[1] ZWICKY F. Die Rotverschiebung von extragalaktischen Nebeln[J/OL]. Helv. Phys. Acta, 1933, 6: 110-127. DOI: 10.1007/s10714-008-0707-4.
[2] ZWICKY F. On the Masses of Nebulae and of Clusters of Nebulae[J/OL]. Astrophys. J., 1937, 86: 217-246. DOI: 10.1086/143864.
[3] PROFUMO S. An Introduction to Particle Dark Matter[M/OL]. World Scientific, 2017. DOI: 10.1142/q0001.
[4] RUBIN V C, FORD W K, Jr. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions[J/OL]. Astrophys. J., 1970, 159: 379-403. DOI: 10.1086/150317.
[5] FREEMAN K C. On the disks of spiral and SO Galaxies[J/OL]. Astrophys. J., 1970, 160: 811.DOI: 10.1086/150474.
[6] RUBIN V C, THONNARD N, FORD W K, Jr. Rotational properties of 21 SC galaxies with alarge range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/[J/OL]. Astrophys. J., 1980, 238: 471. DOI: 10.1086/158003.
[7] MILGROM M. A Modification of the Newtonian dynamics as a possible alternative to thehidden mass hypothesis[J/OL]. Astrophys. J., 1983, 270: 365-370. DOI: 10.1086/161130.
[8] MILGROM M. A Modification of the Newtonian dynamics: Implications for galaxies[J/OL].Astrophys. J., 1983, 270: 371-383. DOI: 10.1086/161131.
[9] MILGROM M. A modification of the Newtonian dynamics: implications for galaxy systems[J/OL]. Astrophys. J., 1983, 270: 384-389. DOI: 10.1086/161132.
[10] CLOWE D, BRADAC M, GONZALEZ A H, et al. A direct empirical proof of the existence ofdark matter[J/OL]. Astrophys. J. Lett., 2006, 648: L109-L113. DOI: 10.1086/508162.
[11] BERTONE G, HOOPER D, SILK J. Particle dark matter: Evidence, candidates and constraints[J/OL]. Phys. Rept., 2005, 405: 279-390. DOI: 10.1016/j.physrep.2004.08.031.
[12] ABBOTT L F, SIKIVIE P. A Cosmological Bound on the Invisible Axion[J/OL]. Phys. Lett.B, 1983, 120: 133-136. DOI: 10.1016/0370-2693(83)90638-X.
[13] SHI X D, FULLER G M. A New dark matter candidate: Nonthermal sterile neutrinos[J/OL].Phys. Rev. Lett., 1999, 82: 2832-2835. DOI: 10.1103/PhysRevLett.82.2832.
[14] BERTONE G, TAIT T, M. P. A new era in the search for dark matter[J/OL]. Nature, 2018, 562(7725): 51-56. DOI: 10.1038/s41586-018-0542-z.
[15] GUIOT B, BORQUEZ A, DEUR A, et al. Graviballs and Dark Matter[J/OL]. JHEP, 2020, 11:159. DOI: 10.1007/JHEP11(2020)159.
[16] MODESTO L, PREMONT-SCHWARZ I. Self-dual Black Holes in LQG: Theory and Phe-nomenology[J/OL]. Phys. Rev. D, 2009, 80: 064041. DOI: 10.1103/PhysRevD.80.064041.
[17] GREEN M B, SCHWARZ J H, WITTEN E. Cambridge Monographs on Mathematical Physics: Superstring Theory Vol. 1: 25th Anniversary Edition[M/OL]. Cambridge University Press,2012. DOI: 10.1017/CBO9781139248563.
[18] GREEN M B, SCHWARZ J H, WITTEN E. Cambridge Monographs on Mathematical Physics: Superstring Theory Vol. 2: 25th Anniversary Edition[M/OL]. Cambridge University Press, 2012. DOI: 10.1017/CBO9781139248570.
[19] POLCHINSKI J. String theory[M]. 2005.
[20] KRASNIKOV N V. NONLOCAL GAUGE THEORIES[J/OL]. Theor. Math. Phys., 1987, 73: 1184-1190. DOI: 10.1007/BF01017588.
