中文版 | English
题名

Gravi-Scalarballs for Dark Matter

其他题名
引力-标量球作为暗物质的候选者
姓名
姓名拼音
MO Zhongyou
学号
11930796
学位类型
博士
学位专业
070201 理论物理
学科门类/专业学位类别
07 理学
导师
Leonardo Modesto
导师单位
物理系
论文答辩日期
2023-11-21
论文提交日期
2024-01-06
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

    We study bound states of massless particles, in different theories. The semi-classical method, namely the interaction is described by the potential energy extracted from the scattering amplitude, is used. We reduce the particles system to a one-dimensional problem of a particle moving in an “effective potential” of the potential energy. By this way, we find the necessary and sufficient conditions for bound states. Numerically solving the equations of motion and plotting the trajectories of the particles, we find bound states are indeed allowed. Specially, we show that in string theory, local and nonlocal higher derivative theories, as well as general asymptotically-free or finite theories, gravitationally interacting bound states are allowed when the energy is larger than the Planck energy. While in higher derivative or nonlocal theories with interaction which is governed by a dimensionless or a dimensionful coupling constant, bound states are allowed for the energy less than the Planck energy. These bound states can form because the scattering amplitudes is soft in the ultraviolet region. Indeed, in such theories, the divergency of the potential energy at the singularity is removed while the force is zero or constant at this point. Besides, we show that gravi-scalarballs and stringballs likely form in the early universe, while electroballs and scalarballs possibly form after inflation. Since the energy of bound states which form in the early universe may ranges from the Planck energy to any arbitrarily large or small value, these bound states can be regarded as the candidates of dark matter and/or as the seeds of the structure formation at large scale in the universe. 

    As for how to detect these bound states, we propose to study the gravitational deflection. The deflection of a massless scalar particle by a gravi-scalarball is discussed. We calculate the deflection angle and find that it relates to the internal motions of the gravi-scalarball. In a special case, it is similar to one and a half of the deflection angle of light by the sun. Finally, we study a gravitationally induced quantum interference experiment in a spacetime with a potential energy related to gravi-scalarballs. The corresponding phase is called gravitational phase. We find a way to calculate such phase in a general spacetime, then apply it to this example. The interference of two beams along a parallelogram is studied. We calculate the fringe shift of a process when the parallelogram is flipped.

 

其他摘要

      在不同的理论框架中,我们研究了由无质量粒子构成的束缚态。这个工作采用了半经典的计算,即粒子体系的相互作用由一个取决于散射振幅的势能来描述。我们把粒子体系的运动约化成了一个一维的问题,然后通过势能重新定义了一个“有效势”,从而把复杂的粒子体系简化为一个粒子在有效势场中的运动。借助“有效势”的方法,我们发现了形成一个束缚态的充分和必要条件。通过数值求解粒子的相对论运动方程,我们得到了粒子的运动轨迹,结果表明束缚态确实可以存在。我们的分析显示:在弦理论、局域和非局域高阶导数理论、一般的渐进自由或者有限理论中,当粒子的能量大于普朗克能量时,由引力相互作用导致的束缚态可以存在;而对于其它种类的相互作用,在高阶导数或非局域理论中,如果耦合常数没有量纲或者具有正的质量量纲,则只有当能量小于普朗克能量时,才允许存在束缚态。这些束缚态可以存在的原因是,散射振幅在紫外区域具有柔和的性质,在这些理论中,相应的势能在原先的奇点处不再发散,相应的力在此处为零或者常数。另外,我们讨论了早期宇宙中这些束缚态的产生。我们发现,引力-标量球和弦球很可能出现在早期宇宙阶段,而电球和标量球则可能产生于暴涨之后。由于这些产生于早期宇宙的束缚态其能量具有从普朗克能量到各种能量的广泛范围,它们可以作为暗物质的候选者或者宇宙大尺度结构形成过程的种子。

      在观测方面,我们建议通过粒子的引力偏折效应来检验这些束缚态的存在。考虑一个无质量标量粒子被一个引力-标量球散射的过程,我们计算出了相应的偏折角。计算结果表明,粒子的偏折角和引力-标量球内部的运动有关。在特殊情况下,偏折角的表达式比较简单,类似于光被太阳引力偏折的角度乘上二分之三。最后,根据引力-标量球中的势能,我们研究了一个由引力导致的量子干涉实验,对应的相位我们称之为引力相位。我们首先找到了在一般时空中计算引力相位的方法,然后把它应用到这个例子中。具体地,在引力场中的两束粒子沿着一个平行四边形的两侧前进和汇合,在汇合处发生干涉,我们计算了这两条路径的相位差,并推导出了由翻转四边形导致的干涉条纹移动的表达式。

