of the American Chemical Society, 2003, 125(5): 1190-1191.
[55] LI Y, SEINO M, KAWAKAMI Y. Asymmetric Synthesis of Optically Active Poly(silyl ether)s Having Reactive Si−H Groups by Stereoselective Cross-Dehydrocoupling Polymerization of Bis(silane)s with Diols[J]. Macromolecules, 2000, 33(15): 5311-5314.
[56] ZHAI X-Y, WANG X-Q, ZHOU Y-G. Cobalt-Catalyzed Selective Dehydrocoupling Polymerization of Prochiral Silanes and Diols[J]. European Polymer Journal, 2020, 134: 109832.
[57] XU J-X, CHEN M-Y, ZHENG Z-J, et al. Platinum-Catalyzed Multicomponent Alcoholysis/Hydrosilylation and Bis-hydrosilylation of Alkynes with Dihydrosilanes[J]. ChemCatChem, 2017, 9(16): 3111-3116.
[58] LONG P-W, BAI X-F, YE F, et al. Construction of Six-Membered Silacyclic Skeletons via Platinum-Catalyzed Tandem Hydrosilylation/Cyclization with Dihydrosilanes[J]. Advanced Synthesis & Catalysis, 2018, 360(15): 2825-2830.
[59] YUAN W, ZHU X, XU Y, et al. Synthesis of Si-stereogenic Silanols by Catalytic Asymmetric Hydrolytic Oxidation[J]. Angewandte Chemie International Edition, 2022, 61(31): e202204912.
[60] GAO J, MAI P-L, GE Y, et al. Copper-Catalyzed Desymmetrization of Prochiral Silanediols to Silicon-Stereogenic Silanols[J]. ACS Catalysis, 2022, 12(14): 8476-8483.
[61] MURATA M, SUZUKI K, WATANABE S, et al. Synthesis of Arylsilanes via Palladium(0)-Catalyzed Silylation of Aryl Halides with Hydrosilane[J]. The Journal of Organic Chemistry, 1997, 62(24): 8569-8571.
[62] YAMANOI Y, TAIRA T, SATO J-I, et al. Efficient Preparation of Monohydrosilanes Using Palladium-catalyzed Si−C Bond Formation[J]. Organic Letters, 2007, 9(22): 4543-4546.
[63] KURIHARA Y, NISHIKAWA M, YAMANOI Y, et al. Synthesis of Optically Active Tertiary Silanes via Pd-Catalyzed Enantioselective Arylation of Secondary Silanes[J]. Chemical Communications, 2012, 48(94): 11564-11566.
[64] CHEN L, HUANG J-B, XU Z, et al. Palladium-Catalyzed Si–C Bond-Forming Silylation of Aryl Iodides with Hydrosilanes: An Enhanced Enantioselective Synthesis of Silicon-Stereogenic Silanes by Desymmetrization[J]. RSC Advances, 2016, 6(71): 67113-67117.
[65] LU X, LI L, YANG W, et al. Catalytic Synthesis of Functional Silicon-Stereogenic Silanes through Candida Antarctica Lipase B Catalyzed Remote Desymmetrization of Silicon-Centered Diols[J]. European Journal of Organic Chemistry, 2013, 2013(26): 5814-5819.
[66] AN K, MA W, LIU L-C, et al. Rhodium Hydride Enabled Enantioselective Intermolecular C–H Silylation to Access Acyclic Stereogenic Si–H[J]. Nature Communications, 2022, 13(1): 847.
[67] SOMMER L H, KORTE W D. Stereochemistry of Asymmetric Silicon. VIII. Stereochemistry Crossover and Leaving Group Basicity in Organometallic Coupling Reactions[J]. Journal of the American Chemical Society, 1967, 89(23): 5802-5806.
[68] SOMMER L H, ULLAND L A, RITTER A. Dihalocarbene Insertions into Optically Active R3Si*H with Retention of Configuration[J]. Journal of the American Chemical Society, 1968, 90(16): 4486.
[69] BROOK A G, DUFF J M, ANDERSON D G. Optically Active Silyl- and Germylmethyllithium Reagents and the Stereochemistry of Carbene Insertions into the Silicon-Hydrogen and Germanium-Hydrogen Bonds[J]. Journal of the American Chemical Society, 1970, 92(26): 7567-7572.