[21] KUZMIN Y V. THE CONVERGENT NONLOCAL GRAVITATION. (IN RUSSIAN)[J]. Sov. J. Nucl. Phys., 1989, 50: 1011-1014.
[22] MODESTO L. Super-renormalizable Quantum Gravity[J/OL]. Phys. Rev. D, 2012, 86: 044005. DOI: 10.1103/PhysRevD.86.044005.
[23] MODESTO L, RACHWAL L. Super-renormalizable and finite gravitational theories[J/OL]. Nucl. Phys. B, 2014, 889: 228-248. DOI: 10.1016/j.nuclphysb.2014.10.015.
[24] MODESTO L, RACHWAŁ L. Nonlocal quantum gravity: A review[J/OL]. Int. J. Mod. Phys. D, 2017, 26(11): 1730020. DOI: 10.1142/S0218271817300208.
[25] MODESTO L. The Higgs mechanism in nonlocal field theory[J/OL]. JHEP, 2021, 06: 049. DOI: 10.1007/JHEP06(2021)049.
[26] MODESTO L. Nonlocal Spacetime-Matter[A]. 2021. arXiv: 2103.04936.
[27] MODESTO L, RACHWAŁ L. Universally finite gravitational and gauge theories[J/OL]. Nucl. Phys. B, 2015, 900: 147-169. DOI: 10.1016/j.nuclphysb.2015.09.006.
[28] MODESTO L, PIVA M, RACHWAL L. Finite quantum gauge theories[J/OL]. Phys. Rev. D, 2016, 94(2): 025021. DOI: 10.1103/PhysRevD.94.025021.
[29] ASOREY M, LOPEZ J L, SHAPIRO I L. Some remarks on high derivative quantum gravity [J/OL]. Int. J. Mod. Phys. A, 1997, 12: 5711-5734. DOI: 10.1142/S0217751X97002991.
[30] MODESTO L, SHAPIRO I L. Superrenormalizable quantum gravity with complex ghosts [J/OL]. Phys. Lett. B, 2016, 755: 279-284. DOI: 10.1016/j.physletb.2016.02.021.
[31] MODESTO L. Super-renormalizable or finite Lee–Wick quantum gravity[J/OL]. Nucl. Phys. B, 2016, 909: 584-606. DOI: 10.1016/j.nuclphysb.2016.06.004.
[32] STELLE K S. Renormalization of Higher Derivative Quantum Gravity[J/OL]. Phys. Rev. D, 1977, 16: 953-969. DOI: 10.1103/PhysRevD.16.953.
[33] REUTER M. Nonperturbative evolution equation for quantum gravity[J/OL]. Phys. Rev. D, 1998, 57: 971-985. DOI: 10.1103/PhysRevD.57.971.
[34] CODELLO A, PERCACCI R, RAHMEDE C. Investigating the Ultraviolet Properties of Grav- ity with a Wilsonian Renormalization Group Equation[J/OL]. Annals Phys., 2009, 324: 414- 469. DOI: 10.1016/j.aop.2008.08.008.
[35] LITIM D F. Optimized renormalization group flows[J/OL]. Phys. Rev. D, 2001, 64: 105007. DOI: 10.1103/PhysRevD.64.105007.
[36] BRISCESE F, MODESTO L. Cutkosky rules and perturbative unitarity in Euclidean nonlocal quantum field theories[J/OL]. Phys. Rev. D, 2019, 99(10): 104043. DOI: 10.1103/PhysRevD .99.104043.
[37] BRISCESE F, MODESTO L. Non-unitarity of Minkowskian non-local quantum field theories [J/OL]. Eur. Phys. J. C, 2021, 81(8): 730. DOI: 10.1140/epjc/s10052-021-09525-7.
[38] SMAILAGIC A, SPALLUCCI E. Lorentz invariance, unitarity in UV-finite of QFT on noncom- mutative spacetime[J/OL]. J. Phys. A, 2004, 37: 7169. DOI: 10.1088/0305-4470/37/28/008.
[39] ANSELMI D. On the quantum field theory of the gravitational interactions[J/OL]. JHEP, 2017, 06: 086. DOI: 10.1007/JHEP06(2017)086.