关键词
其他关键词
语种
英语
培养类别
独立培养
入学年份
2019
学位授予年份
2023-12
参考文献列表

[1] ZWICKY F. Die Rotverschiebung von extragalaktischen Nebeln[J/OL]. Helv. Phys. Acta, 1933, 6: 110-127. DOI: 10.1007/s10714-008-0707-4.
[2] ZWICKY F. On the Masses of Nebulae and of Clusters of Nebulae[J/OL]. Astrophys. J., 1937, 86: 217-246. DOI: 10.1086/143864.
[3] PROFUMO S. An Introduction to Particle Dark Matter[M/OL]. World Scientific, 2017. DOI: 10.1142/q0001.
[4] RUBIN V C, FORD W K, Jr. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions[J/OL]. Astrophys. J., 1970, 159: 379-403. DOI: 10.1086/150317.
[5] FREEMAN K C. On the disks of spiral and SO Galaxies[J/OL]. Astrophys. J., 1970, 160: 811.DOI: 10.1086/150474.
[6] RUBIN V C, THONNARD N, FORD W K, Jr. Rotational properties of 21 SC galaxies with alarge range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/[J/OL]. Astrophys. J., 1980, 238: 471. DOI: 10.1086/158003.
[7] MILGROM M. A Modification of the Newtonian dynamics as a possible alternative to thehidden mass hypothesis[J/OL]. Astrophys. J., 1983, 270: 365-370. DOI: 10.1086/161130.
[8] MILGROM M. A Modification of the Newtonian dynamics: Implications for galaxies[J/OL].Astrophys. J., 1983, 270: 371-383. DOI: 10.1086/161131.
[9] MILGROM M. A modification of the Newtonian dynamics: implications for galaxy systems[J/OL]. Astrophys. J., 1983, 270: 384-389. DOI: 10.1086/161132.
[10] CLOWE D, BRADAC M, GONZALEZ A H, et al. A direct empirical proof of the existence ofdark matter[J/OL]. Astrophys. J. Lett., 2006, 648: L109-L113. DOI: 10.1086/508162.
[11] BERTONE G, HOOPER D, SILK J. Particle dark matter: Evidence, candidates and constraints[J/OL]. Phys. Rept., 2005, 405: 279-390. DOI: 10.1016/j.physrep.2004.08.031.
[12] ABBOTT L F, SIKIVIE P. A Cosmological Bound on the Invisible Axion[J/OL]. Phys. Lett.B, 1983, 120: 133-136. DOI: 10.1016/0370-2693(83)90638-X.
[13] SHI X D, FULLER G M. A New dark matter candidate: Nonthermal sterile neutrinos[J/OL].Phys. Rev. Lett., 1999, 82: 2832-2835. DOI: 10.1103/PhysRevLett.82.2832.
[14] BERTONE G, TAIT T, M. P. A new era in the search for dark matter[J/OL]. Nature, 2018, 562(7725): 51-56. DOI: 10.1038/s41586-018-0542-z.
[15] GUIOT B, BORQUEZ A, DEUR A, et al. Graviballs and Dark Matter[J/OL]. JHEP, 2020, 11:159. DOI: 10.1007/JHEP11(2020)159.
[16] MODESTO L, PREMONT-SCHWARZ I. Self-dual Black Holes in LQG: Theory and Phe-nomenology[J/OL]. Phys. Rev. D, 2009, 80: 064041. DOI: 10.1103/PhysRevD.80.064041.
[17] GREEN M B, SCHWARZ J H, WITTEN E. Cambridge Monographs on Mathematical Physics: Superstring Theory Vol. 1: 25th Anniversary Edition[M/OL]. Cambridge University Press,2012. DOI: 10.1017/CBO9781139248563.
[18] GREEN M B, SCHWARZ J H, WITTEN E. Cambridge Monographs on Mathematical Physics: Superstring Theory Vol. 2: 25th Anniversary Edition[M/OL]. Cambridge University Press, 2012. DOI: 10.1017/CBO9781139248570.
[19] POLCHINSKI J. String theory[M]. 2005.