[70] STANG P J, LEARNED A E. Stereochemistry and Mode of Intermolecular Silicon-Hydrogen Unsaturated Carbene Insertions[J]. Journal of the American Chemical Society, 1987, 109(16): 5019-5020.
[71] STANG P J, LEARNED A E. Axial Chirality by Asymmetric Induction. Diastereomeric Allene Formation via Silicon as a Chiral Auxiliary[J]. The Journal of Organic Chemistry, 1989, 54(8): 1779-1781.
[72] SOMMER L H, MICHAEL K W, FUJIMOTO H. Stereochemistry of Asymmetric Silicon. Stereospecific Platinum-Catalyzed Hydrosilation of 1-Octene with Optically Active R3Si*H[J]. Journal of the American Chemical Society, 1967, 89(6): 1519-1521.
[73] BROOK A G, PANNELL K H, ANDERSON D G. Alpha.-Silyl-cis-Stilbenes from Silylcarbonium Ions and from the Platinum-Catalyzed Addition of Silanes to Diphenylacetylene[J]. Journal of the American Chemical Society, 1968, 90(16): 4374-4377.
[74] SOMMER L H, LYONS J E. Stereospecific Substitution Reactions of Optically Active R3Si*H Catalyzed by Palladium and Nickel[J]. Journal of the American Chemical Society, 1967, 89(6): 1521-1522.
[75] SOMMER L H, LYONS J E. The Stereochemistry of the Silicon-Cobalt Bond and some Implications for Homogeneous Transition-Metal Catalysis[J]. Journal of the American Chemical Society, 1968, 90(15): 4197-4199.
[76] SOMMER L H, LYONS J E. The Stereochemistry of the Silicon-Cobalt Bond and Some Implications for Homogeneous Transition-Metal Catalysis[J]. Journal of the American Chemical Society, 1968, 90(15): 4197-4199.
[77] EABORN C, KAPOOR P N, TUNE D J, et al. The Preparation of Optically Active Germyl- and Silylplatinum Complexes[J]. Journal of Organometallic Chemistry, 1972, 34(1): 153-154.
[78] EABORN C, TUNE D J, WALTON D R M. Stereochemistry of the Formation and Cleavage of Silicon–Platinum Bonds[J]. Journal of the Chemical Society, Dalton Transactions, 1973, (21): 2255-2264.
[79] JOHANNSEN M, JøRGENSEN K A, HELMCHEN G, Helmchen G. Synthesis and Application of the First Chiral and Highly Lewis Acidic Silyl Cationic Catalyst[J]. Journal of the American Chemical Society, 1998, 120(30): 7637-7638.
[80] IGAWA K, KOKAN N, TOMOOKA K. Asymmetric Synthesis of Chiral Silacarboxylic Acids and Their Ester Derivatives[J]. Angewandte Chemie International Edition, 2010, 49(4): 728-731.
[81] KAWAKAMI Y, TAKAHASHI T, YADA Y, et al. Elucidation of the Stereochemical Pathway to Isotactic Poly[(methylphenylsilylene)- trimethylene] from Allylmethylphenylsilane[J]. Polymer Journal, 1998, 30(12): 1001-1003.
[82] KAWAKAMI Y, TAKEYAMA K, KOMURO K, et al. Synthesis of Poly(methylphenylsilylenetrimethylene) Rich in Isotacticity Characterized by 750 MHz 1H NMR[J]. Macromolecules, 1998, 31(2): 551-553.
[83] KAWAKAMI Y, NAKAO K, SHINKE S, et al. Synthesis and Polyaddition Reaction of Optically Active Methylphenylpropargylsilane[J]. Macromolecules, 1999, 32(20): 6874-6876.
[84] FRY J L. Stereoselective Attack at on Enantiotopic Face of a Carbonium Ion by Chiral Nucleophile[J]. Journal of the American Chemical Society, 1971, 93(14): 3558-3559.
[85] FRY J L, ADLINGTON M G. Asymmetric Reductions of Carbocations by Chiral Organosilicon Hydrides. The Stereochemical Nature of the Carbocation Captured[J]. Journal of the American Chemical Society, 1978, 100(24): 7641-7644.