[40] ANSELMI D, PIVA M. A new formulation of Lee-Wick quantum field theory[J/OL]. JHEP, 2017, 06: 066. DOI: 10.1007/JHEP06(2017)066.
[41] ANSELMI D, PIVA M. Perturbative unitarity of Lee-Wick quantum field theory[J/OL]. Phys. Rev. D, 2017, 96(4): 045009. DOI: 10.1103/PhysRevD.96.045009.
[42] ANSELMI D. Fakeons And Lee-Wick Models[J/OL]. JHEP, 2018, 02: 141. DOI: 10.1007/JH EP02(2018)141.
[43] AGLIETTI U G, ANSELMI D. Inconsistency of Minkowski higher-derivative theories[J/OL]. Eur. Phys. J. C, 2017, 77(2): 84. DOI: 10.1140/epjc/s10052-017-4646-7.
[44] PLATANIA A, WETTERICH C. Non-perturbative unitarity and fictitious ghosts in quantum gravity[J/OL]. Phys. Lett. B, 2020, 811: 135911. DOI: 10.1016/j.physletb.2020.135911.
[45] LI Q, MODESTO L. Galactic Rotation Curves in Conformal Scalar-Tensor Gravity[J/OL]. Grav. Cosmol., 2020, 26(2): 99-117. DOI: 10.1134/S0202289320020085.
[46] MODESTO L, ZHOU T, LI Q. Geometric origin of the galaxies’ dark side[A]. 2021. arXiv: 2112.04116.
[47] CHAMSEDDINE A H, MUKHANOV V. Mimetic Dark Matter[J/OL]. JHEP, 2013, 11: 135. DOI: 10.1007/JHEP11(2013)135.
[48] SEBASTIANI L, VAGNOZZI S, MYRZAKULOV R. Mimetic gravity: a review of recent developments and applications to cosmology and astrophysics[J/OL]. Adv. High Energy Phys., 2017, 2017: 3156915. DOI: 10.1155/2017/3156915.
[49] MYRZAKULOV R, SEBASTIANI L, VAGNOZZI S, et al. Static spherically symmetric solu- tions in mimetic gravity: rotation curves and wormholes[J/OL]. Class. Quant. Grav., 2016, 33 (12): 125005. DOI: 10.1088/0264-9381/33/12/125005.
[50] VAGNOZZI S. Recovering a MOND-like acceleration law in mimetic gravity[J/OL]. Class. Quant. Grav., 2017, 34(18): 185006. DOI: 10.1088/1361-6382/aa838b.
[51] ARNOL’D V I. Mathematical methods of classical mechanics: Vol. 60[M]. Springer Science & Business Media, 2013.
[52] BARNES K. Lagrangian Theory for the Second-Rank Tensor Field[J]. Journal of Mathematical Physics, 1965, 6(5): 788-794.
[53] RIVERS R. Lagrangian theory for neutral massive spin-2 fields[J]. Il Nuovo Cimento (1955- 1965), 1964, 34: 386-403.
[54] ACCIOLY A, AZEREDO A, MUKAI H. Propagator, tree-level unitarity and effective nonrel- ativistic potential for higher-derivative gravity theories in D dimensions[J/OL]. J. Math. Phys., 2002, 43: 473-491. DOI: 10.1063/1.1415743.
[55] BURZILLÀ N, GIACCHINI B L, NETTO T D P, et al. Higher-order regularity in local and nonlocal quantum gravity[J/OL]. Eur. Phys. J. C, 2021, 81(5): 462. DOI: 10.1140/epjc/s1005 2-021-09238-x.
[56] BURZILLÀ N, GIACCHINI B L, NETTO T D P, et al. Newtonian potential in higher-derivative quantum gravity[J/OL]. Phys. Rev. D, 2021, 103(6): 064080. DOI: 10.1103/PhysRevD.103.0 64080.
[57] DONOGHUE J F. General relativity as an effective field theory: The leading quantum correc- tions[J/OL]. Phys. Rev. D, 1994, 50: 3874-3888. DOI: 10.1103/PhysRevD.50.3874.