[20] KRASNIKOV N V. NONLOCAL GAUGE THEORIES[J/OL]. Theor. Math. Phys., 1987, 73: 1184-1190. DOI: 10.1007/BF01017588.
[21] KUZMIN Y V. THE CONVERGENT NONLOCAL GRAVITATION. (IN RUSSIAN)[J]. Sov. J. Nucl. Phys., 1989, 50: 1011-1014.
[22] MODESTO L. Super-renormalizable Quantum Gravity[J/OL]. Phys. Rev. D, 2012, 86: 044005. DOI: 10.1103/PhysRevD.86.044005.
[23] MODESTO L, RACHWAL L. Super-renormalizable and finite gravitational theories[J/OL]. Nucl. Phys. B, 2014, 889: 228-248. DOI: 10.1016/j.nuclphysb.2014.10.015.
[24] MODESTO L, RACHWAŁ L. Nonlocal quantum gravity: A review[J/OL]. Int. J. Mod. Phys. D, 2017, 26(11): 1730020. DOI: 10.1142/S0218271817300208.
[25] MODESTO L. The Higgs mechanism in nonlocal field theory[J/OL]. JHEP, 2021, 06: 049. DOI: 10.1007/JHEP06(2021)049.
[26] MODESTO L. Nonlocal Spacetime-Matter[A]. 2021. arXiv: 2103.04936.
[27] MODESTO L, RACHWAŁ L. Universally finite gravitational and gauge theories[J/OL]. Nucl. Phys. B, 2015, 900: 147-169. DOI: 10.1016/j.nuclphysb.2015.09.006.
[28] MODESTO L, PIVA M, RACHWAL L. Finite quantum gauge theories[J/OL]. Phys. Rev. D, 2016, 94(2): 025021. DOI: 10.1103/PhysRevD.94.025021.
[29] ASOREY M, LOPEZ J L, SHAPIRO I L. Some remarks on high derivative quantum gravity [J/OL]. Int. J. Mod. Phys. A, 1997, 12: 5711-5734. DOI: 10.1142/S0217751X97002991.
[30] MODESTO L, SHAPIRO I L. Superrenormalizable quantum gravity with complex ghosts [J/OL]. Phys. Lett. B, 2016, 755: 279-284. DOI: 10.1016/j.physletb.2016.02.021.
[31] MODESTO L. Super-renormalizable or finite Lee–Wick quantum gravity[J/OL]. Nucl. Phys. B, 2016, 909: 584-606. DOI: 10.1016/j.nuclphysb.2016.06.004.
[32] STELLE K S. Renormalization of Higher Derivative Quantum Gravity[J/OL]. Phys. Rev. D, 1977, 16: 953-969. DOI: 10.1103/PhysRevD.16.953.
[33] REUTER M. Nonperturbative evolution equation for quantum gravity[J/OL]. Phys. Rev. D, 1998, 57: 971-985. DOI: 10.1103/PhysRevD.57.971.
[34] CODELLO A, PERCACCI R, RAHMEDE C. Investigating the Ultraviolet Properties of Grav- ity with a Wilsonian Renormalization Group Equation[J/OL]. Annals Phys., 2009, 324: 414- 469. DOI: 10.1016/j.aop.2008.08.008.
[35] LITIM D F. Optimized renormalization group flows[J/OL]. Phys. Rev. D, 2001, 64: 105007. DOI: 10.1103/PhysRevD.64.105007.
[36] BRISCESE F, MODESTO L. Cutkosky rules and perturbative unitarity in Euclidean nonlocal quantum field theories[J/OL]. Phys. Rev. D, 2019, 99(10): 104043. DOI: 10.1103/PhysRevD .99.104043.
[37] BRISCESE F, MODESTO L. Non-unitarity of Minkowskian non-local quantum field theories [J/OL]. Eur. Phys. J. C, 2021, 81(8): 730. DOI: 10.1140/epjc/s10052-021-09525-7.
[38] SMAILAGIC A, SPALLUCCI E. Lorentz invariance, unitarity in UV-finite of QFT on noncom- mutative spacetime[J/OL]. J. Phys. A, 2004, 37: 7169. DOI: 10.1088/0305-4470/37/28/008.
[39] ANSELMI D. On the quantum field theory of the gravitational interactions[J/OL]. JHEP, 2017, 06: 086. DOI: 10.1007/JHEP06(2017)086.
[40] ANSELMI D, PIVA M. A new formulation of Lee-Wick quantum field theory[J/OL]. JHEP, 2017, 06: 066. DOI: 10.1007/JHEP06(2017)066.