[86] JUNG M E, HOGAN K T. Chirality Transfer from Silicon to Carbon: Use of Optically Pure Cyclic Silanes with a Binaphthalene Chiral Unit[J]. Tetrahedron Letters, 1988, 29(48): 6199-6202.
[87] OESTREICH M. Chirality Transfer from Silicon to Carbon[J]. Chemistry – A European Journal, 2006, 12(1): 30-37.
[88] OESTREICH M, RENDLER S. “True” Chirality Transfer from Silicon to Carbon: Asymmetric Amplification in a Reagent-Controlled Palladium-Catalyzed Hydrosilylation[J]. Angewandte Chemie International Edition, 2005, 44(11): 1661-1664.
[89] RENDLER S, OESTREICH M, BUTTS C P. et al. Intermolecular Chirality Transfer from Silicon to Carbon: Interrogation of the Two-Silicon Cycle for Pd-Catalyzed Hydrosilylation by Stereoisotopochemical Crossover[J]. Journal of the American Chemical Society, 2007, 129(3): 502-503.
[90] RENDLER S, AUER G, OESTREICH M. Kinetic Resolution of Chiral Secondary Alcohols by Dehydrogenative Coupling with Recyclable Silicon- Stereogenic Silanes[J]. Angewandte Chemie International Edition, 2005, 44(46): 7620-7624.
[91] KLARE H F T, OESTREICH M. Chiral Recognition with Silicon-Stereogenic Silanes: Remarkable Selectivity Factors in the Kinetic Resolution of Donor-Functionalized Alcohols[J]. Angewandte Chemie International Edition, 2007, 46(48): 9335-9338.
[92] STEVES A, OESTREICH M. Facile Preparation of CF3-Substituted Carbinols with an Azine Donor and Subsequent Kinetic Resolution Through Stereoselective Si–O Coupling[J]. Organic & Biomolecular Chemistry, 2009, 7(21): 4464-4469.
[93] RENDLER S, PLEFKA O, KARATAS B, et al. Stereoselective Alcohol Silylation by Dehydrogenative Si–O Coupling: Scope, Limitations, and Mechanism of the Cu–H-Catalyzed Non-Enzymatic Kinetic Resolution with Silicon-Stereogenic Silanes[J]. Chemistry – A European Journal, 2008, 14(36): 11512-11528.
[94] RENDLER S, OESTREICH M. Conclusive Evidence for an SN2-Si Mechanism in the B(C6F5)3-Catalyzed Hydrosilylation of Carbonyl Compounds: Implications for the Related Hydrogenation[J]. Angewandte Chemie International Edition, 2008, 47(32): 5997-6000.
[95] CORRIU R, MASSE J. Reactions Stereospecifiques de lithiens sur un Bicyclosilane Asymetrique[J]. Tetrahedron Letters, 1968, 9(50): 5197-5200.
[96] ROARK D N, SOMMER L H. Dramatic Stereochemistry Crossover to Retention of Configuration with Angle-Strained Asymmetric Silicon[J]. Journal of the American Chemical Society, 1973, 95(3): 969-971.
[97] BROOK A G, WARNER C M. The Stereospecific Synthesis and Rearrangement of an α-Hydroxysilane[J]. Tetrahedron Letters, 1962, 3(18): 815-819.
[98] BROOK A G, LIMBURG W W. Stereochemistry of α-Silylcarbinol Rearrangements. II. The Absolute Configuration of Asymmetric Silanes[J]. Journal of the American Chemical Society, 1963, 85(6): 832-833.
[99] SOMMER L H, CITRON J D. Group VIII Metal-Catalyzed Reactions of Organosilicon Hydrides with Amines, Hydrogen Halides, and Hydrogen Sulfide[J]. The Journal of Organic Chemistry, 1967, 32(8): 2470-2472.
[100] SOMMER L H, ULLAND L A, PARKER G A. Stereochemistry of Asymmetric Silicon. Hydroxylation and Carbene Insertion Reactions of R3SiH[J]. Journal of the American Chemical Society, 1972, 94(10): 3469-3471.