[58] HELAYEL-NETO J A, PENNA-FIRME A, SHAPIRO I L. Scalar QED h-Planck corrections to the Coulomb potential[J/OL]. JHEP, 2000, 01: 009. DOI: 10.1088/1126-6708/2000/01/009.
[59] DE PAULA NETTO T, MODESTO L, SHAPIRO I L. Universal leading quantum correction to the Newton potential[J/OL]. Eur. Phys. J. C, 2022, 82(2): 160. DOI: 10.1140/epjc/s10052-0 22-10077-7.
[60] BRISCESE F, MODESTO L. Unattainability of the trans-Planckian regime in nonlocal quantum gravity[J/OL]. JHEP, 2020, 09: 056. DOI: 10.1007/JHEP09(2020)056.
[61] RACHWAL L, MODESTO L, PINZUL A, et al. Renormalization group in six-derivative quan- tum gravity[J/OL]. Phys. Rev. D, 2021, 104(8): 085018. DOI: 10.1103/PhysRevD.104.085018.
[62] MODESTO L, CALCAGNI G. Tree-level scattering amplitudes in nonlocal field theories [J/OL]. JHEP, 2021, 10: 169. DOI: 10.1007/JHEP10(2021)169.
[63] CAMANHO X O, EDELSTEIN J D, MALDACENA J, et al. Causality Constraints on Corrections to the Graviton Three-Point Coupling[J/OL]. JHEP, 2016, 02: 020. DOI: 10.1007/JHEP02(2016)020.
[64] SIEGEL W. Stringy gravity at short distances[A]. 2003. arXiv: hep-th/0309093.
[65] AMATI D, CIAFALONI M, VENEZIANO G. Superstring Collisions at Planckian Energies [J/OL]. Phys. Lett. B, 1987, 197: 81. DOI: 10.1016/0370-2693(87)90346-7.
[66] AMATI D, CIAFALONI M, VENEZIANO G. Classical and Quantum Gravity Effects from Planckian Energy Superstring Collisions[J/OL]. Int. J. Mod. Phys. A, 1988, 3: 1615-1661. DOI: 10.1142/S0217751X88000710.
[67] AMATI D, CIAFALONI M, VENEZIANO G. Can Space-Time Be Probed Below the String Size?[J/OL]. Phys. Lett. B, 1989, 216: 41-47. DOI: 10.1016/0370-2693(89)91366-X.
[68] AMATI D, CIAFALONI M, VENEZIANO G. Planckian scattering beyond the semiclassical approximation[J/OL]. Phys. Lett. B, 1992, 289: 87-91. DOI: 10.1016/0370-2693(92)91366-H.
[69] AMATI D, CIAFALONI M, VENEZIANO G. Effective action and all order gravitational eikonal at Planckian energies[J/OL]. Nucl. Phys. B, 1993, 403: 707-724. DOI: 10.1016/05 50-3213(93)90367-X.
[70] GIACCHINI B L, DE PAULA NETTO T. Effective delta sources and regularity in higher- derivative and ghost-free gravity[J/OL]. JCAP, 2019, 07: 013. DOI: 10.1088/1475-7516/2019 /07/013.
[71] FROLOV V P, NOVIKOV I D. Black hole physics: Basic concepts and new developments [M/OL]. 1998. DOI: 10.1007/978-94-011-5139-9.
[72] AYDEMIR U, HOLDOM B, REN J. Not quite black holes as dark matter[J/OL]. Phys. Rev. D, 2020, 102: 024058. https://link.aps.org/doi/10.1103/PhysRevD.102.024058.
[73] AYDEMIR U, REN J. Dark sector production and baryogenesis from not quite black holes [J/OL]. Chin. Phys. C, 2021, 45(7): 075103. DOI: 10.1088/1674-1137/abf9ff.
[74] HOLDOM B. 2-2-holes simplified[J/OL]. Phys. Lett. B, 2022, 830: 137142. DOI: 10.1016/j. physletb.2022.137142.
[75] HOLDOM B, REN J. QCD analogy for quantum gravity[J/OL]. Phys. Rev. D, 2016, 93(12): 124030. DOI: 10.1103/PhysRevD.93.124030.