[41] ANSELMI D, PIVA M. Perturbative unitarity of Lee-Wick quantum field theory[J/OL]. Phys. Rev. D, 2017, 96(4): 045009. DOI: 10.1103/PhysRevD.96.045009.
[42] ANSELMI D. Fakeons And Lee-Wick Models[J/OL]. JHEP, 2018, 02: 141. DOI: 10.1007/JH EP02(2018)141.
[43] AGLIETTI U G, ANSELMI D. Inconsistency of Minkowski higher-derivative theories[J/OL]. Eur. Phys. J. C, 2017, 77(2): 84. DOI: 10.1140/epjc/s10052-017-4646-7.
[44] PLATANIA A, WETTERICH C. Non-perturbative unitarity and fictitious ghosts in quantum gravity[J/OL]. Phys. Lett. B, 2020, 811: 135911. DOI: 10.1016/j.physletb.2020.135911.
[45] LI Q, MODESTO L. Galactic Rotation Curves in Conformal Scalar-Tensor Gravity[J/OL]. Grav. Cosmol., 2020, 26(2): 99-117. DOI: 10.1134/S0202289320020085.
[46] MODESTO L, ZHOU T, LI Q. Geometric origin of the galaxies’ dark side[A]. 2021. arXiv: 2112.04116.
[47] CHAMSEDDINE A H, MUKHANOV V. Mimetic Dark Matter[J/OL]. JHEP, 2013, 11: 135. DOI: 10.1007/JHEP11(2013)135.
[48] SEBASTIANI L, VAGNOZZI S, MYRZAKULOV R. Mimetic gravity: a review of recent developments and applications to cosmology and astrophysics[J/OL]. Adv. High Energy Phys., 2017, 2017: 3156915. DOI: 10.1155/2017/3156915.
[49] MYRZAKULOV R, SEBASTIANI L, VAGNOZZI S, et al. Static spherically symmetric solu- tions in mimetic gravity: rotation curves and wormholes[J/OL]. Class. Quant. Grav., 2016, 33 (12): 125005. DOI: 10.1088/0264-9381/33/12/125005.
[50] VAGNOZZI S. Recovering a MOND-like acceleration law in mimetic gravity[J/OL]. Class. Quant. Grav., 2017, 34(18): 185006. DOI: 10.1088/1361-6382/aa838b.
[51] ARNOL’D V I. Mathematical methods of classical mechanics: Vol. 60[M]. Springer Science & Business Media, 2013.
[52] BARNES K. Lagrangian Theory for the Second-Rank Tensor Field[J]. Journal of Mathematical Physics, 1965, 6(5): 788-794.
[53] RIVERS R. Lagrangian theory for neutral massive spin-2 fields[J]. Il Nuovo Cimento (1955- 1965), 1964, 34: 386-403.
[54] ACCIOLY A, AZEREDO A, MUKAI H. Propagator, tree-level unitarity and effective nonrel- ativistic potential for higher-derivative gravity theories in D dimensions[J/OL]. J. Math. Phys., 2002, 43: 473-491. DOI: 10.1063/1.1415743.
[55] BURZILLÀ N, GIACCHINI B L, NETTO T D P, et al. Higher-order regularity in local and nonlocal quantum gravity[J/OL]. Eur. Phys. J. C, 2021, 81(5): 462. DOI: 10.1140/epjc/s1005 2-021-09238-x.
[56] BURZILLÀ N, GIACCHINI B L, NETTO T D P, et al. Newtonian potential in higher-derivative quantum gravity[J/OL]. Phys. Rev. D, 2021, 103(6): 064080. DOI: 10.1103/PhysRevD.103.0 64080.
[57] DONOGHUE J F. General relativity as an effective field theory: The leading quantum correc- tions[J/OL]. Phys. Rev. D, 1994, 50: 3874-3888. DOI: 10.1103/PhysRevD.50.3874.
[58] HELAYEL-NETO J A, PENNA-FIRME A, SHAPIRO I L. Scalar QED h-Planck corrections to the Coulomb potential[J/OL]. JHEP, 2000, 01: 009. DOI: 10.1088/1126-6708/2000/01/009.