[101] SOMMER L H, ULLAND L A, RITTER A. Dihalocarbene Insertions into Optically Active R3Si*H with Retention of Configuration[J]. Journal of the American Chemical Society, 1968, 90(16): 4486.
[102] METSäNEN T T, HROBáRIK P, KLARE H F T, et al. Insight into the Mechanism of Carbonyl Hydrosilylation Catalyzed by Brookhart’s Cationic Iridium(III) Pincer Complex[J]. Journal of the American Chemical Society, 2014, 136(19): 6912-6915.
[103] IGLESIAS M, FERNáNDEZ-ALVAREZ F J, ORO L A. Outer-Sphere Ionic Hydrosilylation Catalysis[J]. ChemCatChem, 2014, 6(9): 2486-2489.
[104] KOGA S, UEKI S, SHIMADA M, et al. Access to Chiral Silicon Centers for Application to Circularly Polarized Luminescence Materials[J]. The Journal of Organic Chemistry, 2017, 82(12): 6108-6117.
[105] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16, Revision A.03[CP]. Gaussian, Inc.: Wallingford, CT, 2016.
[106] BECKE A D. Density-Functional Thermochemistry. III. The Role of Exact Exchange[J]. The Journal of Chemical Physics, 1993, 98(7): 5648-5652.
[107] LEE C, YANG W, PARR R G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density[J]. Physical Review B, 1988, 37(2): 785-789.
[108] ZHAO Y, TRUHLAR D G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited states, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 other Functionals[J]. Theoretical Chemistry Accounts, 2008, 120(1): 215-241.
[109] MARENICH A V, CRAMER C J, TRUHLAR D G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions[J]. The Journal of Physical Chemistry B, 2009, 113(18): 6378-6396.
[110] LEGAULT C Y. CYLView, 1.0b; Universitéde Sherbrooke: Québec, Montreal, Canada, 2009; http://www.cylview.org.
[111] LALONDE M, CHAN T H. Use of Organosilicon Reagents as Protective Groups in Organic Synthesis[J]. Synthesis, 1985, 1985(09): 817-845.
[112] CHAN T H, WANG D. Chiral Organosilicon Compounds in Asymmetric Synthesis[J]. Chemical Reviews, 1992, 92(5): 995-1006.
[113] KAMINO B A, BENDER T P. The Use of Siloxanes, Silsesquioxanes, and Silicones in Organic Semiconducting Materials[J]. Chemical Society Reviews, 2013, 42(12): 5119-5130.
[114] KURODA K, SHIMOJIMA A, KAWAHARA K, et al. Utilization of Alkoxysilyl Groups for the Creation of Structurally Controlled Siloxane-Based Nanomaterials[J]. Chemistry of Materials, 2014, 26(1): 211-220.
[115] XU L-W, CHEN Y, LU Y. Catalytic Silylations of Alcohols: Turning Simple Protecting-Group Strategies into Powerful Enantioselective Synthetic Methods[J]. Angewandte Chemie International Edition, 2015, 54(33): 9456-9466.
[116] ISSA A A, LUYT A S. Kinetics of Alkoxysilanes and Organoalkoxysilanes Polymerization: A Review[J]. Polymers, 2019, 11(3): 537.
[117] REYES-RODRíGUEZ G J, REZAYEE N M, VIDAL-ALBALAT A, et al. Prevalence of Diarylprolinol Silyl Ethers as Catalysts in Total Synthesis and Patents[J]. Chemical Reviews, 2019, 119(6): 4221-4260.
[118] RIEHL J P, RICHARDSON F S. Circularly Polarized Luminescence Spectroscopy[J]. Chemical Reviews, 1986, 86(1): 1-16.
[119] KUMAR J, NAKASHIMA T, KAWAI T. Circularly Polarized Luminescence in Chiral Molecules and Supramolecular Assemblie[J]. The Journal of Physical Chemistry Letters, 2015, 6(17): 3445-3452.
[120] HAN J, GUO S, LU H, et al. Recent Progress on Circularly Polarized Luminescent Materials for Organic Optoelectronic Devices[J]. Advanced Optical Materials, 2018, 6(17): 1800538.