[76] HOLDOM B. A ghost and a naked singularity; facing our demons[A]. 2019.
[77] NICOLINI P, SMAILAGIC A, SPALLUCCI E. Noncommutative geometry inspired Schwarzschild black hole[J/OL]. Phys. Lett. B, 2006, 632: 547-551. DOI: 10.1016/j.phys letb.2005.11.004.
[78] MODESTO L, MOFFAT J W, NICOLINI P. Black holes in an ultraviolet complete quantum gravity[J/OL]. Phys. Lett. B, 2011, 695: 397-400. DOI: 10.1016/j.physletb.2010.11.046.
[79] BAMBI C, MALAFARINA D, MODESTO L. Black supernovae and black holes in non-local gravity[J/OL]. JHEP, 2016, 04: 147. DOI: 10.1007/JHEP04(2016)147.
[80] ZHANG Y, ZHU Y, MODESTO L, et al. Can static regular black holes form from gravitational collapse?[J/OL]. Eur. Phys. J. C, 2015, 75(2): 96. DOI: 10.1140/epjc/s10052-015-3311-2.
[81] BAMBI C, MALAFARINA D, MODESTO L. Terminating black holes in asymptotically free quantum gravity[J/OL]. Eur. Phys. J. C, 2014, 74: 2767. DOI: 10.1140/epjc/s10052-014-276 7-9.
[82] BUONINFANTE L, MAZUMDAR A. Nonlocal star as a blackhole mimicker[J/OL]. Phys. Rev. D, 2019, 100(2): 024031. DOI: 10.1103/PhysRevD.100.024031.
[83] BJERRUM-BOHR N E J, DONOGHUE J F, HOLSTEIN B R, et al. Bending of Light in Quantum Gravity[J/OL]. Phys. Rev. Lett., 2015, 114(6): 061301. DOI: 10.1103/PhysRevLett. 114.061301.
[84] BOHM D. Quantum theory[M]. Courier Corporation, 2012.
[85] ALDROVANDI R, PEREIRA J G. Teleparallel Gravity: An Introduction[M/OL]. Springer, 2013. DOI: 10.1007/978-94-007-5143-9.
[86] ALDROVANDI R, PEREIRA J G, VU K H. Gravitation: Global formulation and quantum effects[J/OL]. Class. Quant. Grav., 2004, 21: 51-62. DOI: 10.1088/0264-9381/21/1/004.
[87] PEREIRA J G, VARGAS T, ZHANG C M. Axial vector torsion and the teleparallel Kerr space- time[J/OL]. Class. Quant. Grav., 2001, 18: 833-842. DOI: 10.1088/0264-9381/18/5/306.
[88] HAYASHI K, SHIRAFUJI T. New general relativity[J/OL]. Phys. Rev. D, 1979, 19: 3524-3553. https://link.aps.org/doi/10.1103/PhysRevD.19.3524.
[89] CARROLL S M. Spacetime and Geometry[M]. Cambridge University Press, 2019.
[90] COLELLA R, OVERHAUSER A W, WERNER S A. Observation of gravitationally induced quantum interference[J/OL]. Phys. Rev. Lett., 1975, 34: 1472-1474. DOI: 10.1103/PhysRevL ett.34.1472.
[91] OVERHAUSER A W, COLELLA R. Experimental Test of Gravitationally Induced Quantum Interference[J/OL]. Phys. Rev. Lett., 1974, 33: 1237-1239. https://link.aps.org/doi/10.1103/P hysRevLett.33.1237.
[92] STODOLSKY L. Matter and Light Wave Interferometry in Gravitational Fields[J/OL]. Gen. Rel. Grav., 1979, 11: 391-405. DOI: 10.1007/BF00759302.
[93] LANDAU L D, LIFSCHITS E M. Course of Theoretical Physics: Volume 2 The Classical Theory of Fields[M]. Oxford: Pergamon Press, 1975.
[94] ELIZALDE E. Ten physical applications of spectral zeta functions: Vol. 35[M/OL]. 1995. DOI: 10.1007/978-3-540-44757-3.
修改评论