[59] DE PAULA NETTO T, MODESTO L, SHAPIRO I L. Universal leading quantum correction to the Newton potential[J/OL]. Eur. Phys. J. C, 2022, 82(2): 160. DOI: 10.1140/epjc/s10052-0 22-10077-7.
[60] BRISCESE F, MODESTO L. Unattainability of the trans-Planckian regime in nonlocal quantum gravity[J/OL]. JHEP, 2020, 09: 056. DOI: 10.1007/JHEP09(2020)056.
[61] RACHWAL L, MODESTO L, PINZUL A, et al. Renormalization group in six-derivative quan- tum gravity[J/OL]. Phys. Rev. D, 2021, 104(8): 085018. DOI: 10.1103/PhysRevD.104.085018.
[62] MODESTO L, CALCAGNI G. Tree-level scattering amplitudes in nonlocal field theories [J/OL]. JHEP, 2021, 10: 169. DOI: 10.1007/JHEP10(2021)169.
[63] CAMANHO X O, EDELSTEIN J D, MALDACENA J, et al. Causality Constraints on Corrections to the Graviton Three-Point Coupling[J/OL]. JHEP, 2016, 02: 020. DOI: 10.1007/JHEP02(2016)020.
[64] SIEGEL W. Stringy gravity at short distances[A]. 2003. arXiv: hep-th/0309093.
[65] AMATI D, CIAFALONI M, VENEZIANO G. Superstring Collisions at Planckian Energies [J/OL]. Phys. Lett. B, 1987, 197: 81. DOI: 10.1016/0370-2693(87)90346-7.
[66] AMATI D, CIAFALONI M, VENEZIANO G. Classical and Quantum Gravity Effects from Planckian Energy Superstring Collisions[J/OL]. Int. J. Mod. Phys. A, 1988, 3: 1615-1661. DOI: 10.1142/S0217751X88000710.
[67] AMATI D, CIAFALONI M, VENEZIANO G. Can Space-Time Be Probed Below the String Size?[J/OL]. Phys. Lett. B, 1989, 216: 41-47. DOI: 10.1016/0370-2693(89)91366-X.
[68] AMATI D, CIAFALONI M, VENEZIANO G. Planckian scattering beyond the semiclassical approximation[J/OL]. Phys. Lett. B, 1992, 289: 87-91. DOI: 10.1016/0370-2693(92)91366-H.
[69] AMATI D, CIAFALONI M, VENEZIANO G. Effective action and all order gravitational eikonal at Planckian energies[J/OL]. Nucl. Phys. B, 1993, 403: 707-724. DOI: 10.1016/05 50-3213(93)90367-X.
[70] GIACCHINI B L, DE PAULA NETTO T. Effective delta sources and regularity in higher- derivative and ghost-free gravity[J/OL]. JCAP, 2019, 07: 013. DOI: 10.1088/1475-7516/2019 /07/013.
[71] FROLOV V P, NOVIKOV I D. Black hole physics: Basic concepts and new developments [M/OL]. 1998. DOI: 10.1007/978-94-011-5139-9.
[72] AYDEMIR U, HOLDOM B, REN J. Not quite black holes as dark matter[J/OL]. Phys. Rev. D, 2020, 102: 024058. https://link.aps.org/doi/10.1103/PhysRevD.102.024058.
[73] AYDEMIR U, REN J. Dark sector production and baryogenesis from not quite black holes [J/OL]. Chin. Phys. C, 2021, 45(7): 075103. DOI: 10.1088/1674-1137/abf9ff.
[74] HOLDOM B. 2-2-holes simplified[J/OL]. Phys. Lett. B, 2022, 830: 137142. DOI: 10.1016/j. physletb.2022.137142.
[75] HOLDOM B, REN J. QCD analogy for quantum gravity[J/OL]. Phys. Rev. D, 2016, 93(12): 124030. DOI: 10.1103/PhysRevD.93.124030.
[76] HOLDOM B. A ghost and a naked singularity; facing our demons[A]. 2019.
[77] NICOLINI P, SMAILAGIC A, SPALLUCCI E. Noncommutative geometry inspired Schwarzschild black hole[J/OL]. Phys. Lett. B, 2006, 632: 547-551. DOI: 10.1016/j.phys letb.2005.11.004.