[121] SANG Y, HAN J, ZHAO T, et al. Circularly Polarized Luminescence in Nanoassemblies: Generation, Amplification, and Application[J]. Advanced Materials, 2020, 32(41): 1900110.
[122] ZHAO T, HAN J, DUAN P, et al. New Perspectives to Trigger and Modulate Circularly Polarized Luminescence of Complex and Aggregated Systems: Energy Transfer, Photon Upconversion, Charge Transfer, and Organic Radical[J]. Accounts of Chemical Research, 2020, 53(7): 1279-1292.
[123] INOUYE M, HAYASHI K, YONENAGA Y, et al. A Doubly Alkynylpyrene-Threaded
[4]Rotaxane that Exhibits Strong Circularly Polarized Luminescence from the Spatially Restricted Excimer[J]. Angew Chem Int Ed 2014, 53(52): 14392-14396.
[124] SáNCHEZ-CARNERERO E M, AGARRABEITIA A R, MORENO F, et al. Circularly Polarized Luminescence from Simple Organic Molecules[J]. Chemistry – A European Journal, 2015, 21(39): 13488-13500.
[125] OHISHI Y, INOUYE M. Circularly Polarized Luminescence from Pyrene Excimers[J]. Tetrahedron Letters, 2019, 60(46): 151232.
[126] YASUTOMI Y, SUEMATSU H, KATSUKI T. Iridium(III)-Catalyzed Enantioselective Si−H Bond Insertion and Formation of an Enantioenriched Silicon Center[J]. Journal of the American Chemical Society, 2010, 132(13): 4510-4511.
[127] ZHAO Z, DAS S, XING G, et al. A 3D Organically Synthesized Porous Carbon Material for Lithium-Ion Batteries[J]. Angewandte Chemie International Edition, 2018, 57(37): 11952-11956.
[128] HART A S, K. C C B, SUBBAIYAN N K, et al. Phenothiazine-Sensitized Organic Solar Cells: Effect of Dye Anchor Group Positioning on the Cell Performance[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 5813-5820.
[129] DRISCOLL P F, DOUGLASS E F, PHEWLUANGDEE M, et al. Photocurrent Generation in Noncovalently Assembled Multilayered Thin Films[J]. Langmuir, 2008, 24(9): 5140-5145.
[130] IGAWA K, YOSHIHIRO D, ICHIKAWA N, et al. Catalytic Enantioselective Synthesis of Alkenylhydrosilanes[J]. Angewandte Chemie International Edition, 2012, 51(51): 12745-12748.
[131] TSUMURA M, IWAHARA T, HIROSE T. Synthesis and Properties of Polycarbosilanes by Hydrosilylation Polymerization[J]. Polymer Journal, 1995, 27(10): 1048-1053.
[132] 潘祖仁. 高分子化学[M]. 北京:化学工业出版社,2007.
[133] 潘祖仁,于在璋,焦书科. 高分子化学[M]. 北京:化学工业出版社2003.
[134] KAKUCHI T, SAKAI R. In Encyclopedia of Polymer Science Technology[M]. 3rd ed., Wiley, Hoboken, 2009, pp. 1-32.
[135] COATES G W. Precise Control of Polyolefin Stereochemistry Using Single-Site Metal Catalysts[J]. Chemical Reviews, 2000, 100(4): 1223-1252.
[136] YASHIMA E, OUSAKA N, TAURA D, et al. Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions[J]. Chemical Reviews, 2016, 116(22): 13752-13990.
[137] CORNELISSEN J J L M, ROWAN A E, NOLTE R J M, et al. Chiral Architectures from Macromolecular Building Blocks[J]. Chemical Reviews, 2001, 101(12): 4039-4070.
[138] 韩涛,张艺等.具有光学活性高性能高分子材料的研究进展[J]. 高分子材料科学与工程,2011,27(12):48-56.
[139] ZOU H, WU Q-L, ZHOU L, et al. Chiral Recognition and Resolution Based on Helical Polymers[J]. Chinese Journal of Polymer Science, 2021, 39(12): 1521-1527.
[140] ZHANG Y, DENG J. Chiral Helical Polymer Materials Derived from Achiral Monomers and their Chiral Applications[J]. Polymer Chemistry, 2020, 11(34): 5407-5423.
[141] SHEN J, OKAMOTO Y. Efficient Separation of Enantiomers Using Stereoregular Chiral Polymers[J]. Chemical Reviews, 2016, 116(3): 1094-1138.
[142] SONG L, PAN M, ZHAO R, et al. Recent Advances, Challenges and Perspectives in Enantioselective Release[J]. Journal of Controlled Release, 2020, 324: 156-171.
[143] MANGELINGS D, EELTINK S, VANDER HEYDEN Y Recent Developments in Liquid and Supercritical Fluid Chromatographic Enantioseparations[J]. Handbook of Analytical Separations, 2020, 8, 453-521.
[144] PERCEC V, XIAO Q. Helical Chirality of Supramolecular Columns and Spheres Self-Organizes Complex Liquid Crystals, Crystals, and Quasicrystals[J]. Israel Journal of Chemistry, 2021, 61, 530-556.
[145] NECHVATALOVA M, URBAN J. Current Trends in the Development of Polymer-Based Monolithic Stationary Phases[J]. Analytical Science Advances, 2022, 3, 154-164.
[146] IGAWA K, UEHARA K, KAWASAKI Y, et al. Stereochemical Study on Planar-Chiral Cyclic Molecules using Polysaccharide-Based Column Chromatography[J]. Chirality, 2022, 34(6): 824-832.
[147] YILGöR E, YILGöR I. Silicone Containing Copolymers: Synthesis, Properties and Applications[J]. Progress in Polymer Science, 2014, 39(6): 1165-1195.
[148] ZHU D, HANDSCHUH-WANG S, ZHOU X. Recent Progress in Fabrication and Application of Polydimethylsiloxane Sponges[J]. Journal of Materials Chemistry A, 2017, 5(32): 16467-16497.
[149] HéNOT M, DROCKENMULLER É, LéGER L, et al. Friction of Polymers: from PDMS Melts to PDMS Elastomers[J]. ACS Macro Letters, 2018, 7(1): 112-115.
[150] WOLF M P, SALIEB-BEUGELAAR G B, HUNZIKER P. PDMS with Designer Functionalities–Properties, Modifications Strategies, and Applications[J]. Progress in Polymer Science, 2018, 83: 97-134.
[151] YI B, WANG S, HOU C, et al. Dynamic Siloxane Materials: From Molecular Engineering to Emerging Applications[J]. Chemical Engineering Journal, 2021, 405: 127023.
[152] RUPASINGHE B, FURGAL J C. Degradation of Silicone-Based Materials as a Driving Force for Recyclability[J]. Polymer International, 2022, 71(5): 521-531.
[153] 夏勇,姚洪涛,缪智辉等. 化学进展(Progress in Chemistry),2015,27(5)532-538.
[154] KAWAKAMI Y, KAKIHANA Y, OOI O, et al. Control of Stereochemical Structures of Silicon-containing Polymeric Systems[J]. Polymer International, 2009, 58(3): 279-284.
[155] LI Y, KAWAKAMI Y. Synthesis and Polymerization of an Optically Active Bifunctional Disiloxane. 1. Preparation of Optically Active and Highly Stereoregular Poly[{(1S)-1-(1-naphthyl)-1-phenyl-3,3-dimethyldisiloxane -1,3-diyl}ethylene] by Polyaddition via Hydrosilylation[J]. Macromolecules, 1998, 31(17): 5592-5597.
[156] OISHI M, KAWAKAMI Y. Synthesis of Stereoregular and Optically Active Polysiloxanes Containing 1,3-Dimethyl-1,3-diphenyldisiloxane as a Constitutional Unit[J]. Macromolecules, 2000, 33(6): 1960-1963.
[157] WANG X-Q, ZHAI X-Y, WU B, et al. Synthesis of Chiral Poly(silyl ether)s via CuH-Catalyzed Asymmetric Hydrosilylation Polymerization of Diketones with Silanes[J]. ACS Macro Letters, 2020, 9(7): 969-973.