[78] MODESTO L, MOFFAT J W, NICOLINI P. Black holes in an ultraviolet complete quantum gravity[J/OL]. Phys. Lett. B, 2011, 695: 397-400. DOI: 10.1016/j.physletb.2010.11.046.
[79] BAMBI C, MALAFARINA D, MODESTO L. Black supernovae and black holes in non-local gravity[J/OL]. JHEP, 2016, 04: 147. DOI: 10.1007/JHEP04(2016)147.
[80] ZHANG Y, ZHU Y, MODESTO L, et al. Can static regular black holes form from gravitational collapse?[J/OL]. Eur. Phys. J. C, 2015, 75(2): 96. DOI: 10.1140/epjc/s10052-015-3311-2.
[81] BAMBI C, MALAFARINA D, MODESTO L. Terminating black holes in asymptotically free quantum gravity[J/OL]. Eur. Phys. J. C, 2014, 74: 2767. DOI: 10.1140/epjc/s10052-014-276 7-9.
[82] BUONINFANTE L, MAZUMDAR A. Nonlocal star as a blackhole mimicker[J/OL]. Phys. Rev. D, 2019, 100(2): 024031. DOI: 10.1103/PhysRevD.100.024031.
[83] BJERRUM-BOHR N E J, DONOGHUE J F, HOLSTEIN B R, et al. Bending of Light in Quantum Gravity[J/OL]. Phys. Rev. Lett., 2015, 114(6): 061301. DOI: 10.1103/PhysRevLett. 114.061301.
[84] BOHM D. Quantum theory[M]. Courier Corporation, 2012.
[85] ALDROVANDI R, PEREIRA J G. Teleparallel Gravity: An Introduction[M/OL]. Springer, 2013. DOI: 10.1007/978-94-007-5143-9.
[86] ALDROVANDI R, PEREIRA J G, VU K H. Gravitation: Global formulation and quantum effects[J/OL]. Class. Quant. Grav., 2004, 21: 51-62. DOI: 10.1088/0264-9381/21/1/004.
[87] PEREIRA J G, VARGAS T, ZHANG C M. Axial vector torsion and the teleparallel Kerr space- time[J/OL]. Class. Quant. Grav., 2001, 18: 833-842. DOI: 10.1088/0264-9381/18/5/306.
[88] HAYASHI K, SHIRAFUJI T. New general relativity[J/OL]. Phys. Rev. D, 1979, 19: 3524-3553. https://link.aps.org/doi/10.1103/PhysRevD.19.3524.
[89] CARROLL S M. Spacetime and Geometry[M]. Cambridge University Press, 2019.
[90] COLELLA R, OVERHAUSER A W, WERNER S A. Observation of gravitationally induced quantum interference[J/OL]. Phys. Rev. Lett., 1975, 34: 1472-1474. DOI: 10.1103/PhysRevL ett.34.1472.
[91] OVERHAUSER A W, COLELLA R. Experimental Test of Gravitationally Induced Quantum Interference[J/OL]. Phys. Rev. Lett., 1974, 33: 1237-1239. https://link.aps.org/doi/10.1103/P hysRevLett.33.1237.
[92] STODOLSKY L. Matter and Light Wave Interferometry in Gravitational Fields[J/OL]. Gen. Rel. Grav., 1979, 11: 391-405. DOI: 10.1007/BF00759302.
[93] LANDAU L D, LIFSCHITS E M. Course of Theoretical Physics: Volume 2 The Classical Theory of Fields[M]. Oxford: Pergamon Press, 1975.
[94] ELIZALDE E. Ten physical applications of spectral zeta functions: Vol. 35[M/OL]. 1995. DOI: 10.1007/978-3-540-44757-3.

所在学位评定分委会
物理学
国内图书分类号
O412.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/647145
专题南方科技大学
理学院_物理系
推荐引用方式
GB/T 7714
Mo ZY. Gravi-Scalarballs for Dark Matter[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930796-莫忠有-物理系.pdf(2258KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[莫忠有]的文章
百度学术
百度学术中相似的文章
[莫忠有]的文章
必应学术
必应学术中相似的文章
[莫忠有]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。