[158] ZHAI X-Y, WANG X-Q, WU B, et al. Copper-Catalyzed Si-H Bond Insertion Polymerization for Synthesis of Optically Active Polyesters Containing Silicon[J]. Chinese Journal of Chemistry, 2022, 40(1): 21-27.
[159] WEIGEND F. Accurate Coulomb-fitting basis sets for H to Rn[J]. Physical Chemistry Chemical Physics, 2006, 8(9): 1057-1065.
[160] WEIGEND F, AHLRICHS R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy[J]. Physical Chemistry Chemical Physics, 2005, 7(18): 3297-3305.
[161] LU T, CHEN F. Multiwfn: A Multifunctional Wavefunction Analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
[162] WORCH J C, PRYDDERCH H, JIMAJA S, et al. Stereochemical Enhancement of Polymer Properties[J]. Nature Reviews Chemistry, 2019, 3(9): 514-535.
[163] BOAEN N K, HILLMYER M A. Post-Polymerization Functionalization of Polyolefins[J]. Chemical Society Reviews, 2005, 34(3): 267-275.
[164] GAUTHIER M A, GIBSON M I, KLOK H-A. Synthesis of Functional Polymers by Post-Polymerization Modification[J]. Angewandte Chemie International Edition, 2009, 48(1): 48-58.
[165] STEINBACH T, WURM F R. Poly(phosphoester)s: A New Platform for Degradable Polymers[J]. Angewandte Chemie International Edition, 2015, 54(21): 6098-6108.
[166] PESENTI T, NICOLAS J. 100 th Anniversary of Macromolecular Science Viewpoint: Degradable Polymers from Radical Ring-Opening Polymerization: Latest Advances, New Directions, and Ongoing Challenges [J]. ACS Macro Letters, 2020, 9(12): 1812-1835.
[167] PELLIS A, MALINCONICO M, GUARNERI A, et al. Renewable Polymers and Plastics: Performance Beyond the Green[J]. New Biotechnology, 2021, 60: 146-158.
[168] CHENG C, WATTS A, HILLMYER M A, et al. Polysilylether: A Degradable Polymer from Biorenewable Feedstocks[J]. Angewandte Chemie International Edition, 2016, 55(39): 11872-11876.
[169] FOUILLOUX H, RAGER M-N, RíOS P, et al. Highly Efficient Synthesis of Poly(silylether)s: Access to Degradable Polymers from Renewable Resources[J]. Angewandte Chemie International Edition, 2022, 61(7): e202113443.
[170] GHAVTADZE N, MELKONYAN F S, GULEVICH A V, et al. Conversion of 1-Alkenes into 1,4-Diols Through an Auxiliary-Mediated Formal Homoallylic C–H Oxidation[J]. Nature Chemistry, 2014, 6(2): 122-125.
[171] SANGTRIRUTNUGUL P, TILLEY T D. Silyl Derivatives of [Bis (8-quinolyl)methylsilyl]iridium(III) Complexes: Catalytic Redistribution of Arylsilanes and Dehydrogenative Arene Silylation[J]. Organometallics, 2007, 26(23): 5557-5568.
[172] KOMURO T, KITANO T, YAMAHIRA N, et al. Directed ortho-C–H Silylation Coupled with trans-Selective Hydrogenation of Arylalkynes Catalyzed by Ruthenium Complexes of a Xanthene-Based Si,O,Si-Chelate Ligand, “Xantsil”[J]. Organometallics, 2016, 35(9): 1209-1217.
[173] KITANO T, KOMURO T, ONO R, et al. Tandem Hydrosilylation/o-C–H Silylation of Arylalkynes Catalyzed by Ruthenium Bis(silyl) Aminophosphine Complexes[J]. Organometallics, 2017, 36(15): 2710-2713.
[174] YANG B, TAN X, GE Y, et al. Stereodivergent Asymmetric Synthesis of P-Atropisomeric Si-Stereogenic Monohydrosilanes[J]. Organic Chemistry Frontiers, 2023, 10(19): 4862-4870.
[175] YANG B, GAO J, TAN X, et al. Chiral PSiSi-Ligand Enabled Iridium-Catalyzed Atroposelective Intermolecular C–H Silylation[J]. Angewandte Chemie International Edition, 2023, 62(36): e202307812.
修改评论